20
R EVIEW Methods derived from nonlinear dynamics for analysing heart rate variability BY ANDREAS VOSS 1, * ,STEFFEN SCHULZ 1 ,RICO SCHROEDER 1 , MATHIAS BAUMERT 2 AND PERE CAMINAL 3 1 Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, 07745 Jena, Germany 2 Centre for Biomedical Engineering (CBME ), University of Adelaide, Adelaide, 5005 SA, Australia 3 Biomedical Engineering Research Centre, ETSEIB, Technical University of Catalonia, 08028 Barcelona, Spain Methods from nonlinear dynamics (NLD) have shown new insights into heart rate (HR) variability changes under various physiological and pathological conditions, providing additional prognostic information and complementing traditional time- and frequency- domain analyses. In this review, some of the most prominent indices of nonlinear and fractal dynamics are summarized and their algorithmic implementations and applications in clinical trials are discussed. Several of those indices have been proven to be of diagnostic relevance or have contributed to risk stratification. In particular, techniques based on mono- and multifractal analyses and symbolic dynamics have been successfully applied to clinical studies. Further advances in HR variability analysis are expected through multidimensional and multivariate assessments. Today, the question is no longer about whether or not methods from NLD should be applied; however, it is relevant to ask which of the methods should be selected and under which basic and standardized conditions should they be applied. Keywords: nonlinear dynamics; heart rate variability; fractal; chaos; cardiology 1. Introduction The investigation of nonlinear dynamics (NLD) and the introduction of indices to quantify the complexity of fractal dynamics have challenged our view on physiological networks regulating heart rate (HR) and blood pressure, thereby enhancing our knowledge and stimulating significant and innovative research into cardiovascular dynamics. During the last decades, methods derived from NLD have been successfully applied to many scientific disciplines, including physics, astrophysics, chemistry, economics, biology and medicine. However, the impact of deterministic nonlinear Phil. Trans. R. Soc. A (2009) 367, 277–296 doi:10.1098/rsta.2008.0232 Published online 31 October 2008 One contribution of 13 to a Theme Issue ‘Signal processing in vital rhythms and signs’. * Author for correspondence ([email protected]). 277 This journal is q 2008 The Royal Society

2009 - PRSA - Voss - Nonlinear HRV Review-libre

  • Upload
    oscar

  • View
    215

  • Download
    2

Embed Size (px)

DESCRIPTION

Nonlinear HRV review in the Royal Society journal by Voss

Citation preview

REVI EWMethods derivedfromnonlineardynamicsforanalysingheart ratevariabilityBYANDREAS VOSS1,*, STEFFENSCHULZ1, RICOSCHROEDER1,MATHIAS BAUMERT2ANDPERECAMINAL31DepartmentofMedical EngineeringandBiotechnology,UniversityofAppliedSciencesJena,07745Jena,Germany2Centre for Biomedical Engineering (CBME), University of Adelaide, Adelaide,5005SA,Australia3Biomedical EngineeringResearchCentre,ETSEIB,Technical UniversityofCatalonia,08028Barcelona,SpainMethodsfrom nonlineardynamics (NLD) haveshownnew insightsintoheart rate(HR)variabilitychanges undervariousphysiological andpathological conditions, providingadditional prognosticinformationandcomplementingtraditional time- andfrequency-domainanalyses. Inthisreview, someof themostprominentindicesof nonlinearandfractal dynamics are summarized and their algorithmic implementations andapplicationsinclinical trialsarediscussed. Several of thoseindiceshavebeenproventobeof diagnosticrelevanceor havecontributedtoriskstratication. Inparticular,techniquesbasedonmono-andmultifractalanalysesandsymbolicdynamicshavebeensuccessfullyappliedtoclinicalstudies.FurtheradvancesinHRvariabilityanalysisareexpected through multidimensional and multivariate assessments. Today, the question isnolongerabout whether ornot methodsfromNLDshouldbeapplied; however, it isrelevant toaskwhichof themethods shouldbeselectedandunder whichbasicandstandardizedconditionsshouldtheybeapplied.Keywords: nonlineardynamics; heartratevariability; fractal; chaos; cardiology1. IntroductionThe investigation of nonlinear dynamics (NLD) and the introduction of indices toquantify the complexity of fractal dynamics have challenged our view onphysiological networksregulatingheartrate(HR)andbloodpressure, therebyenhancingour knowledge andstimulatingsignicant andinnovative researchintocardiovasculardynamics.Duringthelastdecades, methodsderivedfromNLDhavebeensuccessfullyapplied to many scientic disciplines, including physics, astrophysics, chemistry,economics, biology and medicine. However, the impact of deterministic nonlinearPhil.Trans.R.Soc.A(2009)367,277296doi:10.1098/rsta.2008.0232Publishedonline31October2008Onecontributionof13toaThemeIssueSignalprocessinginvitalrhythmsandsigns.* Authorforcorrespondence([email protected]).277 Thisjournalisq2008TheRoyalSocietymetrics for enhancedunderstanding of physiologyis onlypartlyexploredtodate. Someimportantphysiological ndingsbasedontheconceptsof NLDarementionedin2and3.Initially the theory of NLD, developed during the late 1970s and 1980s,generated interest among many researchers to explore chaotic behaviour inbiological systems and apply their ndings to biology and medicine. Later on, thefocus of interest shifted towards explaining and accounting for nonlinearityinthecardiovascularsystem,whichispresumablyhighdimensional.Currently,amajorapproachistorevealandcharacterizethedynamicsandcomplexityofnonlinearsystems.Theembeddingtheoremallowsonetomathematicallyreconstructanentirenonlinear systemfromonly one observed variable, since the reconstructeddynamics are (geometrically) similar to the original dynamics (Takens 1981;Kaplan&Glass1995;Schumacher2004).Pioneering workperformedbyGlass et al. (Guevara et al. 1981; Glass &Mackey 1988) introduced nonlinear approaches into heart rhythmanalysis.Period-doubling bifurcations, in which the period of a regular oscillation doubles,werepredictedtheoreticallyandobservedexperimentallyintheheart cells ofembryonicchickens. Form, qualitativechange, oscillation, stabilityandotherimportant biological notions found inherent expression inthenew mathematicalapproachof NLD(Garnkel 1983). Ritzenberget al. (1984) weretherst toprovide evidence of nonlinear behaviour inthe electrocardiogram(ECG) andarterial blood pressure traces of a dog that had been injected with noradrenaline.SincetheoriginalreportsbyWolfetal.(1978)andKleigeretal.