2010-084_hal

Embed Size (px)

Citation preview

  • 8/9/2019 2010-084_hal

    1/11

  • 8/9/2019 2010-084_hal

    2/11

    INTRODUCTION

    Jet fires occur as a result of ignition and combustion of flammable release (natural

    gas,

      LPG and others) usually from a pipe or tank. They emit high radiative flux

    creating a risk for hum ans and plants . A safety en gineer ne eds to dete rm ine the flam e

    trajectory, flame length and radiative fluxes to the surrounding plant and personnel.

    Typical critical radiative fluxes for humans are 3, 5, 8 kW/m

    2

      which represents

    respectively threshold for injured, 1% lethality and 5% lethality in French legislation.

    In order to predict jet fires effects and especially radiative fluxes generated by flame,

    several models have been developed. The current software uses semi-empirical

    mo dels to com pute the distances of therm al effects a ssociated w ith jet fires. This

    software is based on models which calculate geometry of the frustum based on input

    data (mass flow rate, orifice diameter, pressure in the pipe or tank, wind speed and

    others) and flame characteristics are obtained from experimental data  [1-3] .  The semi-

    empirical models are less expensive to implement because they are usually based on

    simple equations, and these models are easier to formulate , modify and implement in

    computer programs. Furthermore, they require low computational resources.

    However, such an approach is highly dependent on experimental data , and therefore i t

    is limited to the types of fires investigated during the experiments. Moreover, this

    approach is rarely applicable to very large scales (flame length greater than 100 m)

    because experiments at this scale are scarce. Finally, in the case of horizontal or

    inclined released jet fires, semi-empirical models do not take into account the

    buoyancy effect which significantly changes the shape of the flame (bent shape). As

    an example, the semi-empirical model by Johnson [1] takes into account buoyant

    forces but, being based on natural gas experiment; it cannot be used for LPG releases

    for which it was not validated.

    Computational Fluid Dynamics, CFD, is a lso used to predict je t f ire effects . However

    CFD models are highly CPU time consuming and are not a lways suitable to produce

    quick results .

    As a com prom ise, a 1D model based on simplif ied f luid mech anic equations is

    presented in this paper for predicting the flame shape and radiation field for large-

    scale gas or liquid released jet fires. In the following section, the mathematical basis

    used in this computational model is presented. In the next section, predicted values

    obtained with the je t f ire model are com pared w ith semi-em pirical mo del results and

    with experimental data .

    PHYSICAL BASIS  OF THE   MODEL

    Jet f ire is one highly directional phenomenon due to high source momentum close to

    the release point, which means that the 3D fluid mechanic equations can be reduced to

    a 1D axisymm etric model. The present model uses a pheno men ological approach

    based on global balances for the characteristics of a steady-state jet fire. The model

    uses the following input data: pipe or tank pressure, orifice diameter, ambient wind

    speed and temperature. F igure 1 presents s tep-by-step m ethodolog y of the mod el. In

    each control volume represented by a frustum located by a downwind curvil inear

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    3/11

    coord ina te ,  s,  physic al quanti t ies including ma ss, mo me ntum , temperatu re, density ,

    v o lu me are calculated seq uential ly using the physic al laws. F inally , the flame shape is

    represen ted

     by

     lateral surface

     of

     the whole control volum e ( i .e .

     the

     s um

     of

     each cell) .

    Horizontal jet fi re

    Wind direction

    Release poi

    '

      ^ \

    i

     =

     1

    t

    ——

    i= 2

    _ - —

    Vol

    n

    i = n

    . - -

    s

    i=n +

     1

    Buoyancy

    forces  U

    Figure 1. Step-by-step methodo logy of the model.

    T he

     jet

      fire methodology

      is

     presen ted

     and

     demons t ra ted

      for

     natural

     gas,

     p ro p a n e

     and

    butane, a l though  its  extension  to  oth er fuels  or  fuels m ixtur es  is  straightforward.

    Following paragraphs describe different sub-models incorporated

      in

      this

      jet

      fire

    mo d e l .

    Source Term Calculation

    In order

      to

      est imate

      jet

     fire effects from

      a

      l ine rupture

      or a

      leak,

      it is

      required

     to

    calculate  the  release characteris t ics  in te rms of ma ss f low rate , velocity , tem perature

    and l iquid mass fract ion. Depending

      on the

     release ph ase (gaseous, l iquid,

     or two

    phase f low)

     and the

     nature

     of

     the breach ( l ine rupture, leak

     or

     others) , d ifferent mo dels

    are used [4 ] . De script ions of these m odels are out of the top ic of the present s tudy.

