2009CH10058 - Exp 8

Embed Size (px)

Citation preview

  • 8/12/2019 2009CH10058 - Exp 8

    1/18

    EXPERIMENT No. 8

    STUDY OF THE MEAN FLOW OF A FREE

    AIR (SUBMERGED) JET

    Objective:

    To study the mass flow characteristics of a free air jet and to study the application of theintegral forms of the continuity, momentum and energy equations.

    Theory :The term Submerged jet refers to liquid jet flowing in another miscible liquid or to a gaseous jet flowing in air. As the jet interacts with the surrounding air, velocity at the periphery beginsto decrease due to mixing with the surrounding still air. The development of jet flow is dividedinto 3 zones:

    1. Potential core zone2. Zone of establishment

    3. Fully developed zone

    For an axisymmetric jet, if u(r) denotes the downstream velocity as a function of r, thevolumetric flux, Q, the momentum flux, M and the energy flux are given by:

    Q = u. 2rdr,M = u 2. 2rdr, and

    E = u 3. 2rdr.The velocity of the jet is measured with a pitot tube connected to an inclined manometer

    making angle to the horizontal.u(r) = *2(m/ 1)gh(r)sin+

    Since m >> , equation (i) can be written as,u(r) = *2(m/)gh(r)sin+

  • 8/12/2019 2009CH10058 - Exp 8

    2/18

    Procedure:

    Look into the values of density of air to be used in the calculation of velocities. Note down the nozzle diameter, d and horizontal scale factor. Lower the pitot tube, such that its tip is at an axial distance, x/d=0.5; using the

    transverse mechanism. Use plumb-bob provided to align the Pitot tube with the center of nozzle; and reset zero

    on the horizontal scale.

    Now take the manometer readings as you take Pitot tube away from the center; till thefinal reading is zero.

    Repeat these steps for different (x/d) ratios (0.5, 4, 8, 12, and 16).

  • 8/12/2019 2009CH10058 - Exp 8

    3/18

    Observations:

    Traverse mechanism 10 counts = 3.0625 mmManometer angle = 21.6Nozzle diameter, d = 2.486 cm m = 0.889 g/cc; = 0.0011 g/cc

    Note that for the graphs of u*r, u*r^2 and u*r^3 vs. r; with help of computer the curvewas approximated by a straight line such that area under the curve remained same asoriginal.

    1)x/d = 0.5

    Sr no Scale units Radius (mm) Manometer Reading (cm) u r*u r*u^2 r*u^3

    1 0 0 35.8 46.52118 0 0

    2 44 13.475 27.3 40.62474 0.547418 22.23873 903.4424

    3 45 13.78125 23.8 37.9313 0.522741 19.82824 752.1107

    4 46 14.0875 18.3 33.26096 0.468564 15.58488 518.3681

    5 47 14.39375 12.6 27.59907 0.397254 10.96385 302.592

    6 48 14.7 6 19.04517 0.279964 5.331962 101.5481

    7 49 15.00625 3.1 13.68958 0.205429 2.81224 38.49838

    8 50 15.3125 0.8 6.954313 0.106488 0.74055 5.150019

    9 51 15.61875 0.3 4.25863 0.066514 0.283261 1.206302

    10 52 15.925 0.1 2.458721 0.039155 0.096272 0.236705

    11 53 16.23125 0 0 0 0

  • 8/12/2019 2009CH10058 - Exp 8

    4/18

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 2 4 6 8 10 12 14 16 18

    x/d=0.5 ( u vs r)

    x/d=0.5 ( u vs r)

    0

    5

    10

    15

    20

    25

    0 5 10 15 20

    A x i s T i t

    l e

    Axis Title

    x/d=0.5(r*u^2 vs r)

    Linear (x/d=0.5(r*u^2 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    5/18

    2) x/d = 4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 5 10 15 20

    A x i s T i t

    l e

    Axis Title

    x/d=0.5( r*u vs r)

    Linear (x/d=0.5( r*u vs r))

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 5 10 15 20

    A x i s T i t

    l e

    Axis Title

    x/d=0.5(r*u^3 vs r)

    Linear (x/d=0.5(r*u^3 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    6/18

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 5 10 15 20 25 30

    x/d=4 ( u vs r)

    x/d=4 ( u vs r)