(1987),theanalysis of spontaneous variations of beat-to-beat intervals (BBI) has becomeanimportantclinicaltool,familiartocardiologists(Lombardietal.2000).The rst approaches of the HR variability (HRV) analyses based on nonlinearfractal dynamics were performed by Goldberger & West (1987). It was suggestedthat self-similar (fractal) scaling may underlie the 1/f-like spectra (Kobayashi &Musha1982)seeninmultiplesystems(e.g. interbeatinterval variability, dailyneutrophil uctuations). Theyproposedthatthisfractal scaleinvariancemayprovideamechanismfortheconstrainedrandomnessunderlyingphysiologicalvariability and adaptability. Later, Goldberger et al. (1988) reported thatpatients prone to high risk of sudden cardiac death showed evidence of nonlinearHRdynamics, includingabrupt spectral changes andsustainedlowfrequency(LF) oscillations. At a later date, they suggested that a loss of complexphysiological variabilitycouldoccurundercertainpathological conditionssuchasreducedHRdynamicsbeforesuddendeathandageing(Goldberger1991).Babloyantz &Destexhe (1988) performed the rst multivariate nonlinearanalysisofHRV.WiththehelpofseveralindependentmethodsforquantifyingNLD, such as phase portrait, Poincare section, correlation dimension, Lyapunovexponent and Kolmogorov entropy, the ECGs of four normal human hearts werestudied qualitatively and quantitatively. They demonstrated that the variabilityunderlying interbeat intervals is not random, but exhibits short-rangecorrelationsgovernedbydeterministiclaws.Techniques of phase-space reconstruction and dimensional analysis wereappliedtoHRtracesobtainedfromscalpelectrodes in12normal foetusesbyChafnetal.(1991).A.Vossetal. 278Phil.Trans.R.Soc.A(2009)To estimate the complexity of cardiovascular dynamics, Pincus (1991)modiedthe original correlationdimensionandKolmogoroventropynotions(Grassberger&Procaccia1983a,b; Eckmann&Ruelle1985), creatingtheapp-roximate entropy (ApEn). This technique was later improved and termedsampleentropy (SampEn) byRichman&Moorman(2000) andreduces thesuperimposedbiaswithintheoriginalmethod.As a further milestone, Novak et al. (1993) provided evidence of a closenonlinearcouplingbetweentherespiratoryandcardiovascularsystems.Pengetal. (1995)applieddetrendeductuationanalysis(DFA)toquantifythefractal structureof theHR, whichwaslatervalidatedin1999(Ma kikallioetal.1999).Also,Kurthsetal.(1995)introducedsymbolicdynamics(SDyn)totheHRVanalysisandfurtherdemonstrateditspowerforriskstraticationofsuddencardiacdeathbasedonthemultivariateapproaches(Vosset al. 1996,1998). Themethodof SDynwas further developedbyPortaet al. (2001) forapplicationonshort-termHRtimeseries (Guzzetti et al. 2005; Maestri et al.2006). The discovery of themultifractal nature of HR dynamics by Ivanov et al.(1999) showed that the heartbeat modulation is even more complex thanpreviously suspected, requiring multiple scaling exponents for its character-ization. Averypromisingwaytoquantifycomplexityovermultiplescaleswasrecently introduced by Costa et al. (2002, 2005). The apparent loss of multiscalecomplexityinlife-threateningconditions(Norrisetal. 2008)suggestsaclinicalimportanceofthismultiscalecomplexitymeasure.Toinvestigate the interactions andcouplings betweenHRandrespirationandHRandbloodpressure,respectively,avarietyofmethodsfromNLDhavebeendevelopedandapplied(e.g.Paratietal.1988;Pompeetal.1998;Baumertetal.2002;Schwabetal.2006).Themethodologicalwealthwithinthissubareaofresearchdeservesaseparatereviewandshallnotbefurtherdiscussedwithinthiscontribution.Variousattemptshavebeenmadetoemploynonlinearapproachestomodelparts of the cardiovascular system(Vinet et al. 1990; Christini et al. 1995;Amaraletal.1999;Gomesetal.2000;Lin&Hughson2001;Tulppoetal.2005;Baselli etal. 2006; Khoo2008). Again, thistopiccannotbediscussedindetailwithinthispaper.Thisreviewfocusesonthesignicanceof NLDincardiovascularvariabilityanalysis, to explore dynamic and structural features of cardiovascular regulationand its clinical relevance. Some of the most commonly used HRV indices, derivedfromNLDwithprovenrelevancetoclinical research, will besummarizedandimportantfeaturesrelatingtotheirpracticalapplicationsdiscussed.2. IndicesofHRVderivedfromNLDDuringthe1980s, therewasmuchanticipationthat manyof thecomplicatedsystems observed in nature could be described by a few nonlinear coupled modes.The properties of those systems could then be characterized by fractaldimensions, Lyapunov exponents or KolmogorovSinai entropy. However,currently it is evident that such a lowdimensionality is exhibited only byrather coherent phenomena. Physiological data, as discussed here, have amuch more complex structure (gure 1). Considering the variety of factors279 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)inuencing HR, e.g. respiration or mental load (within dashed boxes in gure 1),it becomes apparent that HRregulationis one of the most complexsystemsinhumans.This simpliedmodel of HRregulation(adaptedfromHejjel &Ga l 2001)shows the sinus node, generating the heartbeat as the primaryphysiologicalpacemaker that is innervated by sympathetic and parasympathetic efferents andaffectedbyseveral humoral factors. Thesinusnodeactsasthenal summingelementofsympatheticallyandparasympatheticallymediatedstimuliandtheirrelationisreectedintheactual interbeatinterval. Theregulatorysubsystemsresultinascale-invariantcardiaccontrol acrossdifferenttimescales, showinglong-rangecorrelationswithatypical scalingbehaviour. Therefore, toextracttherelevantpropertiesofNLDsystems,classicallinearsignalanalysismethodsare often inadequate. Most physiological systems, such as HR generation, exhibita very complex behaviour, which is far froma simple periodicity. Suchphysical exercisemovementsmental loadpersonalityrespirationcortexmedullaparasympatheticgangliasympatheticgangliahumoral effectspreloadstroke volumesinus nodeheart ratearterial toneblood pressurebaroreceptorsarrhythmiaposturehypo-thalamusFigure 1. A simplied model of HR regulation (adapted from Hejjel & Gal 2001). Additional factorsinuencingconsiderablytheHRareshownwithinthedashedboxes.A.Vossetal. 280Phil.Trans.R.Soc.A(2009)a complexity within the obtained biosignals (here, the HRtime series) iscaused by different components of the intrinsic systems dynamics and especiallybythenonlinearinterplayof differentphysiological control loopsasillustratedingure1.Possiblesources proposedfor thenonlinear behaviour of biological systemsanddifferentdegreesofbiologicalcomplexityareasfollows.Different subsystems (control loops) acting in a network with feedbackinteractions to help constantly adapt the system to its physiological needs andrequirements.Inthe case of a pathophysiological process andageing, the adaptationofa subsystemto changed basic conditions/needs of the total system(e.g.changingoftheoperationalpoints).Inthecaseofseverepathophysiologicaldevelopments,thecompensationofadisturbedorfailingsubsystembyoneormoreotherinteractingsubsystems.This leads to the objective of quantifying the complexity of physiologicaldynamics with the help of different indices. However, there is no general accepteddenitionforcomplexity.Intheanalysisofsignalsfrombiologicalsystems,thetermor concept of complexityis mostlyusedwithregardtotheir dynamicaland/orstructuralexpression,includingimportantfeaturessuchasnonlinearity,time irreversibility, fractality and long-range correlations. Complex physiologicalsignalsaretypicallynon-stationary,butnotrandom.Prominentnonlinearmeasures, withemphasisontheirmainpropertiesandapplicability,willbediscussedforthefamiliesAD(table1).(a ) FamilyA:fractal measuresConcept: to assess self-afnity of heartbeat uctuations over multiple time scales.(i) Power-lawcorrelation(scalingexponentb)Kobayashi &Musha(1982) rst reportedthefrequencydependenceof thepower spectrumof RR-interval uctuations. The slope of the regressionlineof the log(power) versus log(frequency) relation (1/f ), usually calculated inthe 10K410K2Hz frequency range corresponds to the negative scaling exponentbandprovidesanindexforlong-termscalingcharacteristics(Sauletal.1987).Thisbroadbandspectrum,characterizingmainlyslowHRuctuationsindicatesafractal-likeprocesswithalong-termdependence(Lombardi2000).Sauletal.