    The Fundamental Conservation Equations

    In a  steady flow, the fluid m echan ics equations set can be reduced to:

    1) Conservation of mass

    dm

    (1)

    ds

    T he

     air

     mass p roduction rate

      fn

    a

     depends

     on

     the

     entrainm ent rate mo del, described

     in

    the fol lowing paragraph.  The  vaporised mass prod uction rate  is  calculated with the

    vaporisat ion Eq.

     4.

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    4/11

    2) Conserva tion of mom entum

    For the s teady state , the momentum balance can be expressed as:

    7  b

    ds

    where  F

    b

      is the buoyant vert ical force acting on the control volume,  F

    a

      is the drag

    force due to wind which is supposed to act in the direction perpendicular to the je t

    axis for the comp uted control volum e, shift ing the reaction zone of the je t .

    The third term in Eq. 2 is related to the air entrainment. Its contribution rises with

    curvil inear coordinate in relat ion to air entrainment model as described below.

    3) Conserva tion of energy

    The f irs t pr inciple of thermodynamics leads to the energy conservation equation that

    can be expressed using several quanti t ies . The present model uses the total enthalpy

    equation that can be expressed for the steady state as follows:

    — = Qc-Qv- m

    f

    h

    f

      - m

    g

    h

    g

      -

      m

    Uq

    h

    Uq

      (

    3

    )

    The first term on the right is the source term related to fuel nominal heat release and

    mass of reacting gas:

    Qc=Xc

  • 8/9/2019 2010-084_hal

    5/11

    Figure 2

    IR picture of

     the

     jet fire (INER IS experim ents).

    The r ight of Eq. 3 also represents energy consumption for heating non-reacting

    products , burned gas from the previous control volume, unburnt gas and l iquid fuel ,

    respectively. Lateral boundaries of the control volume are considered adiabatic .

    4) Perfect gas law

    To close the equations sets, an equation of state is required. The perfect gas law was

    cons idered :

    P =

    (5)

    RT

      ombustion Model

    The mixture composit ion is defined by the equivalent ra t io:

    m

    (6)

    where the nominator is the fuel to air mass rat io in the mixture and the denominator is

    the s toichiometric fuel to air mass rat io corresponding to complete combustion. I t can

    be assumed that no combustion occurs in the lift-off zone, and that the reaction is

    infinitely fast be yo nd the lift-off heig ht; the com bus tion proces s is then m ixin g-

    controlled .

    Irreversible one-step reaction of hydrocarbon fuel and oxygen is considered, in which

    if

      è <

     1  (lean mixture) then:

    (7)

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    6/11

    else (rich mixture):

    C.H. \x + y

    4

    Air entrainment Model

    (8)

    T he  air  en t ra inment  in  reacting turbulent  jet is a  fundam ental param eter that

    de te rmines

      the jet

      fire develop me nt s ince

      it

      controls

      the

      mixing rate

      and,

    consequen t ly , the fuel burning rate . The air entrainm ent rate can be writ ten as:

    dm

    a

      =

      m

    0

    C

    d

    ds ,

    d*

    (9)

    where

      d is

     th e

     jet

     mo me n tu m d ia me te r

     (d*  = d

    o

    {p

    o

    /p

    a

    f

    12

    )-

    Accord ing  to [6], the  local en trainmen t rate coeff ic ient ,  C

    e

    l, depends  on  b u o y a n c y ,

    axial posit ion

      and

      tempera tu re .

      To

      describe

      the

      effect

      of

      buoyancy , B ecker

      and

    Y a m a z a k i  [7] introduced a  parameter that can be expressed as:

    4 = RP—

      (

    10

    )

    where  R

    i

      =

      gd*/u

    0

    2

      is the  Richarson num ber . Paramete r  £  contains  the  integrated

    effect

      of

      buoyancy a long

     the

      jet .

     Han and

     M u n g a l

      [6]

     related

     the

     buoyancy paramete r

    F

      with

     the air

     entrainm ent coeff ic ient:

      e

    l

      11)

    As shown in Fig. 3, according to the Ricou and Spalding approach [8], the air

    entrainment coefficient is constant. Alternatively, according to Han and Mungal [6],

    buoyancy increases the air entrainment coefficient along the jet axis.

