2008 Int ANSYS Conf Piezoelectric Fan Modeling Fsi Analysis

Embed Size (px)

Citation preview

2008 ANSYS, Inc.All rights reserved. 1 ANSYS, Inc. Proprietary2008 International ANSYS ConferencePiezoelectric Fan ModelingFSI Analysis using ANSYS and CFXCourtesy of PIEZO Systems Inc.Rich Lange, Stephen Scampoli, Naseem Ansari, and Dan ShawANSYS Inc. 2008 ANSYS, Inc.All rights reserved. 2 ANSYS, Inc. ProprietaryScope of Presentation Outline the workings of the Piezoelectric fan Discuss the processing of the Piezoelectric data Show analysis settings Discuss the Coupling with CFX Show results 2008 ANSYS, Inc.All rights reserved. 3 ANSYS, Inc. ProprietaryThe Piezoelectric Fan Piezoelectric Fan Spot Cooling for Electronic Components Low Magnetic Permeability Blade driven by Piezoelectric BimorphBlade Bimorph FR4 BoardCourtesy: PIEZO Systems Inc 2008 ANSYS, Inc.All rights reserved. 4 ANSYS, Inc. ProprietaryPiezoelectricity Piezoelectricity is a property of some materials (notably crystals and certain ceramics) to generate an electric potential in response to applied mechanical stress Piezoelectric effect is reversible Materials exhibiting the direct piezoelectric effect (stress electricity) also exhibit the converse piezoelectric effect(electricity stress) For example, lead zirconate titanate crystals exhibit a maximum strain rate of ~0.1% For stress induced electricity in piezo-materials, voltage often varies in time 2008 ANSYS, Inc.All rights reserved. 5 ANSYS, Inc. ProprietaryFinite Element Model with Boundary ConditionsTwo piezoelectric layersCourtesy: PIEZO Systems IncBottom piezoelectric Layer: 0 VoltTop Piezoelectric Layer: 115 [V] sin((2/0.4[s])t)The voltage variance produces the fan motion.Fix Support at holes 2008 ANSYS, Inc.All rights reserved. 6 ANSYS, Inc. ProprietaryPiezoelectrics - Equations )`=)`(((