(1987)foundthatbissimilarto K1inhealthyyoungmen.Biggeretal.(1996)reportedanalteredregressionline(bzK1.15)inpatientsafterMI.Limitations: stationarity, periodicity and the need for large datasets arerequired;artefactsandpatientmovementinuencespectralcomponents.(ii) Detrendeductuationanalysis(indicesa1anda2)This method is based on a modied random walk analysis and was introducedandappliedto physiological time series by Peng et al. (1995). It quantiesthepresenceorabsenceof fractalcorrelationpropertiesinnon-stationarytime-seriesdata.DFAusuallyinvolvestheestimationofashort-termfractalscaling281 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)exponent a1 over the range of 4%n%16 heartbeats anda long-termscalingexponent a2 over the range of 16%n%64 heartbeats (Peng et al. 1995). DFA wasdeveloped to quantify the uctuations onmulti-length scales. The self-similarityoccurring over a large range of time scales can be dened for a selected time scalewiththismethod(Ma kikallioet al. 1999). Healthysubjectsrevealedascalingexponent of approximately1, indicatingfractal-like behaviour. Patients withcardiovascular diseaseshowedreducedscalingexponents, suggestingaloss offractal-likeHRdynamics (a1!0.85, Ma kikallioet al. 1999; a1!0.75, Huikurietal.2000).Limitations: atleast8000datapointsshouldbeused; monofractal method;normal-to-normal interbeat intervals are required; dependency on editingectopicbeats.Table 1. Summaryof some important features of the selectednonlinear indices. (F, familyofnonlinearmeasures;forabbreviationofindices,see2.)F descriptor indicesshorttermlongterm correlatedpartlywithA power-lawcorrelationscalingexponentb X frequencycomponents:(UVLF,VLF,LF)A detrendeductuationanalysisa1(shortterm) X LFn,HFn,LF/HF,HF/P,LF/(HFCLF),SD1/SD2a2(longterm) X LF,VLF/(HFCLF)A multifractalanalysisD(h)withlocalexponenthX X notyetknownB approximateentropyApEn X indexesdescribingvagalmodulationofheartrate(rmssd,pNN50,HFpower)B sampleentropy SampEn X negativelywithLFnandLF/HF;naturallogar-ithm(ln)ofthetotalpower;lnLFandlnLF/HFB multiscaleentropyMSE X notyetknownB compressionentropyCE X X sdNN,rmssd,wpsum02,plvar,forbwordsC symbolicdynamicsShannonandRe nyientro-pies,forbiddenwords,wpsum02,wpsum13,phvar,plvar,0V,1V,2LV,2UV,0V%,1V%,2LV%,2UV%X X cvNN,sdNN,rmssd,pNN50,SD2D Poincare plot SD1(shortterm),SD2(longterm),SD1/SD2X X SD1:rmssd,mainlywithHF,lesserwithLF;SD2:sdNN,LFandHFpowerA.Vossetal. 282Phil.Trans.R.Soc.A(2009)(iii) Multifractal analysisMultifractalanalysisdescribessignalsthataremorecomplexthanthosefullycharacterizedbyamonofractal model. Ivanovet al. (1999)demonstratedthathealthyHRVis evenmorecomplexthanpreviouslysuspectedandrequires amultifractal representation, usingalargenumberof local scalingexponentstofullycharacterizethescalingproperties. Multifractalityinheartbeatdynamicsindicates the involvement of coupledcascades of feedbackloops inasystemoperating far fromequilibrium. Ivanov et al. (1999) found a loss in HRVmultifractalityinpatientssufferingfromcongestiveheartfailure(CHF).Limitations: requiresmanylocal andtheoreticallyinniteexponentstofullycharacterizetheirscalingproperties.(b ) FamilyB:entropymeasuresConcept: to assess the regularity/irregularity or randomness of heartbeatuctuations.(i) Approximateentropy/sampleentropyThe ApEn represents a simple index for the overall complexity andpredictabilityof timeseries(Pincus1991). ApEnquantiesthelikelihoodthatruns of patterns, whichare close, remainsimilar for subsequent incrementalcomparisons (Ho et al. 1997). High values of ApEn indicate high irregularity andcomplexityintime-seriesdata. Forhealthysubjects, ApEnvaluesrangefromapproximately 1.0 to 1.2 and for post-infarction patients ApEn values areapproximately1.2(Ma kikallioetal.1996;Hoetal.1997).Limitationsof ApEn: stationarityandnoise-freedataarerequired; inherentbias exists; counting self-matches; dependency on the record length; lacksrelative consistency; evaluates regularity on one scale only; outliers (missed beatdetections,artefacts)mayaffecttheentropyvalues.SampEn, improvingApEn, quanties the conditional probabilitythat twosequencesofmconsecutivedatapointsthataresimilartoeachother(withinagiventolerancer) will remainsimilarwhenoneconsecutivepointisincluded.Self-matchesarenotincludedincalculatingtheprobability. Lakeetal. (2002)described a reduction in SampEn of neonatal HR prior to the clinical diagnosis ofsepsisandsepsis-likeillness.TheSampEnwasfoundtobesignicantlyreducedbeforetheonsetofatrialbrillation(Tuzcuetal.2006).Limitations of SampEn: stationarity is required; higher pattern length requiresanincreasednumber of data points; evaluates regularity onone scale only;outliers(missedbeats,artefacts)mayaffecttheentropyvalues.(ii) MultiscaleentropyBiological systems are likely to present structures on multiple spatio-temporalscales. Multiscale entropy(MSE) assesses multiple time scales to measure asystems complexity. The main advantage of MSEis its ability to measurecomplexity according to its denition a meaningful structural richness and beingapplicable to signals of nite length (Costa et al. 2005). The MSEmethoddemonstrated that healthy HRV is more complex than pathological HRV. Costaetal. (2002)foundthatpathological dynamicsassociatedwitheitherincreased283 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)regularity/decreasedvariabilityor withincreasedvariabilityarebothcharac-terized by a reduction in complexity due to the loss of correlation properties. Costaet al. (2002)reportedthebestdiscriminationbetweenpathological (CHF)andhealthy HR signals on scale 5. MSE analysis revealed signicantly lower SampEnvalues in young patients with diabetes mellitus on scale 3 (Javorka et al. 2008).Limitations: stationarity is required; outliers (missed beat detections,artefacts) may affect the entropy values; the consistency of MSE will beprogressivelylostasthenumberofdatapointsdecreases.(iii) CompressionentropyThe entropy of a given text is dened as the smallest algorithm that is capableof generatingthetext (Li &Vitnyi 1997). Ziv&Lempel (1977) introducedauniversal algorithm for lossless data compression (CE), using string matching ona sliding window. With some modications, this algorithm can be applied for theanalysis of heartbeat time series (Baumert et al. 2004, 2005). Here, thecompressionentropyquanties the extent to whichthe datafromheartbeattimeseries canbecompressed, i.e. repetitivesequences occur. Reducedshort-term uctuations of HRV result in an increased compression. Entropy reductionappears to reect a change in sympathetic/parasympathetic HR control(Baumertetal. 2005). Baumertetal. (2004)investigatedCHFpatientsbeforethe onset of ventricular tachyarrhythmia, and showed reduced CE valuescomparedwithpatients during normal sinus rhythm. Truebner et al. (2006)foundsignicantdifferencesbetweenthehigh- andlow-riskCHFpatientsandBaretal.(2007)foundsignicantlyreducedcomplexity(CE)ofHRtimeseriesinpatientswithacuteschizophreniaincomparisonwithhealthycontrols.Limitations: dependency on sampling rate, the window length and thelookaheadbuffersize;integernumbersrequired.(c ) FamilyC:symbolicdynamicsmeasuresConcept: to assess the coarse-grained dynamics of HRuctuations basedonsymbolization.