    0,9   -

    0,8   -

    0,7

      -

    0,6

    3 0,5  -

      0 4 -

    0,3   -

    0,2   -

    0 1 -

    Local air entrainement

    0.32  Ricou and Spalding)

    0.090P'

    2

    0  100 200 300 400

    x /d*

    F i g u r e  3

    L o c a l

     air

     e n t r a i n m e n t .

    Thermal Radiation Intensity

    Accord ing to the  solid f lame model,  the  Surface Emissive P ower  (SEP,  k W / m

    2

    ) can

    be related to the fraction  of  heat radiated from  the  surface  of the  flame  &, fuel m ass

    flow rate

      m,

      total heat re leased

     AH

    C

     by the

     following equation:

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    7/11

    (12)

    where

      th e

      flame surface area

      A is

      given

      by the sum of

      lateral area

      of all the

      control

    volumes.

      The

     fraction

      of

     heat radiated from

      th e

     surface

      of

      the flame &

     is

     given

     by [3] :

      •

    [ 0 . 2 1 e - ° - ° °

    3 2 3 i

      + 0 . 1 1 l ^ | 2 1 < M   < 6 0

    2 1

    1.69.(0.21e-

    000323

      °+0.1l)  M

    w

      > 60

    In

      Eq. 13,

     u

    0

     is the jet

      inlet velocity

      and

     M

    w

      is the

      molecular weight

      of the

      fuel. This

    model assumes that

      the

      flame emits homogeneous surface radiative flux

      and

     does

     no t

    take into account

      th e

      fact that

      th e

      radiative emissions depend

      on

      temperature

      and

    chemical compo sition

      of the

      flame zone which vary along

      th e

      flame axis. Moreover,

    the thermal radiation

      is

     also dependent

      on

      soot concentration.

    Finally,

      th e

     radiative flux rece ived

     b y a

      target outside the

     je t

     fire

      is

     expressed

     a s:

    q=VFxSEPXT,

      (14)

    where  VF

     is the

      view factor.

      It

      depends

      on

     location

      of the

      flame

      in

      space relative

      to

    the target position.

      The

      view factor between

      an

      elementary receiver surface

      C and an

    elementary emitter area

      dA

     from

      th e

     control volume surface

      is

     given

     b y:

    ldA

    ,

      (15)

    Ttr

    where  6j

     is the

      angle between local normal

      to

      surface element  dA

     and the

     line joining

    elements

      dA

     and

     target,

      and

     8

    2

     is the

     angle between normal

      of

     the target

     an d the

     same

    line.  The

      atmospheric transmisivity 

    is

      obtained

      by the

      Brzustowski

      and

      Sommer 's

    empirical

      law [9] .

    RESULTS AND DISCUSSION

    Comparison Between Predicted and Measured Values

    A safety engineer

      is

      mainly interested

      in

      predicting

      th e

      worst case scenarios

      for the

    accidental phenomena. That

      is the

      reason

      why, in

      case

      of

      released

      je t

      fire,

      th e

    downwind effects

      of

      horizontal

      je t

      fire

      are

      most thoroughly investigated

      and the

    critical thresholds

      of

     3,

     5, and 8

     kW/m

    2

      are examined.

    Large-scale experiments data

      are

      scarce

      in the

      literature. Moreover,

      in the jet

      fire

    experiments,

      th e

     radiometers

      are not

      normally located downwind,

      in the

      flame axis;

    instead, they

      are

      usually located

      on the

      flame side, which

      is out of the

      topic

      of the

    present paper.

    Experimental data used

      in

      this work

      are

     listed

      in

     Table

      1. It

      includes data

      fo r

      natural

    gas,

     propane

      and

     butane

     j e t

      fires releases.

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    8/11

    Table 1 Experimental overview.

    Reference

    Test

    Fuel

    Release

    Phase

    M a s s

    flow Rate

    (kg/s)

    Release

    direction

    Johnson [1]

    Tes t 1083 ,

    T y p e C

    Natural Gas

    Gaseous

    8,4

    Horizon ta l

    Cook and

    al .

      [3 ]

    3 ,2 GW

    Natura l

    G as

    Gaseous

    65.1

    Vertical

    INERIS [10]

    Test 1

    Test 2

    Propane

    Liquid

    1,5

    Vertical

    4,1

    Vertical

    Test 3 T est 4

    Butane

    Liquid

    1,5

    Vertical

    3

    Vertical

    Figure 4 and Table 2 show a comparison of computed incident radiat ive f lux and

    flame length with experimental results .

