37
2007-05-07 Tian-Wei Huang–NTU Slide 1 doc.: IEEE 802.15-07/0692r0 TG3c Presentation Project: IEEE P802.15 Working Group for Wireless Personal Area N Project: IEEE P802.15 Working Group for Wireless Personal Area N etworks (WPANs) etworks (WPANs) Submission Title: [Dual-Mode Broadband and Wireless Network (DMBWN)] Date Submitted: [07 May, 2007] Source: [Ching-Kuang Tzung, Ta-Sung Lee*, Jenn-Hwan Tarng*, Yu-De Lin*, Fu-Chiang Chen*, Chi-Hsueh Wang, Tian-Wei Huang, Huei Wang, Shih-Yuan Chen, Powen Hsu, Tah- Hsiung Chu, Ruey-Beei Wu, and Chun-Hsiung Chen ] Company [Department of Electrical Engineering, National Taiwan University, * National Chiao Tung University, Hsin-Chu, Taiwan, ] Address [No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. ] Voice:[+886 2 2363 3289], FAX: [+886 2 2368 3824 ], E-Mail:[[email protected]] Re: [] Abstract: [Description of the concept of Dual-Mode Broadband and Wireless Network] Purpose: [Contribution to TG3c at May 2007 meeting.] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

2007-05-07 doc.: IEEE 802.15-07/0692r0 · is highly compatible with the OFDM based IEEE 802.11a ... Detection Slicer. ... Number of Guard Interval symbols/frame (N G) 16 FFT Size

Embed Size (px)

Citation preview

2007-05-07

Tian-Wei Huang–NTUSlide 1

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Project: IEEE P802.15 Working Group for Wireless Personal Area NProject: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)etworks (WPANs)

Submission Title: [Dual-Mode Broadband and Wireless Network (DMBWN)]Date Submitted: [07 May, 2007]Source: [Ching-Kuang Tzung, Ta-Sung Lee*, Jenn-Hwan Tarng*, Yu-De Lin*, Fu-Chiang Chen*, Chi-Hsueh Wang, Tian-Wei Huang, Huei Wang, Shih-Yuan Chen, Powen Hsu, Tah-Hsiung Chu, Ruey-Beei Wu, and Chun-Hsiung Chen ] Company [Department of Electrical Engineering, National Taiwan University, * National Chiao Tung University, Hsin-Chu, Taiwan, ]Address [No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. ]Voice:[+886 2 2363 3289], FAX: [+886 2 2368 3824 ], E-Mail:[[email protected]]Re: []

Abstract: [Description of the concept of Dual-Mode Broadband and Wireless Network]Purpose: [Contribution to TG3c at May 2007 meeting.]Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

2007-05-07

Tian-Wei Huang–NTUSlide 2

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Dual-Mode Broadband and Wireless Network (DMBWN)

Ching-Kuang Tzung, Ta-Sung Lee*, Jenn-Hwan Tarng*, Yu-De Lin*, Fu-Chiang Chen*, Chi-Hsueh Wang, Tian-Wei Huang, Huei

Wang, Shih-Yuan Chen, Powen Hsu, Tah-Hsiung Chu, Ruey-Beei Wu, and Chun-Hsiung Chen

National Taiwan University*National Chiao Tung University

May 07, 2007

2007-05-07

Tian-Wei Huang–NTUSlide 3

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Dual-Mode Broadband and Wireless Network (DMBWN): a backward

compatible system concept

AP

MT1

60GHz

60GHz

60GHz

60GHz5GHz

5GHz

5GHz

MT2

MT3

5GHz

RF front-end architecture for 5GHz / 60GHz RF signal transmission/reception

Smart antenna array based on switched beamforming

2007-05-07

Tian-Wei Huang–NTUSlide 4

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Motivation & Overview• Long Range: lower operation frequency for communicating

long-distance terminals. • Backward Compatible System: the baseband realization

is highly compatible with the OFDM based IEEE 802.11a/n standard.