(i) Symbolicdynamics(entropiesandprobabilities)SDyn was introduced by Hadamard (1898) and allows a simple description of asystems dynamics with a limited amount of symbols. SDyn are suitable todescribetheglobal short-timedynamics of beat-to-beat variability(Voss et al.1993, 1996, 1998; Kurths et al. 1995). At rst, time series were transformed into asymbolsequenceof four symbols with the alphabetAZ{0,1, 2, 3}to classifythedynamic changes within that time series. Three successive symbols fromthealphabets were used to characterize the symbolstringswhereby 64 different wordtypes (bins) were obtained. The resulting histogramcontains the probabilitydistribution ofeach singleword within a word sequence. SDyn investigatesshort-termuctuations.Theseshort-termuctuationsaremainlycausedbyvagalandbaroreexactivities. Wedifferentiatewords consistingof alternating/constant/increasing/decreasing symbol strings reecting especially vagal/reduced vagal(increasedsympathetic)/bradycardic baroreex/tachycardic baroreexactivity.Porta et al. (2001) introduced a modied procedure of SDyn. Here, the amount ofA.Vossetal. 284Phil.Trans.R.Soc.A(2009)theRRintervalswaslimitedto300beats. Thefull rangeof thesequenceswasuniformly spread on six levels (05), and patterns of length LZ3 were constructed(Guzzetti et al. 2005). All patterns with LZ3 were grouped, without any loss, intofourfamilies.Thesewere:(i)patternswithzerovariation0V,(ii)patternswithone variation1V, (iii) patterns with two like variations2LV, and (iv) patternswith two unlike variations2UV. The rates of occurrence of these patterns will beindicatedas0V,1V,2LVand2UV%(Portaetal.2007).Limitations: detailed information will be lost; outliers (ectopic beats andnoise)inuencesymbolstrings.(d ) FamilyD:Poincare plotrepresentationConcept: to assess the heartbeat dynamics based on a simplied phase-spaceembedding.(i) Poincare plots(SD1andSD2)ThePoincare plot analysis (PPA)isaquantitativevisual technique,wherebytheshapeof theplot is categorizedintofunctional classes (Weisset al. 1994;Kamenet al. 1996; Brennanet al. 2002) andprovides detailed beat-to-beatinformation on the behaviour of the heart. Usually, Poincare plots are applied fora two-dimensional graphical and quantitative representation (scatter plots),where RRnis plotted against RRnC1. Most commonly, three indices arecalculated fromPoincare plots: the standard deviation of the short-termRR-interval variability(minoraxisof thecloud, SD1), thestandarddeviationofthelong-termRR-intervalvariability(majoraxisofthecloud,SD2)andtheaxes ratio(SD1/SD2) (Kamen&Tonkin1995; Brennanet al. 2002). For thehealthy heart, PPA shows a cigar-shaped cloud of points oriented along the line ofidentity. These indices are correlatedwithlinear indices. Laitioet al. (2002)showed that an increased SD1/SD2 ratio was the most powerful predictor of post-operativeischaemia. Ma kikallio(1998)foundSD2z125 msinhealthysubjectsandSD2z85 msinpost-infarctionpatientswithventriculartachyarrhythmia.Limitations:SD1,SD2dependentonothertime-domainmeasures.Open source computer software versions of DFA, multifractal analysis,correlation dimension, Lyapunov exponent, SampEn and MSEanalysis areavailableatwww.physionet.org.3. ApplicationofmethodsfromNLDforHRVanalysis(a ) HRVinhealthyconditionsHealthyHRuctuationsshowacomplextypeofvariability,embeddingfractalself-similaructuationsontimescalesrangingfromsecondstohours,andthusgeneratinglong-rangepower-lawcorrelations(Goldbergeret al. 2002). Resultsfromseveral studies indicatethat greatercomplexity(irregularity) appearsinhealthy systems. The common hypothesis is that the organismis a highlycomplex adaptive system, and that the complexity of its behaviour allows for thebroadest rangeof adaptiveresponses duetodifferent levels of input withinaphysiologicalrange.285 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)(i) AgeeffectsCardiovascular structures and functions change with age, increasing the risk ofdevelopingcardiovasculardisease(Oxenham&Sharpe2003). Effectsof ageingon HRV have been observed with linear as well as nonlinear complexity measures(Kaplan et al. 1991; Ryan et al. 1994), and are apparent in short-term records of30 min.Todemonstratethisageingeffect,wecomparedHRVofyounghealthymale subjects (32G8 years, nZ10) withthat of older healthymale subjects(56G5years, nZ10)underrestingconditionsinthesupineposition. HRVwasquantied with indices fromlinear domains and NLD(see 2 for a moredetaileddescription). Table2(grouptest T1) shows thenumerical results ofunivariate statistics based on the MannWhitney U-test, and gure 2(i, ii) showsthetachograms(timeseriesofbeat-to-beatintervals)andworddistributionsof64differentthree-letterwordtypes(SDyn)fromayoungandanolderhealthymale. HRVwasgenerallyreducedinthegroupofoldersubjects. Inparticular,thecomplexityindicesof SDynrevealedalossof complexityinoldersubjects.This is in accordance with the previous studies (Peng et al. 1995; Voss et al. 1996;Goldberger et al. 2002), where larger dimensions and entropies implied a greaterTable2.Resultsofthegroupcomparisons.(T1younghealthymalesversusolderhealthymalesand T2older healthy females versus older healthy males (10 subjects in every group). Signicancevalue: n.s., not signicant;p!0.05,p!0.01,p!0.001; TD, time-domain indices; FD,frequency-domain indices; A, fractal measures; B, entropy measures; C, symbolic dynamicsmeasures; D, Poincare plot representation. For standard HRV parameters in TD and FD, see TaskForce(1996); forparametersinA, BandD, see2; forparametersinC, seeVossetal. (1996).CE, compression entropy; pW110, pW021 and pW321single word type probabilities from SDyn;,permille.)grouptests meanvalueGs.d.parameter T1 T2 youngmales oldermalesolderfemalesage(years)n.s. 32.43G8.04 55.90G5.36 56.40G2.46TD meanNN(ms) n.s. n.s. 819.5G120.7 894.5G127.9 899.6G129.1sdNN(ms) n.s. n.s. 47.2G13.1 40.0G9.4 43.4G15.2rmssd(ms) n.s. n.s. 29.4G13.8 22.2G12.3 34.0G17.1FD LF/HF(arb.units) n.s. n.s. 3.79G2.49 3.86G2.34 2.40G1.57LFn(arb.units) n.s. n.s. 0.74G0.13 0.71G0.21 0.64G0.17HFn(arb.units) n.s. n.s. 0.26G0.13 0.29G0.21 0.36G0.17A a1(arb.units) n.s. n.s. 1.02G0.18 1.18G0.23 1.02G0.23a2(arb.units) n.s. n.s. 0.90G0.20 0.97G0.13 0.98G0.12B CE(arb.units) n.s. n.s. 0.64G0.08 0.58G0.06 0.60G0.11C Shannon(bit)n.s. 3.12G0.32 2.73G0.38 3.10G0.49Forbword(arb.units) n.s.24.63G9.52 33.80G9.53 20.60G14.83Renyi025(bit) n.s.3.57G0.27 3.30G0.26 3.63G0.32pW110(arb.units, )n.s. 38.5G11.1 24.0G12.0 21.0G12.5pW021(arb.units, ) n.s.1.6G2.2 1.6G4.2 5.1G5.1D SD1(ms) n.s. n.s. 20.8G9.8 22.8G16.1 34.5G17.1SD2(ms) n.s. n.s. 63.3G16.4 56.3G12.3 61.0G20.4A.Vossetal. 286Phil.Trans.R.Soc.A(2009)complexity. Applyingmultifractal analysis, Shiogai (2007) demonstratedthatthe neurogenic control of the HRbecomes more signicant compared withmyogeniccontrolwithageing.(ii) SexeffectsUnderhealthyconditions, sexdifferencesinHRVhavebeenobservedacrossall ages (Ryanet al. 1994; Beckers et al. 2006). It has beensuggestedthat abenecial autonomic control of the heart infemales agedless than45yearsmay contribute to the lower risk of coronary heart disease and seriousarrhythmiasinfemales. Wedemonstratethissexdifferencebycomparingage-matchedhealthyfemaleswiththegroupof olderhealthymalesinvestigatedinthe previous paragraph. Table 2 shows the numerical results for the sexcomparison (group test T2), and gure 2(iii) provides an example tachogram andword distribution of 64 different three-letter word types of a representative olderfemale. In particular, indices of SDyn indicate a higher occurrence of word typesandahigher complexityof HRdynamics inwomenthaninmen(gure2(ii)versus(iii)).