    At small and medium scale , the level of agreement between the model predict ions and

    experimental measurements is good for far field. All predicted jet fire radiative flux

    and flame leng th are within 10% of the me asure d value , 15 % for flame length.

    However, i t can be observed that the model tends to underest imate the results which

    can be problematic in safety department. It is essential to ensure that the discrepancy

    between prediction and measured values does not increase at large scale and in case of

    horizontal L PG released je t f ires.

    Two parameters could be reviewed in order to make results more conservative: the

    radiativ e fraction of the flame and the air entra inm ent param eter of the jet. A radiative

    fraction predict ion model based on Stefan-Boltzmann law which gives the radiat ion

    of a black body in relation to its temperature, coupled with a simplified soot formation

    model, for example, the model in [11] would distribute radiative heat on the flame

    surface. This model will be integrated in the near future, with the contribution of

    medium-scale experiments , in order to compute more accurately the surface emissive

    power .

    Soot concentration peaks at the fuel-rich side of the flame. in region I, see Fig. 1. At

    the same time, the peak temperature is located in the region II, as mentioned in the

    combustion model section. As a result, in any jet fire regions I and II emit the largest

    radiative flux. However, in the present model, the radiative flux is assumed to be

    uniformly distributed over the flame surface. More experiments will also be necessary

    to improve the air entrainment model.

    Comparison

     of

     INERIS

     and

     Semi-empirical Models

    Two representat ive medium scale scenarios of accidental l iquid je t f ire were computed

    in this work using two models. The first one is the new model presented in this paper

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    9/11

  • 8/9/2019 2010-084_hal

    10/11

    Table 3 Scenario assumptions.

    Scenar io

    1

    2

    Mass flow rate [kg/s]

    15

    50

    14

    .̂12

    10

     

    8 -

    | e

    ce

     

    4

     

    £

      o -

    PROPANE 15 kg/s

    \

      2

      Horizontal

    V e r t i c a l - 2 0 - 1

    6

     

    ^ - S h e l l M o d e l

     ||

      INERIS

      I

    *•

    50 100 150 200

    PROPANE 50 kg/s

    14 :

    12 -

    10 -

    8 -

    6 -

    4 -

    2 -

    50 100 150 200

    14

    ï o

    I

     8

     

    I 6 -

    i

    4

     

    ? 2 -

    BUTANE 15 kg/s

    14 -

    12 -

    10 -

    8 -

    6 -

    4 -

    2 -

    BUTANE 50 kg/s

    0 50 100 150

    Distance from the jet exit (m)

    200

    0 50 100 150 200

    Distancefrom the jet exit

      m )

    D

    Figure 5 Comparison of incident radiative flux between INERIS and Phast prediction.

    The new model s ignif icant ly reduces

      the

     incide nt radia tive flux re lated

      to

      horizonta l

    je t f i re when comparing with  the values ob ta ined us ing Phast v6.5 . The d if ference  is

    be tween  -25% and -15% for the 8  k W / m

    2

      threshold  and  reaches  -30% for the

    15 k W / m

    2

      flux. This

     is

     due

     to

     the fact that the mod el flame s hape takes prop er accoun t

    of  the balance betwe en  the initial jet m o m e n t um  and the buoy ant forces , g iven bent

    shape to the f lame, increas ing  the dis tance b etwee n  the flame  and the target  and so

    that decreasing the incident radiative flux. On the other hand, the radiative flux related

    to vertical jet  fire  and compu ted  by both models  are re la t ive ly c lose  (no more than

    + 15 % of  discrepancy) .

    CONCLUSIONS

    The ca lcula t ion  of jet  fires effects  is  essent ia l when assess ing  the  safety  of  h igh -

    pressure process ing of f lamm able mater ia ls . A new m odel has been developed for the

    jet fires occurring

     in

     large-sca le industr ia l acc idents .

    Un l ike more complex mode l ing app roaches

      as

      CF D m odel , th is mode l provides

     the

    capabi l i ty to yield satisfactory predi ctions of the radiativ e flux from the jet fire w ith a

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4

  • 8/9/2019 2010-084_hal

    11/11

    little computer run time. Both at small and large scale, the predictions are in good

    agreement with the measurements for far field. Furthermore, the results computed

    with this model have been compared with those computed with semi-empirical

    approach based on the Cook's model [3]. This highlights a smaller incident radiative

    flux from the horizontal jet fire. A discrepancy up to 25% can be noticed. If this

    model is validated at large-scale, it can then be used to assess safe separating distances

    in industrial sites.