• 5-GHz band, – Infrastructure mode – MIMO-OFDM technique is adopted to improve the performance

• 60-GHz band, – ad-hoc mode – Single -Carrier with Frequency-Domain Equalization (SC-FDE)

strategy combined with switched beamforming for interference suppressing

2007-05-07

Tian-Wei Huang–NTUSlide 5

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

•Switched beam / DOA estimation

•60G (Ad-hoc) / 5 G (Infrastructure) selector

•60G / 5 G ; TX / RX switch

•LO1 / LO2 band selectors

•TX power attenuator setting

Passive RF Circuits

Active RF Circuits

BB Modules

Digital Control Lines

Analog Signal Lines

60/5 GHz Dual-Mode Wireless Network Station

Sw

itched B

eamform

er

PA

LNA

60 GHz

BPF

BPF

BW=3 GHz

BW=3 GHz

PA

LNA5 GHz

A/D

s&D/A

s

Existing

5 GH

zTransceiver

B1~B4

LO1BPF

BPF

BW=200 MHz

ATT.

Amp BPF

Amp

Amp

LO2

53.85~56.65 GHz

FrequencyReference

To A1~A4

From B1~B4

CO

M

DIVAmp

Amp

59~62 GHz

5.15~5.35 GHz

Baseband

&M

AC

/DL

C

BW=200MHz

5.18~5.32 GHz

A1~A4

2007-05-07

Tian-Wei Huang–NTUSlide 6

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Switched-Beam Antenna • 60-GHz switched-beam antenna array has

been developed in National Taiwan University– Linear polarization circular polarization– 4 elements 8 elements

2007-05-07

Tian-Wei Huang–NTUSlide 7

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Photo of 1×4 Circular Patch Array1.85mm connector1.85mm connector Test fixtureTest fixture

2007-05-07

Tian-Wei Huang–NTUSlide 8

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Radiation Patterns (1×2 array)

xx--zz planeplane yy--zz planeplane60.5 GHz60.5 GHz

2007-05-07

Tian-Wei Huang–NTUSlide 9

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Radiation Patterns (1×4 array)

xx--zz planeplane yy--zz planeplane60.5 GHz60.5 GHz

2007-05-07

Tian-Wei Huang–NTUSlide 10

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

In-Band Peak Gains

11××2 array2 array 11××4 array4 arrayRHCPRHCP

2007-05-07

Tian-Wei Huang–NTUSlide 11

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

2007-03-13

Tian-Wei Huang–NTUSlide 11

60GHz DPQT Switch

0.15 mm PHEMT , DPQT SwitchLow insertion loss at 60GHzHigh isolation

2007-05-07

Tian-Wei Huang–NTUSlide 12

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

A 0.13μm CMOS 60-GHz Transceiver

Low power consumption (97mW)Tx Pout = -2dBm, IQ ModulationMiniature chip size, and Low CostLow Cost

C-H. Wang, H-Y. Chang, P-S. Wu, K-Y. Lin, T-W. Huang, H. Wang, C-H. Chen, "A 60GHz Low-Power Six-Port Transceiver for Gigabit Software-Defined Transceiver Applications,” 2007 International Solid-State Circuit Conference (ISSCC), San Francisco, CA, Feb. 2007.

Tx High Gian Mode

Rx: 4Gbps BPSK

2007-05-07

Tian-Wei Huang–NTUSlide 13

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

25-75 GHz 90nm CMOS Gilbert-cell MixerProcess : 90nm CMOSTopology : Gilbert-cell Chip size: 0.55 mm × 0.55 mm RF Frequency : 25-75 GHz

Conversion Gain : 3 ± 2 dBLO Driver Power : 6 dBmPower Consumption : 93 mWIsolation : 30 dB

Jeng-Han Tsai, Pei-Si Wu, Chin-Shen Lin, Tian-Wei Huang, John G.J. Chern, and Wen-Chu Huang, " A 25-75-GHz Broadband Gilbert-cell Mixer Using 90-nm CMOS Technology," IEEE Microwave and Guided Wave Letters, April 2007.

2007-05-07

Tian-Wei Huang–NTUSlide 14

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Transmitter with Integrated Antenna

Chi-Hsueh Wang, Yi-Hsien Cho, Chin-Shen Lin, Huei Wang, Chun-Hsiung Chen, Dow-Chih Niu, John Yeh, Chwan-Ying Lee, and John Chern,“A 60-GHz transmitter with integrated antenna in 0.18-mm SiGe BiCMOS technology,” 2006 International Solid-State Circuit Conference (ISSCC), San Francisco, CA, Feb. 2006.