(b ) HRVunderpathophysiological conditionsAreductioninHRcomplexitywas reportedinpatients withCHF(fractalscaling properties; Peng et al. 1995), myocardial infarction (MI, SDyn; Voss et al.1996, 1998) and other cardiovascular diseases. Clinical research, where measuresfromNLD have been applied, focuses mainly on cardiology and internalmedicine. Inparticular, thosetechniques havebeenusedfor HRVanalysis inpatients with ischaemic heart diseases (IHDs) and CHF and those threatened bysevere arrhythmias. Todemonstrate the power of some HRVindices derivedfromNLDforseparatingthehealthyfrompathologicalHRV,wecomparethreedifferent groups of patients (dilatedcardiomyopathy(DCM), ischaemic heart850115085011508501150 (a) (i) (i)(ii) (ii)(iii) (iii)(b)0.20.10.20.10.20.10 30 0 021 102 123words time (min)210 231 312 333Figure2. Examples of (a) tachograms (30 min; BBI, beat-to-beat intervals (ms)) and(b) worddistributionsof64differentthree-letterwordtypes(probability;SDyn)froma(i)younghealthymale,(ii)olderhealthymaleand(iii)olderhealthyfemale.Thedashedarrowsindicatethemostsignicant word distribution probability pw110 differentiating between the young and olderhealthy males.Thesolidarrowsindicatethemostsignicantworddistributionprobabilitypw021differentiatingbetweentheolderhealthymalesandhealthyfemales(table2).287 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)failure (IHF) and myocardial infarction) to that of sex- and age-matched healthysubjects (REF). The short-termindices fromNLD(SDyn and compressionentropy) aresignicantlydifferent inall threepatient groups whencomparedwithhealthysubjects(table3). DFAshowsonlyatrendforgroupdifferences.AlthoughPoincare mapanalysisisoriginallyanonlinearmethod, thetypicallyextractedindicesSD1andSD2(see2)aremoreorlessinsensitivetononlinearcharacteristics.Surprisingly,theindex SD1wasable todifferentiatethehealthysubjectsfromall patients, partlyincontrasttothetime-domainindexrmssd,which is known to be highly correlated with SD1. Figure 3 shows the tachogram,SDyn word distribution and Poincare plot for a representative patient from eachinvestigatedgroupand ahealthy subject.Bycomparingshort-versuslong-termrecordings inrisk stratication, we coulddemonstrate that inpatients withischaemic heart failure (lowrisk: survivors, nZ179 and high risk: patientswhodiedduetoacardiaceventduringafollow-upperiodof2years,nZ29)a1(DFA)differentiatesbothgroupssignicantly(lowrisk30 min: a1Z1.2G0.22,low risk 24 hours: a1Z1.2G0.19, high risk 24 hours: a1Z1.07G0.25;signicances: lowrisk 30 min versus 24 hours, n.s.; high risk and lowrisk:30 minand24hours, bothp!0.01). There were nosignicant differences inshort-termversuslong-terma1.Several large clinical studies have demonstratedthe potential of measuresbasedonNLDandfractal analysis. Someof themarediscussedbrieyinthefollowingexamples. Bigger et al. (1996) was therst toreport theabilityofTable 3. Resultsofthegroupcomparisonspatientswithischaemicheartfailure(IHF), dilatedcardiomyopathy(DCM)andaftermyocardial infarction(MI)versusREF(10subjectsineverygroup). (Tests: T1, IHF versus REF; T2, DCM versus REF; T3, MI versus REF; signicance value:n.s., not signicant;p!0.05,p!0.01,p!0.001; TD, time-domainindices; FD, frequency-domainindices; A, fractal measures; B, entropymeasure; C, symbolic dynamics measures; D, Poincare plot representation; CE, compression entropy; for parameter denitions and units, see table 2.)grouptests patients(meanvalueGs.d.)parameter T1 T2 T3 IHF DCM MIage n.s. n.s. n.s. 54.20G5.25 52.60G9.14 58.25G4.98TD meanNN n.s. n.s. n.s. 920.0G97.9 925.4G103.9 952.7G103.1sdNN n.s. n.s. n.s. 43.3G14.0 41.4G18.3 38.2G10.5rmssd n.s. n.s.20.0G7.1 25.8G15.1 17.1G4.3FD LF/HF n.s. n.s. n.s. 4.52G2.29 2.75G2.45 3.89G1.62LFn n.s. n.s. n.s. 0.79G0.09 0.64G0.18 0.77G0.08HFn n.s. n.s. n.s. 0.21G0.09 0.36G0.18 0.23G0.08A a1 n.s. n.s. n.s. 1.29G0.15 1.17G0.22 1.20G0.16a2 n.s. n.s. n.s. 1.10G0.10 1.16G0.17 1.01G0.15B CE 0.53G0.07 0.53G0.11 0.54G0.05C Shannon n.s. n.s.2.63G0.41 2.58G0.64 2.49G0.30Forbword n.s. n.s.33.90G6.21 31.20G14.65 38.63G4.17Renyi025 n.s. n.s.3.27G0.27 3.25G0.60 3.10G0.19pW321 0.1G0.2 0.5G0.7 0.1G0.1D SD1 14.1G5.0 18.3G10.7 12.0G3.2SD2 n.s. n.s. n.s. 59.5G19.4 55.3G24.4 52.5G14.9A.Vossetal. 288Phil.Trans.R.Soc.A(2009)powerspectrumbasedonlong-termscalingindicestopredict deathafterMI.Theystudied715patientswithrecentMI,274healthysubjectsand19patientswithhearttransplants.Theslopeofthepower-lawrelationshipwasfoundtobesomewhatsteeper(morenegative)inMIandmuchsteeperforhearttransplant00.10.20.10.20.10.20.10.27500 30time (min)1150750115075011507501150 (a) (i) (i)(ii)(iii)(iv)(ii)(iii)(iv)(i)(ii)(iii)(iv)(c)(b)8001000800100080010008001000021 102 123 210 231words312 333 600 800SD2SD1SD2SD1SD2SD2SD1SD11000Figure 3. Examples of (a) tachograms (BBI (ms)), (b) SDyn word distributions of 64 different three-letter word types (probability) and (c) Poincare plots (BBI(nC1) (ms)) for a representative patientfromeachinvestigatedgroupandahealthysubject((i)REF, healthysubject;(ii)DCM, dilatedcardiomyopathy; (iii) IHF, ischaemic heart failure; (iv) MI, myocardial infarction); BBI, beat-to-beatintervals; SD1, standarddeviationshort-termvariability; SD2, standarddeviationlong-termvariability.289 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)patients. They demonstrated that a power-law regression coefcient belowK1.372 is signicantly associated with total cardiac and arrhythmic mortality. Amultivariate approach (Voss et al. 1998), using all domains and especially SDyn,revealed the best prediction for all-cause mortality as well as for suddenarrhythmic death. Inthis study, 572 survivors of acute myocardial infarctionwereenrolled. Within the follow-up period, 43 patientsdied (all-causemortality),of whom13diedfromventricular tachycardia/ventricular brillation, 14fromsuddenarrhythmicdeath, 22fromsuddendeathand34fromcardiacdeath.A combination of four HRV parameters from all domains (time and frequencydomain, NLD)inthismultivariateapproachimprovedthediagnosticprecisionmorethantwofold. Ma kikallioet al. (1999)examinedtraditional HRVindicesalongwithshort-termfractal-likecorrelationproperties(DFA)andpower-lawscalingin159post-MIpatientswithejectionfraction(EF)lessthan35percentwith4-yearfollow-up. Amongall of theanalysedvariables, reduceda1(DFA)was the strongest univariate predictor of mortality in patients with depressed leftventricularfunction(EFlessthan35%)afteracuteMI.IntheDIAMONDstudy,acohortof446survivorsofacuteMIwithEFlessthan35per cent was investigatedanda reductioninthe short-termfractalexponent a1 (DFA) was the most powerful predictor of all-cause mortality(Huikuri et al. 2000). The exponent predicted both arrhythmic and non-arrhythmiccardiacdeath.Tapanainen et al. (2002) showed that several other HRV indices were also ableto predict mortality in the univariate analysis, but in a multivariate model, afteradjustingforclinicalvariablesandleftventricularEF, a1(DFA)wasthemostsignicantHRV-basedcontributor(comprisingasetoflinearindicesandpowerspectrum1/f power-lawslope)topredictsubsequentmortality. InastudybyStein et al. (2005), abnormal nonlinear HRV (short-term fractal scalingexponent, power-lawslopeandSD12(Poincare