+)`((

+)`((

LFVuK KK KVuC 00 CVu 00 MV ZZ uvuT 0

Structural Termsnodal forcesnodal displacementsmass damping stiffnessDielectric Termsdamping permittivityelectric potentialelectric chargecoupling terms 2008 ANSYS, Inc.All rights reserved. 7 ANSYS, Inc. ProprietaryModel Input The equation describing the voltage variation is created in ANSYS Classic equation editor Create the function and save it Once the constants in the equation are defined, a table is created in ANSYS that describes the specific equation The log file of the resulting table can easily become a Command object in Simulation The boundary condition then simply gets applied as a tabular load 2008 ANSYS, Inc.All rights reserved. 8 ANSYS, Inc. ProprietaryFunction and Table Ansys Utility Menu Parameters> Functions> Define/Edit Enter the function, defining the voltage as a constant Volume File>Save (give a name) Ansys Utility Menu Parameters>Functions>Read From File 2008 ANSYS, Inc.All rights reserved. 9 ANSYS, Inc. ProprietaryResulting Log File This is representative of what will go in the command snippet to represent the table 2008 ANSYS, Inc.All rights reserved. 10 ANSYS, Inc. ProprietaryVoltage Boundary Conditions -Command SnippetsBottom Layer: Voltage = 0 VoltTop Layer: Voltage = 115 [V] sin((2/0.4[s])t)Snippet for entering a formula in SIMULATION 2008 ANSYS, Inc.All rights reserved. 11 ANSYS, Inc. ProprietaryPiezoelectric Material Data Input Piezoelectric material data is supplied in different formats Discussed in ANSI/IEEE Std 176-1987, Standard on Piezoelectricity All industry standard material property data formats are not compatible with ANSYS Data must be converted into ANSYS compatible form Also, material data is typically supplied with the polarization direction as Z (or 3), the longitudinal direction as X (or 1), and the transverse direction as Y (or 2) In our example, the polarization direction is Y, the longitudinal direction X, and the transverse direction Z.Thus, the supplied material data must be transformed appropriately 2008 ANSYS, Inc.All rights reserved. 12 ANSYS, Inc. ProprietaryIntroduction (cont) For static or low frequency devices (e.g., sensors), material property data are typically provided as Compliance measured under constant electric field [sE], Piezoelectric strain matrix [d], and Relative permittivity measured under constant stress [T] For higher frequencies devices (e.g., resonators), material property data are typically provided as Stiffness measured under constant electric field [cE], Piezoelectric stress matrix [e], and Relative permittivity measured under constant strain [S] 2008 ANSYS, Inc.All rights reserved. 13 ANSYS, Inc. ProprietaryRequired Material Properties For static analyses, piezoelectric materials are characterized by Structural elasticity Piezoelectric coupling Dielectric permittivity For dynamic analyses, additional data are required Density Structural damping Dielectric damping Piezoelectric behavior can be defined using different material properties Structural elasticity Moduli of elasticity Stiffness matrix Compliance matrix Piezoelectric coupling Piezoelectric matrix Dielectric permittivity Relative permittivity Relative permittivity matrix 2008 ANSYS, Inc.All rights reserved. 14 ANSYS, Inc. ProprietaryANSYS Commands MP Command Material properties are entered into ANSYS using either the MP (for isotropic or orthotropic properties) or TB commands (when tabular input is required) TB, LAB, MAT, NTEMP, NPTS, TBOPT, EOSOPT LAB: material model PIEZ = piezoelectric matrix ANEL = anisotropic elastic matrix TBOPT: options within material model (stress or strain based) EOSOPT: equation of state TBDATA command enters the values into the table Defines data for the table specified on the last issued TB command at the temperature specified on the last issued TBTEMP command TBDATA, STLOC, C1, C2, C3, C4, C5, C6 STLOC: starting location C1, C2, C3, C4, C5, C6: data to be input 2008 ANSYS, Inc.All rights reserved. 15 ANSYS, Inc. ProprietaryElastic Coefficients IEEE Standard 176 specifies standard 6x6 format for elasticity matrix Row order is {x, y, z, yz, xz, xy} ANSYS uses the standard structural mechanics format Row order is {x, y, z, xy, yz, xz} Order of the shear terms is different IEEE Standard 176 row 4 is equivalent to ANSYS row 5 IEEE Standard 176 row 5 is equivalent to ANSYS row 6 IEEE Standard 176 row 6 is equivalent to ANSYS row 4 2008 ANSYS, Inc.All rights reserved. 16 ANSYS, Inc. ProprietaryElastic Coefficients (cont) For ANSYS piezoelectric elements to be compatible with other ANSYS elements, elasticity matrices must use consistent formats Shear rows must be reordered(((((((((

66 65 64 63 62 6156 55 54 53 52 5146 45 44 43 42 4136 35 34 33 32 3126 25 24 23 22 2161 51 41 31 21 11c c c c c cc c c c c cc c c c c cc c c c c cc c c c c cc c c c c c(((((((((

66 65 64 63 62 6156 55 54 53 52 5146 45 44 43 42 4136 35 34 33 32 3126 25 24 23 22 2161 51 41 31 21 11c c c c c cc c c c c cc c c c c cc c c c c cc c c c c cc c c c c cIEEE Standard 176 Format ANSYS Format 2008 ANSYS, Inc.All rights reserved. 17 ANSYS, Inc. Proprietary Elasticity matrix is input in Stiffness form using TB,ANELwith TBOPT = 0 Input order is based on position in the matrixAnisotropic Elastic Coefficients (cont)TB,ANEL,matid#,0TBDATA,1,13.2,7.1,7.3TBDATA,7,13.2,7.3TBDATA,12,11.5TBDATA,16,3TBDATA,19,2.6TBDATA,21,2.62ANSYSmN(((((((((