    Sr no Scale unitsRadius(mm) Manometer Reading (cm) u r*u r*u^2 r*u^3

    1 0 0 31 43.29025 0 0 0

    2 10 3.0625 29.8 42.4441 0.129985 5.5171 234.1684

    3 20 6.125 24.4 38.40645 0.23524 9.034714 346.9913

    4 30 9.1875 16.9 31.96337 0.293663 9.386475 300.0234

    5 40 12.25 10.3 24.95329 0.305678 7.627668 190.3354

    6 50 15.3125 5.5 18.23436 0.279214 5.091284 92.83631

    7 60 18.375 2.3 11.79161 0.216671 2.554899 30.12637

    8 70 21.4375 1 7.775158 0.16668 1.295963 10.07632

    9 80 24.5 0.3 4.25863 0.104336 0.44433 1.892238

    10 90 27.5625 0.1 2.458721 0.067768 0.166624 0.409681

    11 93 28.48125 0 0 0 0 0

  • 8/12/2019 2009CH10058 - Exp 8

    7/18

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 5 10 15 20 25 30

    A x i s T i t

    l e

    Axis Title

    x/d=4 (r*u vs r)

    Linear (x/d=4 (r*u vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    8/18

    0

    2

    4

    6

    8

    10

    12

    0 5 10 15 20 25 30

    A x i s T i t

    l e

    Axis Title

    x/d=4 (r*u^2 vs r)

    Linear (x/d=4 (r*u^2 vs r))

    -50

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 5 10 15 20 25 30

    A x i s T i t

    l e

    Axis Title

    x/d=4 ( r*u^3 vs r)

    Linear (x/d=4 ( r*u^3 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    9/18

    3) x/d = 8

    Sr no Scale unitsRadius(mm) Manometer Reading (cm) u r*u r*u^2 r*u^3

    1 0 0 19.1 33.9802 0 0 0

    2 20 6.125 17.1 32.15195 0.196931 6.331705 203.5767

    3 40 12.25 11.3 26.13656 0.320173 8.368219 218.7165

    4 50 15.3125 9.4 23.83818 0.365022 8.701466 207.4272

    5 60 18.375 6 19.04517 0.349955 6.664953 126.9352

    6 70 21.4375 4.2 15.93433 0.341592 5.443045 86.73129

    7 80 24.5 2.7 12.77589 0.313009 3.998972 51.090428 90 27.5625 1.7 10.13757 0.279417 2.832605 28.71572

    9 100 30.625 0.9 7.376163 0.225895 1.666238 12.29044

    10 110 33.6875 0.5 5.497867 0.185209 1.018257 5.59824

    11 120 36.75 0.2 3.477157 0.127786 0.44433 1.545006

    12 136 41.65 0 0 0 0 0

    0

    510

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40 45

    x/d=8(u vs r)

    x/d=8(u vs r)

  • 8/12/2019 2009CH10058 - Exp 8

    10/18

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0 10 20 30 40 50

    A x i s T i t

    l e

    Axis Title

    x/d=8 (r*u vs r)

    Linear (x/d=8 (r*u vs r))

    01

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 10 20 30 40 50

    A x i s T i t

    l e

    Axis Title

    x/d=8 (r*u^2 vs r)

    Linear (x/d=8 (r*u^2 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    11/18

    4) x/d = 12

    Sr no Scale unitsRadius(mm) Manometer Reading (cm) u r*u r*u^2 r*u^3

    1 0 0 11.3 26.13656 0 0 0

    2 20 6.125 9.2 23.58322 0.144447 3.406532 80.33699

    3 30 9.1875 8.3 22.40001 0.2058 4.609926 103.2624

    4 40 12.25 6.6 19.97474 0.244691 4.887632 97.6292

    5 50 15.3125 5.7 18.56294 0.284245 5.276421 97.94587

    6 60 18.375 4.4 16.30931 0.299684 4.887632 79.71391

    7 70 21.4375 3.7 14.95582 0.320615 4.795063 71.71408

    8 80 24.5 2.4 12.04522 0.295108 3.554642 42.81645

    9 100 30.625 1.4 9.199691 0.281741 2.591926 23.84492

    10 120 36.75 0.4 4.917442 0.180716 0.88866 4.369936

    11 140 42.875 0.2 3.477157 0.149083 0.518385 1.802507

    12 164 50.225 0 0 0 0 0

    -50

    0

    50

    100

    150

    200

    250

    0 10 20 30 40 50

    A x i s T i t

    l e

    Axis Title

    x/d=8 (r*u^3 vs r)

    Linear (x/d=8 (r*u^3 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    12/18

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 10 20 30 40 50 60

    A x i s T i t

    l e

    Axis Title

    x/d=12 (r*u vs r)

    Linear (x/d=12 (r*u vs r))

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60

    x/d=12 ( u vs r)

    x/d=12 ( u vs r)

  • 8/12/2019 2009CH10058 - Exp 8

    13/18

    0

    1

    2

    3

    4

    5

    6

    0 10 20 30 40 50 60

    A x i s T i t

    l e

    Axis Title

    x/d=12 ( r*u^2 vs r)

    Linear (x/d=12 ( r*u^2 vs r))