plotrepresentation))hasbeenassociated with mortality post-MI. The results suggest that decreasedlong-termHRVandincreasedrandomness of HRare eachindependent riskfactors formortality post-MI. However, as with traditional HRV parameters, thisrelationshipmightbeblurredbycoronaryarterybypassgraftsurgerypost-MIorbydiabeticautonomicneuropathy.Guzzetti et al. (2000) found signicantly lower normalized LF power and lower1/f slope in chronic heart failure patients compared with controls. Moreover, thepatients who diedduringthe follow-upperiodpresentedfurther reducedLFpower and steeper 1/f slope than the survivors. They concluded that spectral andnonlinearanalysesof HRVbothhaveprognosticrelevanceindependentof thetime-domainmeasuresofHRVinpatientswithCHF.Another study investigating 499 patients with CHF has also shown thepredictivevalueofalteredshort-andlong-termscalingpropertiesformortality(Ma kikallio et al. 2001). A short-term fractal scaling exponent of a1!0.9 was thestrongestpredictorofmortality(univariateandmultivariate).Aninterestingndingof that studywasthattheHRVindiceswerestrongpredictors of mortality in patients with mild/moderate CHF, but failed toprovideindependentprognosticinformationforseverecasesofCHF.Recently, multiscale indices of HRV have been included in clinical trials. MSEstratied441patients fromthe intensive care unit bymortalityandwas anindependentpredictorofdeathoccurringdayslater(Norrisetal.2008).A.Vossetal. 290Phil.Trans.R.Soc.A(2009)Thepaperof Huetal. (2008)providesanexampleof howconceptsof NLDand fractal analysis may enhance our knowledge regarding physiologicaland pathophysiological regulation of HR. The authors demonstrated thatscale-invariantcardiaccontrol occursacrosstimescalesvaryingfromminutestoapproximately24hours. Lesioningof themammaliancircadianpacemaker(suprachiasmatic nucleus, SCN) completely abolishes the scale-invariant patternat time scales greater thanapproximately4 hours. At time scales less thanapproximately 4 hours, the scale invariance was persistent after SCN lesions, butwithadifferentpattern. Thisstudyrevealedtheinuenceof theSCNonHRuctuationsovermultipletimescales, whichpreviouslycouldnotbeexplainedbysimplepacemakermodelsof24hoursrhythmicity.ItwasconcludedthattheSCNservesasamajornodeinthecardiaccontrol networkandimpartsscale-invariantcardiaccontrol acrossawiderangeof timescaleswiththestrongesteffectsbetweenapproximately4and24hours.4. SummaryMethods of NLD and fractal analysis have opened up new ways to analyse HRV.Although time- and frequency-domain methods enable the quantication ofHRVondifferenttimescales,nonlinearmethodsprovideadditionalinformationregardingthedynamicsandstructureofbeat-to-beattimeseries.Insummary,wecanstatethefollowing.There are several indices derived fromNLDproven to be powerful riskstratiers and contribute towards enhanced diagnostics of cardiovasculardiseases,e.g.DFA,MSEandSDyn.ThereisavarietyofotherpotentialindicesfromNLDthatseempromising,buthaveyettobevalidatedinfurtherclinicaltrials(Maestrietal.2007).NLDprovideadditional andindependentinformationaboutphysiological aswellaspathophysiologicalcardiovascularregulation.Temporal changesinHRVandHRdynamicsoftendependonthebaselinecharacteristicsofthepatient.Altered HRV and HR dynamics have prognostic signicance for theprogressionof adisease (e.g. coronaryarterydisease) andfor mortality(e.g.after acute MI). Conversely, the HRV indices are limited in scope fordifferentiating betweenpathophysiological states or patients. However, whenappliedtotheindividualpatientoveratimeperiod,theseindicesmayprovetobeclinicallyuseful,differentiatingtheprogressionofdisease.Furthermore,theymight provide a valuable addition to current patient monitoring systems.Therefore, cardiovascular variability based risk stratication might be morepowerfulinlongitudinalstudies.Afurtherimprovementinthediagnosticsofcardiovasculardiseasesandriskstraticationfor arrhythmic fatal events is expected, andpartly proven, bycombining NLD methods of HRV analysis with additional cardiovascular signals,i.e. bloodpressureandrespiration. Theanalysisof interactions, couplingsandsynchronizations is also a powerful tool for research in cardiovascular regulation.291 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)Finally, coupling models accounting for a large range of time scales andintervals are central to describing complexsystems andtherefore to biology(Coveney&Fowler2005).TherearesomeimportantpointsthatonehastoconsiderwhenapplyingthemethodsfromNLD.(i) Oneparameteralone(independentfromthedomain)cannotsufcientlydescribecomplexphysiological systems, suchasHRcontrol. Therefore,multivariate approaches should be considered. NLD parameters incombination with standard linear parameters usually improve theperformanceofHRVanalysis.(ii) The type of underlying disease often determines the applicability of HRVindicesfordiagnosticsorriskstratication.(iii) Thereareanumberoffactorsthatmightaffecttheresultsobtainedbynonlinear methods and consequently have to be considered, e.g. recordingduration, degree of stationarity, superimposed noise and signal pre-processing(ltering).(iv) NLDindices are often introduced with special xed presettings (e.g.windowlength, number of bins) that havebeenprovedandoptimizedin various studies and have to be considered in new comparativeinvestigations.In conclusion, methods derived from NLD have provided new insights into theHRVchanges under various physiological andpathophysiological conditions.They provide additional prognostic information and complement traditionaltime-andfrequency-domainanalysesofHRV.Today,thequestionisnolongerabout whether or not methods fromNLDshouldbe applied; however, it isrelevanttoaskwhichofthemethodsshouldbeselectedandunderwhichbasicandstandardizedconditionsshouldtheybeapplied.ReferencesAmaral, L. A., Goldberger, A. L., Ivanov, P. C. &Stanley, H. E. 1999 Modeling heart ratevariabilitybystochasticfeedback. Comput. Phys. Commun. 121122, 126128. (doi:10.1016/S0010-4655(99)00295-7)Babloyantz, A. &Destexhe, A. 1988Isthenormal heartaperiodicoscillator?Biol. Cybern. 58,203211.(doi:10.1007/BF00364139)Bar, K. J., Boettger, M. K., Koschke, M., Schulz, S., Chokka, P., Yeragani, V. K. & Voss, A. 2007Non-linear complexity measures of heart rate variability in acute schizophrenia. Clin.Neurophysiol.118,20092015.(doi:10.1016/j.clinph.2007.06.012)Baselli, G., Porta, A. & Pagani, M. 2006 Coupling arterial windkessel with peripheral vasomotion:modeling the effects on low-frequency oscillations. IEEETrans. Biomed. Eng. 53, 5364.(doi:10.1109/TBME.2005.859787)Baumert, M., Walther, T., Hopfe, J., Stepan, H., Faber, R. &Voss, A. 2002Joint symbolicdynamic analysis of beat-to-beat interactions of heart rate and systolic blood pressure in normalpregnancy.Med.Biol.Eng.Comput.40,241245.(doi:10.1007/BF02348131)Baumert, M., Baier, V., Haueisen, J., Wessel, N., Meyerfeldt, U., Schirdewan, A. & Voss, A. 2004Forecasting of life threatening arrhythmias using the compression entropy of heart rate.MethodsInf.Med.43,202206.A.Vossetal. 292Phil.Trans.R.Soc.A(2009)Baumert, M., Baier,V.& Voss,A.2005 Estimatingthecomplexityof heartrateuctuationsanapproachbasedoncompressionentropy. NoiseLett. 4, L557L563. (doi:10.1142/S0219477505003026)Beckers, F., Verheyden, B. &Aubert, A. E. 2006Agingandnonlinear heart ratecontrol inahealthy population. Am. J. Physiol. Heart Circ. Physiol. 