(((((((((

=2120 1918 17 1615 14 13 1211 10 9 8 76 5 4 3 2 16 . 20 6 . 20 0 0 . 30 0 0 5 . 110 0 0 30 . 7 2 . 130 0 0 30 . 7 10 . 7 2 . 1310 C10 E 2008 ANSYS, Inc.All rights reserved. 18 ANSYS, Inc. ProprietaryInput Elastic Coefficients As with stiffness matrix, if elasticity matrix is provided as a compliance matrix at constant electric field (sE) in IEEE Standard 176 form, it must be converted to ANSYS format IEEE Standard 176 format convert to ANSYS format by rearranging rows4 55 66 42IEEEmN(((((((((

=6 . 20 6 . 20 0 0 . 30 0 0 5 . 110 0 0 30 . 7 2 . 130 0 0 30 . 7 10 . 7 2 . 1310 s10 E2ANSYSmN(((((((((

=6 . 20 0 . 30 0 6 . 20 0 0 5 . 110 0 0 30 . 7 2 . 130 0 0 30 . 7 10 . 7 2 . 1310 s10 E 2008 ANSYS, Inc.All rights reserved. 19 ANSYS, Inc. ProprietaryInput Elastic Coefficients For this example, in addition to converting the elasticity data from the IEEE format to the ANSYS format, it must be also rotated so that the polarization direction is Y rather than Z Z data becomes Y data Y data becomes Z data X data remains the same2ANSYSmN(((((((((

=6 . 20 0 . 30 0 6 . 20 0 0 5 . 110 0 0 30 . 7 2 . 130 0 0 30 . 7 10 . 7 2 . 1310 s10 E210ANSYSmN0 . 30 6 . 20 0 6 . 20 0 30 . 7 2 . 130 0 0 0 5 . 110 0 0 30 . 7 10 . 7 2 . 1310(((((((((

=EsOrder for the TBDATA commands follows the schematic on the right hand sideSee Command Snippet forthe TBDATA commands 2008 ANSYS, Inc.All rights reserved. 20 ANSYS, Inc. ProprietaryPiezoelectric Coefficients IEEE Standard 176 uses a standard textbook 3x6 format for the piezoelectric coupling matrix Order is {x, y, z, yz, xz, xy} ANSYS uses a 6x3 format for the piezoelectric matrix Order is {x, y, z, xy, yz, xz} As with elasticity matrix, order of shear terms is incompatible between IEEE Standard 176 and ANSYS and must be reordered In addition, rows and columns are transposed To convert piezoelectric coefficient data provided in the IEEE Standard 176 format into the ANSYS format Matrix must be transposed Rows 4, 5, and 6 must be appropriately interchanged 2008 ANSYS, Inc.All rights reserved. 21 ANSYS, Inc. ProprietaryPiezoelectric Coefficients (cont)((((

36 35 34 33 32 3126 25 24 23 22 2161 51 41 31 21 11d d d d d dd d d d d dd d d d d d(((((((((

63 62 6153 52 5143 4133 32 3123 22 2131 21 11d d dd d dd d dd d dd d dd d d42(((((((((

63 62 6153 52 5143 4133 32 3123 22 2131 21 11d d dd d dd d dd d dd d dd d d42Typical Piezoelectric Matrix (((((((((

53 52 5143 42 4163 6133 32 3123 22 2131 21 11d d dd d dd d dd d dd d dd d d62Transposed Piezoelectric MatrixANSYS Piezoelectric Matrix Transposed Piezoelectric Matrix 2008 ANSYS, Inc.All rights reserved. 22 ANSYS, Inc. ProprietaryPiezoelectric Coefficients Piezoelectric coefficients are provided in stress form in IEEE Standard 176 format To convert to ANSYS format, first transpose the matrix Then rearrange rows 4, 5, & 6CNIEEE(((((((((