    Further work remains to be performed to validate this model, and to assess the ability

    of the model to predict a wider range of fires types, especially for horizontal and

    inclined jet fires. Large scale experiments with the horizontal and inclined releases

    will be carried out in the near future to validate this new model.

    REFERENCES

    1.

      Johnson, A .D. , Br ightwe l l , H .M . , and Cars ley A . J .,  A M o d e l for Predic t ing  the T h e r m a l

    Radia t ion Hazards f rom L arge-Sca le Hor izonta l ly Re leased Na tura l Gas

     Jet

     Fires,

     

    Trans

    IChemE

      94

     Par t B: 157 -168 (19 94) .

    2 .  Ch a m b e r l a in ,

     G.A.,

      D e v e lo p m e n t s

      in

      D e s ign M e th o d s

     for

     Predic t ing Thermal Radia t ion

    from Flares,

    Chem

      Eng Res Des.  65 : 29 9 - 309 ( 19 87 ) .

    3 .

      C o o k ,  J.,  Ba h a r a m i ,  Z., and  W h i t e h o u se ,  R.J., A  Co m p r e h e n s iv e P r o g r a m  for

    Calcula t ion of F lame Radia t ion Leve ls , J.  Loss Prev.Process  In., 3:  150-155 (1990) .

    4 .  H éb r a r d ,  J., and L a c o m e ,  J.M.,  Eva lua t ion  of  T w o - P h a se F lo w M o d e l s  for  A c c id e n t a l

    Re lease and Com par ison wi th Exper imen ta l Da ta ,  Proceedings  of  the  11

    th

      International

    Conference Multiphase Flow  in Industrial Plants  7 47 - 7 59 , 2008 .

    5 .  G ó m e z - M a r e s ,

     M.,

     M u ñ o z ,

     M., and

     Casa l ,

     J.,

      Axia l Tem pera ture Dis t r ibut ion

     in

     Ver t ica l

    Jet Fires, Journal of Hazardous Material  172: 54-60 (200 9) .

    6 . Hann,

      D., and

      M u n g a l ,

      M.G.,

      D i r e c t M e a su r e m e n t

      of

      E n t r a in m e n t

      in

    Reac t ing /Nonreac t ing Turbulent J e ts ,

    Combustion

      and

     Flame

      124 : 37 0 - 389 ( 2001 ) .

    7 .

      Becker ,

      H.A., and

      Y a m a z a k i ,

      S.,

      E n t r a in m e n t , M o m e n tu m F lu x

      and

      Tempera ture

      in

    Ver t ica l F ree Turbulent Diffus ion F lam es , Combustion  and Flame  53 : 123 - 149 ( 19 7 8 ) .

    8 . R icou,  F.P., and  Spa ld ing ,  D.B.,  M e a su r e m e n t s  of  E n t r a in m e n t  by  A x i sy m m e t r i c a l

    Turbulent J e ts ,

    J.

     FluidMech.  11 : 21 - 32 ( 19 61 ) .

    9 . Am er ican Pe t ro leu m Ins t i tu te , Gu ide  for  Pressure Re l iev ing  and Depress ing Sys tem s ,

    API Recomm ended Practice  52 1 , A p p e n d ix

     A,

     1 9 7 3 .

    10 .  Ber t rand ,

      J.P., and

      Durusse l ,

      T.,

      Compte-rendu  des  Essa is Réalisés  à  l'Institut

    TOTALGAZ.  R e sso n s - su r - M a tz ,

      2 0 0 5 .

    1 1 .  De l icha ts ios ,

      M.A.,

      Smoke Yie lds f rom Turbulent Buoyant

      Jet

      F l a m e s , Fire Safety

    Journal

      20:

      29 9 - 311 ( 19 9 3 ) .

    12 .

      Cleaver ,

      R.P.,

     Cu m b e r ,

      P.S., and

     Fa i rwea the r ,

      M.,

      Predic t ions

      of

      Free

      Jet

      Fires from

    High Pressure , Sonic Re lease ,  Combustion  and Flame  132 : 463 - 47 4 ( 2003 ) .

    13 .  JFSH  (Jet Fire) Theory Document,  DNV Software, 14-2 0,  2 0 0 5 .

      i  n  e  r  i  s  -  0  0  9  7  6  2  2  4 ,  v  e  r  s  i  o  n

      1

      -  9  A  p  r  2  0  1  4