290, H2560H2570. (doi:10.1152/ajpheart.00903.2005)Bigger Jr, J. T., Steinman, R. C., Rolnitzky, L. M., Fleiss, J. L., Albrecht, P. & Cohen, R. J. 1996Power lawbehavior of RR-interval variabilityinhealthymiddle-agedpersons, patients withrecentacute myocardial infarction, and patients with heart transplants. Circulation 93, 21422151.Brennan, M., Palaniswami, M. & Kamen, P. 2002 Poincare plot interpretation using aphysiological model of HRVbasedonanetworkof oscillators. Am. J. Physiol. Heart CircPhysiol.283,H1873H1886.Chafn, D. G., Goldberg, C. C. & Reed, K. L. 1991 The dimension of chaos in the fetal heart rate.Am.J.Obstet.Gynecol.165(Pt1),14251429.Christini, D. J., Bennett, F. M., Lutchen, K. R., Ahmed, H. M., Hausdorff, J. M. & Oriol, N. 1995Application of linear and nonlinear time series modeling to heart rate dynamics analysis. IEEETrans.Biomed.Eng.42,411415.(doi:10.1109/10.376135)Costa, M., Goldberger, A. L. &Peng, C. K. 2002 Multiscale entropy analysis of complexphysiologictimeseries.Phys.Rev.Lett.89,068 102.(doi:10.1103/PhysRevLett.89.068102)Costa, M., Goldberger,A. L. & Peng, C.-K. 2005 Multiscaleentropy analysis of biological signals.Phys.Rev.E71(Pt1),021 906.(doi:10.1103/PhysRevE.71.021906)Coveney, P. V. &Fowler, P. W. 2005 Modelling biological complexity: a physical scientistsperspective.J.R.Soc.Interface2,267280.(doi:10.1098/rsif.2005.0045)Eckmann, J. P. & Ruelle, D. 1985 Ergodic theory of chaos and strange attractors. Rev. Mod. Phys.57,617656.(doi:10.1103/RevModPhys.57.617)Garnkel,A.1983Amathematicsforphysiology.Am.J.Physiol.245,R455R466.Glass, L. & Mackey, M. C. 1988 From clocks to chaos: the rhythms of life. Princeton, NJ: PrincetonUniversityPress.Goldberger, A. L. 1991Is thenormal heartbeat chaoticor homeostatic?News Physiol. Sci. 6,8791.Goldberger, A. L. &West, B. J. 1987Applicationsof nonlineardynamicstoclinical cardiology.Ann.NYAcad.Sci.504,195213.(doi:10.1111/j.1749-6632.1987.tb48733.x)Goldberger, A. L., Rigney, D. R., Mietus, J., Antman, E. M. &Greenwald, S. 1988Nonlineardynamics in sudden cardiac death syndrome: heart rate oscillations and bifurcations.Experientia44,983987.(doi:10.1007/BF01939894)Goldberger,A.L.,Amaral,L. A.,Hausdorff, J.M.,Ivanov,P.C.,Peng,C.K.&Stanley,H.E.2002Fractaldynamicsinphysiology:alterationswithdiseaseandaging.Proc.NatlAcad.Sci.USA19(Suppl.1),24662472.(doi:10.1073/pnas.012579499)Gomes, M. E., Souza, A. V., Guimaraes, H. N. & Aguirre, L. A. 2000 Investigation of determinisminheartratevariability.Chaos10,398410.(doi:10.1063/1.166507)Grassberger,P.&Procaccia,I.1983aMeasuringthestrangenessofstrangeattractors.PhysicaD9,189208.(doi:10.1016/0167-2789(83)90298-1)Grassberger, P. & Procaccia, I. 1983b Estimation of the Kolmogorov entropy from a chaotic signal.Phys.Rev.A28,25912593.(doi:10.1103/PhysRevA.28.2591)Guevara, M. R., Glass, L. &Shrier, A. 1981Phase locking, period-doublingbifurcations, andirregular dynamics inperiodicallystimulatedcardiac cells. Science 214, 13501353. (doi:10.1126/science.7313693)Guzzetti, S., Mezzetti, S., Magatelli, R., Porta, A., De Angelis, G., Rovelli, G. & Malliani, A. 2000Linearandnon-linear24 hheartratevariabilityinchronicheartfailure.Auton.Neurosci.86,114119.(doi:10.1016/S1566-0702(00)00239-3)Guzzetti,S.etal.2005Symbolicdynamicsofheartratevariability:aprobetoinvestigatecardiacautonomic modulation. Circulation 112, 465470. (doi:10.1161/CIRCULATIONAHA.104.518449)293 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)Hadamard,J.1898Lessurfacesacourburesoppose esetleurslignesgeode siques.J.Math.PuresAppl.4,2773.Hejjel,L.&Gal,I.2001Heartratevariabilityanalysis.ActaPhysiol.Hung.88,219230.(doi:10.1556/APhysiol.88.2001.3-4.4)Ho, K. K., Moody, G. B., Peng, C. K., Mietus, J. E., Larson, M. G., Levy, D. & Goldberger, A. L.1997Predictingsurvival inheartfailurecaseandcontrol subjectsbyuseoffullyautomatedmethods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation96,842848.Hu, K., Scheer, F. A., Buijs, R. M. &Shea, S. A. 2008Theendogenous circadianpacemakerimparts a scale-invariant pattern of heart rate uctuations across time scales spanning minutesto24hours.J.Biol.Rhythms23,265273.(doi:10.1177/0748730408316166)Huikuri,H.V.,Makikallio,T.H.,Peng,C.K.,Goldberger,A.L.,Hintze,U.&Mller, M.2000Fractal correlation properties of RRinterval dynamics and mortality in patients withdepressed left ventricular function after an acute myocardial infarction. Circulation101, 4753.Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., Havlin, S., Rosenblum, M. G. &Struzik,Z. H. E. 1999Multifractalityinhumanheartbeat dynamics. Nature (Lond.) 399, 461465.(doi:10.1038/20924)Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Javorkova, J., Javorka, K. & Baumert, M. 2008Short-termheart ratecomplexityisreducedinpatientswithtype1diabetesmellitus. Clin.Neurophysiol.119,10711081.(doi:10.1016/j.clinph.2007.12.017)Kamen,P.W.&Tonkin,A.M.1995ApplicationofthePoincare plottoheartratevariability:anewmeasureof functionalstatusinheartfailure.Aust.NZJ.Med.25,1826.Kamen, P. W., Krum, H. &Tonkin, A. M. 1996Poincare plot of heart ratevariabilityallowsquantitative displayof parasympathetic nervous activityinhumans. Clin. Sci. (Lond.) 91,201208.Kaplan,D.&Glass,L.1995Understandingnonlineardynamics.NewYork,NY:Springer.Kaplan, D. T., Furman, M. I., Pincus, S. M., Ryan, S. M., Lipsitz, L. A. & Goldberger, A. L. 1991Agingandthecomplexityofcardiovasculardynamics.Biophys.J.59,945949.Khoo, M. C. 2008 Modeling of autonomic control in sleep-disordered breathing. Cardiovasc. Eng. 8,3041.(doi:10.1007/s10558-007-9041-9)Kleiger, R. E., Miller, J. P., Bigger, J. T. & Moss, A. R. 1987 Multicenter post-infarction researchgroup.Decreasedheartratevariabilityanditsassociationwithincreasedmortalityafteracutemyocardialinfarction.Am.J.Cardiol.59,256262.(doi:10.1016/0002-9149(87)90795-8)Kobayashi,M.&Musha,T.19821/f uctuationofheartbeatperiod.IEEETrans.Biomed.Eng.29,456457.(doi:10.1109/TBME.1982.324972)Kurths, J., Voss, A., Saparin, P., Witt, A., Kleiner, H. J. & Wessel, N. 1995 Quantitative analysisofheartratevariability.Chaos5,8894.(doi:10.1063/1.166090)Laitio,T.T.etal.2002Relationofheartratedynamicstotheoccurrenceofmyocardialischemiaaftercoronaryarterybypassgrafting.Am.J.Cardiol.89,11761181.(doi:10.1016/S0002-9149(02)02300-7)Lake, D. E., Richman, J. S., Grifn, M. P. &Moorman, J. R. 2002Sampleentropyanalysisofneonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol.283, R789R797.Li,M.&Vitnyi,P.A.1997AnintroductiontoKolmogorovcomplexityanditsapplications.NewYork,NY:Springer.Lin, D. C. & Hughson, R. L. 2001 Modeling heart rate variability in healthy humans: a turbulenceanalogy.Phys.Rev.Lett.86,16501653.(doi:10.1103/PhysRevLett.86.1650)Lombardi, F. 2000 Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101,810.Lombardi, F., Porta, A., Marzegalli, M., Favale, S., Santini, M., Vincenti, A., DeRosa, A. &participating investigators of ICD-HRVItalian Study Group. 2000 Heart rate variabilitypatterns before ventricular tachycardia onset inpatients withanimplantable cardioverterdebrillator.Am.J.Cardiol.86,959963.(doi:10.1016/S0002-9149(00)01130-9)A.Vossetal. 294Phil.Trans.R.Soc.A(2009)Maestri,R., Pinna, G. D., Balocchi,R., DAddio, G.,Ferrario, M., Porta,A., Sassi,R., Signorini,M. G. & La Rovere, M. T. 2006 Clinical correlates of non-linear indices of heart rate variabilityinchronicheartfailurepatients.Biomed.Tech.