=0 0 00 0 5 . 100 5 . 10 01 . 14 0 01 . 4 0 01 . 4 0 0dT(((((((((

=0 0 5 . 100 5 . 10 00 0 01 . 14 0 01 . 4 0 01 . 4 0 0dZ ANSYS, 2008 ANSYS, Inc.All rights reserved. 23 ANSYS, Inc. ProprietaryPiezoelectric Coefficients Finally, Y being the direction of polarization instead of Z must be accounted for Piezoelectric coefficients in the stress form are input using TB,PIEZ with TBOPT = 0 Input order is based on position in matrix(((((((((

=0 0 5 . 100 5 . 10 00 0 01 . 14 0 01 . 4 0 01 . 4 0 0dZ ANSYS,(((((((((

(((((((((

=18 17 1615 14 1312 11 109 8 76 5 43 2 10 0 05 . 10 0 00 0 5 . 100 1 . 4 00 1 . 14 00 1 . 4 0Y , dANSYSSee Command Snippet for TBDATA commands63 62 6153 52 5143 42 4133 32 3123 22 2131 21 11d d d zxd d d yzd d d xyd d d zd d d yd d d xz y x 42 43 4152 53 5162 63 6122 23 2132 33 3121 31 11d d d yxd d d zyd d d xzd d d yd d d zd d d xy z x 2008 ANSYS, Inc.All rights reserved. 24 ANSYS, Inc. ProprietaryPiezoelectric Material Defined -Command SnippetsAnisotropic Elastic matrixPiezoelectric matrixCoupled Element 226 2008 ANSYS, Inc.All rights reserved. 25 ANSYS, Inc. ProprietaryPiezoelectric Solution Static SPARSE is the recommended solver Transient SPARSE is the recommended solver recommended TINTP (transient algorithm) settings ALPHA = 0.25 DELTA = 0.5 THETA = 0.5 Modal Block Lanczos is the recommended solver Harmonic SPARSE is the recommended solver harmonically varying displacement produces a current applied current produces a vibration 2008 ANSYS, Inc.All rights reserved. 26 ANSYS, Inc. ProprietaryElectric Potential 2008 ANSYS, Inc.All rights reserved. 27 ANSYS, Inc. ProprietaryBlade MovementsDisplacement Exaggerated andNot to Scalet=0.1 SecEquivalent stressest=0.3 Sec 2008 ANSYS, Inc.All rights reserved. 28 ANSYS, Inc. ProprietaryCFX Model Flow domain internal boundary is the device. Blue arrows represent Opening Condition Fluid may move in and out such boundaries 2008 ANSYS, Inc.All rights reserved. 29 ANSYS, Inc. ProprietaryCFX Setup Flow domain Default isthe FSI boundaryForce Displacement transfers 2008 ANSYS, Inc.All rights reserved. 30 ANSYS, Inc. ProprietaryCFX Setup In some cases, the MFX two way procedure is made more robust with the use of an Implicit form of Artificial Compressibility This is implemented by setting up a zero fluid mass source on the FSI boundary and using a Total Mass Source Pressure Coefficient as shown 2008 ANSYS, Inc.All rights reserved. 31 ANSYS, Inc. ProprietaryBlade Displacement at 0.1 secANSYSCFX 2008 ANSYS, Inc.All rights reserved. 32 ANSYS, Inc. ProprietaryBlade Displacements at 0.3 secCFXANSYS 2008 ANSYS, Inc.All rights reserved. 33 ANSYS, Inc. ProprietaryVelocity Contours in CFXTime =0.1 sec. 0.2 sec. 0.3 sec. 0.4 sec. 2008 ANSYS, Inc.All rights reserved. 34 ANSYS, Inc. ProprietarySummary Demonstrated the Multiphysics analysis of a piezo-electric fan with ANSYS and CFX in the MFX Solver The Workbench platform is shown to be flexible enough to handle non-native applications Procedures exist to easily convert the piezoelectric property data to the ANSYS format The robustness of Two-Way FSI coupling is enhanced with artificial compressibility