    0

    20

    40

    60

    80

    100

    120

    0 10 20 30 40 50 60

    A x i s T i t

    l e

    Axis Title

    x/d=12 ( r*u^3 vs r)

    Linear (x/d=12 ( r*u^3 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    14/18

    5) x/d = 16

    Sr no Scale unitsRadius(mm) Manometer Reading (cm) u r*u r*u^2 r*u^3

    1 0 0 5.7 18.56294 0 0 0

    2 30 9.1875 5.1 17.55878 0.161321 2.832605 49.73709

    3 40 12.25 4.6 16.67586 0.204279 3.406532 56.80683

    4 50 15.3125 3.9 15.35471 0.235119 3.610183 55.4333

    5 60 18.375 3.4 14.33668 0.263437 3.776807 54.14688

    6 70 21.4375 2.8 13.01033 0.278909 3.628697 47.21053

    7 80 24.5 2.5 12.2936 0.301193 3.702752 45.52017

    8 100 30.625 1.8 10.43147 0.319464 3.332476 34.76263

    9 120 36.75 1.1 8.154655 0.299684 2.443816 19.92848

    10 140 42.875 0.6 6.022612 0.258219 1.555156 9.366099

    11 160 49 0.3 4.25863 0.208673 0.88866 3.784476

    12 180 55.125 0.1 2.458721 0.135537 0.333248 0.819363

    13 190 58.1875 0 0 0 0 0

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 10 20 30 40 50 60 70

    x/d=16 (u vs r)

    x/d=16 (u vs r)

  • 8/12/2019 2009CH10058 - Exp 8

    15/18

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 10 20 30 40 50 60 70

    A x i s T i t

    l e

    Axis Title

    x/d=16 ( r*u vs r)

    Linear (x/d=16 ( r*u vs r))

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 10 20 30 40 50 60 70

    A x i s T i t

    l e

    Axis Title

    x/d=16 (r*u^2 vs r)

    Linear (x/d=16 (r*u^2 vs r))

  • 8/12/2019 2009CH10058 - Exp 8

    16/18

    Now assuming velocity calculated at the center for (x/d) ratio of 0.5 as Uo, we can calculate thevalues of Qo, Mo and Eo.

    Q o = UoA =0.022584 m 3/s Mo = AUo2 = 1.155693 m 4/s 2 Eo = AUo3 = 53.764227 m 5/s 3

    0

    10

    20

    30

    40

    50

    60

    0 10 20 30 40 50 60 70

    A x i s T i t

    l e

    Axis Title

    x/d=16(r*u^3 vs r)

    Linear (x/d=16(r*u^3 vs r))

    Serialno.

    (x/d)ratio

    Q M E (Q/Qo) (M/Mo) (E/Eo)

    1 0.5 0.01943 0.6872 23.56134743 0.86034 0.594622 0.4382352 4 0.029799 0.76977 23.13267062 1.319473 0.666068 0.4302613 8 0.059412 1.13577 24.4716241 2.630712 0.982761 0.4551664 12 0.062807 0.923486 15.97006334 2.781039 0.799076 0.2970395 16 0.0745926 0.9049843 11.46313534 3.3028958 0.783066 0.213211

  • 8/12/2019 2009CH10058 - Exp 8

    17/18

    CONCLUSION

    As the jet progresses through the potential core zone to the zone of establis hment and finallyenters fully developed zone, the central velocity (at r = 0) is observed to decrease. This isbecause there is more and more mixing with stagnant air around.

    The shape of the velocity profile:- Location 1 => u more or less constant and then very steep fall => POTENTIAL CORE- Locations 2 & 3 => the profile spreads and the central velocity decreases with x =>ESTABLISHMENT ZONE- Locations 4 & 5 => the shape is same though the central velocities are diffe rent => FULLYDEVELOPED ZONE

    No external force on the system => the momentum flux should remain constant. The graphverifies this: M/M0 curve is more or less constant.

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 2 4 6 8 10 12 14 16 18

    Q/Qo vs (x/d)

    M/Mo vs (x/d)

    E/Eo vs (x/d)

  • 8/12/2019 2009CH10058 - Exp 8

    18/18

    SOURCES OF ERROR

    1. The equation used for calculating the velocity is derived from Bernoullis equation which isvalid for inviscid and incompressible flow but our system is not ideally so.

    2. The graph representing the fluxes may deviate form actuality due to the end effects of thenozzle.

    3. The centering of the pitot tube may not be right.

    POSSIBLE CORRECTIONS1. The traverse mechanism can be made to be more sensitive;2. More efficient and accurate instrument other than pitot tube can be used as pitot tube

    may give deviant results in presence of a velocity gradient;3. Manual errors in reading the manometer and positioning the pitot tube may be

    minimized.

    - AMAN AGAWAL- 2009CH10058- GROUP 2