(Berl.)51,220223.Maestri,R.etal.2007Nonlinearindicesofheartratevariabilityinchronicheartfailurepatients:redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol.18, 425433. (doi:10.1111/j.1540-8167.2007.00728.x)Makikallio, T. 1998 Analysis of heart rate dynamics by methods derived fromnonlinearmathematicsclinical applicability and prognostic signicance, ch. 2. PhD thesis, OuluUniversityLibrary,Oulu.Ma kikallio, T. H., Seppanen, T., Niemela, M., Airaksinen, K. E., Tulppo, M. & Huikuri, H. V. 1996Abnormalities inbeat tobeat complexityof heart ratedynamics inpatients withapreviousmyocardial infarction. J. Am. Coll. Cardiol. 28, 10051011. (doi:10.1016/S0735-1097(96)00243-4)Makikallio, T. H., Hoiber, S., Kober, L., Torp-Pedersen, C., Peng, C. K., Goldberger, A. L.,Huikuri, H. V. &TRACEinvestigators. 1999Fractal analysis of heart rate dynamics as apredictor of mortality in patients with depressed left ventricular function after acute myocardialinfarction.Am.J.Cardiol.83,836839.(doi:10.1016/S0002-9149(98)01076-5)Makikallio, T. H., Huikuri, H. V., Hintze, U., Videbaek, J., Mitrani, R. D., Castellanos, A.,Myerburg, R. J., Moller, M. &forDIAMONDStudyGroup. 2001Fractal analysisandtime-andfrequency-domainmeasuresofheartratevariabilityaspredictorsofmortalityinpatientswithheartfailure.Am.J.Cardiol.87,178182.(doi:10.1016/S0002-9149(00)01312-6)Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E. & Morris Jr, J. A. 2008 Heart ratemultiscaleentropyatthreehourspredictshospital mortalityin3,154traumapatients. Shock30,1722.Novak, V., Novak, P., de Champlain, J., Le Blanc, A. R., Martin, R. & Nadeau, R. 1993 Inuenceofrespirationonheartrateandbloodpressureuctuations.J.Appl.Physiol.74,617626.Oxenham,H.&Sharpe,N.2003Cardiovascularagingandheartfailure.Eur.J.HeartFailure5,427434.(doi:10.1016/S1388-9842(03)00011-4)Parati, G., Di Rienzo, M., Bertinieri, G., Pomidossi, G., Casadei, R., Groppelli, A., Pedotti, A.,Zanchetti, A. &Mancia, G. 1988Evaluationof thebaroreceptor-heartratereexby24-hourintra-arterialbloodpressuremonitoringinhumans.Hypertension12,214222.Peng, C. K., Havlin, S., Stanley, H. E. &Goldberger, A. L. 1995 Quantication of scalingexponentsandcrossoverphenomenainnonstationaryheartbeattimeseries. Chaos5, 8287.(doi:10.1063/1.166141)Pincus, S. M. 1991 Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci.USA88,22972301.(doi:10.1073/pnas.88.6.2297)Pompe,B.,Blidh,P.,Hoyer,D.&Eiselt,M.1998Usingmutualinformationtomeasurecouplingin the cardiorespiratory system. IEEE Eng. Med. Biol. Mag.17, 3239. (doi:10.1109/51.731318)Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A. &Cerutti, S. 2001Entropy, entropyrateandpatternclassicationastoolstotypifycomplexityinshortheartperiodvariabilityseries.IEEETrans.Biomed.Eng.48,12821291.(doi:10.1109/10.959324)Porta,A.etal.2007Anintegratedapproachbasedonuniformquantizationfortheevaluationofcomplexity of short-termheart periodvariability: applicationto 24 hHolter recordings inhealthyandheartfailurehumans.Chaos17,015 117.(doi:10.1063/1.2404630)Richman, J. S. &Moorman, J. R. 2000 Physiological time-series analysis using approximateentropyandsampleentropy.Am.J.Physiol.HeartCirc.Physiol.278,H2039H2049.Ritzenberg, A. L., Adam, D. R. &Cohen, R. J. 1984Periodmultuplingevidencefornonlinearbehaviourofthecanineheart.Nature307,159161.(doi:10.1038/307159a0)Ryan,S.M.,Goldberger,A.L.,Pincus,S.M.,Mietus,J.&Lipsitz,L.A.1994Gender-andage-relateddifferencesinheartratedynamics: arewomenmorecomplexthanmen?J. Am. Coll.Cardiol. 24,17001707.Saul, J. P., Albrecht, P., Berger, R. D. &Cohen, R. J. 1987Analysis of longtermheart ratevariability:methods,1/fscalingandimplications.Comput.Cardiol.14,419422.295 Review.NonlineardynamicsforanalysingHRVPhil.Trans.R.Soc.A(2009)Schumacher,A.2004Linearand nonlinearapproachestotheanalysisofRR intervalvariability.Biol.Res.Nurs.5,211221.(doi:10.1177/1099800403260619)Schwab, K., Eiselt, M., Putsche, P., Helbig, M. &Witte, H. 2006 Time-variant parametricestimationof transientquadraticphasecouplingsbetweenheartratecomponentsinhealthyneonates.Med.Biol.Eng.Comput.44,10771083.(doi:10.1007/s11517-006-0120-7)Shiogai,Y.2007Nonlineardynamicsofcardiovascularaging.PhDthesis,DepartmentofPhysics,LancasterUniversity,UK.Stein, P. K., Domitrovich, P. P., Huikuri, H. V. &Kleiger, R. E. 2005 Cast investigators.Traditional and nonlinear heart rate variability are each independently associated withmortalityaftermyocardial infarction. J. Cardiovasc. Electrophysiol. 16, 1320. (doi:10.1046/j.1540-8167.2005.04358.x)Takens,F. 1981 Detecting strangeattractors in turbulence.In Dynamical systemsand turbulence,vol.898(edsD.A.Rand&L.-S.Young).LectureNotesinMathematics,pp.366381.Tapanainen, J. M., Thomsen,P. E., Kober, L., Torp-Pedersen,C., Makikallio, T. H., Still, A. M.,Lindgren,K.S.&Huikuri,H.V.2002Fractalanalysisofheartratevariabilityandmortalityafter an acute myocardial infarction. Am. J. Cardiol. 90, 347352. (doi:10.1016/S0002-9149(02)02488-8)TaskForceofthe EuropeanSocietyof Cardiologyand theNorthAmericanSocietyof PacingandElectrophysiology 1996 Heart rate variabilitystandards of measurement, physiologicalinterpretationandclinicaluse.Circulation93,10431065.Truebner, S., Cygankiewicz, I., Schroeder, R., Baumert, M., Vallverdu, M., Caminal, P., Vazquez,R., Baye s de Luna, A. & Voss, A. 2006 Compression entropy contributes to risk stratication inpatientswithcardiomyopathy.Biomed.Tech.(Berl.)51,7782.Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppanen, T., Makikallio, T. H. &Huikuri, H. V. 2005 Physiological background of the loss of fractal heart rate dynamics.Circulation112,314319.(doi:10.1161/CIRCULATIONAHA.104.523712)Tuzcu, V., Nas, S., Borklu, T. & Ugur, A. 2006 Decrease in the heart rate complexity prior to theonsetofatrialbrillation.Europace8,398402.(doi:10.1093/europace/eul031)Vinet, A., Chialvo, D. R. &Jalife, J. 1990 Irregular dynamics of excitation in biologic andmathematicalmodelsofcardiaccells.Ann.NYAcad.Sci.601,281298.(doi:10.1111/j.1749-6632.1990.tb37307.x)Voss, A., Dietz, R., Fiehring, H., Kleiner, H. J., Kurths, J., Saparin, P., Vossing, H. J. & Witt, A.1993HighresolutionECG, heartratevariabilityandnonlineardynamics: toolsforhighriskstratication. InComputers incardiology, pp. 261264. Los Alamitos, CA: IEEEComputerSocietyPress.Voss, A., Kurths, J., Kleiner, H. J., Witt, A., Wessel, N., Saparin, P., Osterziel, K. J., Schurath, R. &Dietz, R. 1996 The application of methods of non-linear dynamics for the improved and predictiverecognition of patients threatened by sudden cardiac death. Cardiovasc. Res.31, 419433.Voss, A., Hnatkova, K., Wessel, N., Kurths, J., Sander, A., Schirdewan, A., Camm, A. J. & Malik,M. 1998Multiparametricanalysisof heartratevariabilityusedforriskstraticationamongsurvivors of acute myocardial infarction. Pacing Clin. Electrophysiol. 21(Pt 2), 186192. (doi:10.1111/j.1540-8159.1998.tb01086.x)Weiss, J. N., Garnkel, A., Spano, M. L. & Ditto, W. L. 1994 Chaos and chaos control in biology.J.Clin.Invest.93,13551360.(doi:10.1172/JCI117111)Wolf, M. M., Varigos, G. A., Hunt, D. & Sloman, J. G. 1978 Sinus arrhythmia in acute myocardialinfarction.Med.J.Aust.2,5253.Ziv,J.&Lempel,A.1977Universalalgorithmforsequentialdatacompression.IEEETrans.Inf.Ther.23,337343.(doi:10.1109/TIT.1977.1055714)A.Vossetal. 296Phil.Trans.R.Soc.A(2009)