• Technology: 0.18-μm SiGe BiCMOS process• Chip size: 1.3 x 0.8 mm2

• Conversion gain: 20.2 dB• Output power: 15.8 dBm• DC power consumption: 281 mW

2007-05-07

Tian-Wei Huang–NTUSlide 15

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Single Carrier Baseband (1)

FECCoding Mapper

AddGuard Interval

Upsampler&

RRCDAC

ADCTime-SyncFreq-Sync

Ch. EstFFT

Freq.Domain

Eq.IFFTPhase

TrackingDe-

mapperViterbi

Decoding

BinaryInputData

BinaryInputData

FECCoding Mapper

AddGuard Interval

Upsampler&

RRCDAC

ADCTime-SyncFreq-Sync

Ch. EstFFT

Freq.Domain

Eq.IFFTPhase

TrackingDe-

mapperViterbi

Decoding

BinaryInputData

BinaryInputData

Diagrammatical description of the SC-FDE system.

2007-05-07

Tian-Wei Huang–NTUSlide 16

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Single Carrier Baseband (1)

EncoderDataChannel

Mapper

Guard Interval

PreambleGenerator

MUX Upsample&

RRCDAC

Diagrammatical description of the SC-FDE transmitter

2007-05-07

Tian-Wei Huang–NTUSlide 17

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Single Carrier Baseband (2)

Diagrammatical description of the SC-FDE receiver

FrequencySynchronization

FrequencyOffset Estimation

FFTFrequency

Domain Equalization

ChannelEstimation

IFFT

Carrier PhaseOffset

Compensation

Carrier PhaseOffset Estimation

Demapper ViterbiDecoder

Timing Synchronization

Frequency Synchronization Channel Equalization

Phase Tracking

Preamble

OutputData

Match Filter

SymbolTiming

Recovery

PacketDetection

Slicer

2007-05-07

Tian-Wei Huang–NTUSlide 18

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Functionality Description of Single Carrier Transceiver

• Transmitter– Preamble: The preamble channels, following the structure used in IEEE

802.11a, is attached in front of the data – Upsample & RRC (Polyphase Interpolator): Most of the samples in the

upsampled signal are zero and thus required no operations in root-raised cosine filter. With the polyphase structure, a factor of L (the upsamplerate) is saved for computation

• Receiver– Symbol Timing Recovery: To sample message signals at the receiver, a

delay-locked loop is used to find the peaks of the output waveforms– Frequency Estimation: Short preamble is used to correct the frequency

offset– Channel Estimation: Long preamble is used to perform channel

estimation in the frequency domain– Phase Estimation: To correct the frequency offset that varyies during the

reception of the packet

2007-05-07

Tian-Wei Huang–NTUSlide 19

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Parameters of Single Carrier Transceiver

Number of frames/packet 6

Number of total symbols/frame 64

Number of data symbols/frame (NS) 48

Number of Guard Interval symbols/frame (NG) 16

FFT Size 64

Long Preamble Size (symbols) 64+16 (CP)

Short Preamble Size (symbols) 16

Modulation Schemes QPSK

Coding Rates 1/3

Pulse Shaping RRC (α=0.25)

2007-05-07

Tian-Wei Huang–NTUSlide 20

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Performance of Single Carrier Receiver

2007-05-07

Tian-Wei Huang–NTUSlide 21

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Single Carrier Baseband HW Architecture (1)

add_GI

din_Idin_Q

rdy_in_Irdy_in_Q

clkrst

dout_Idout_Q

rdy_out_Irdy_out_Q

pkt_fin_Ipkt_fin_Q

d_Id_Q

dri_Idri_Q

df_Idf_Q

p_Ip_Q

pri_Ipri_Q

pf_Ipf_Q

dout_Idout_Q

rdy_out_Irdy_out_Q

mux

44

44

444

88

clkrst

clkrst

dinrdy_in

dout

rdy_out

Convclkrst

din

rdy_in

dout_Idout_Q

rdy_out_Irdy_out_Q

mapper

prmb

trigger_Itrigger_Q

clkrst

pout_Ipout_Q

rdy_out_Irdy_out_Q

finish_Ifinish_Q

upsample_RRC

dout_Idout_Q

rdy_out_Irdy_out_Q

RFD

dout_Idout_Q

clkrst

System ClockAsynchronized Reset

• Transmitter

2007-05-07

Tian-Wei Huang–NTUSlide 22

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

60-GHz Single Carrier Baseband HW Architecture (2)

• Receiver

1414

de_map

pkt_detclkrst

din_Idin_Q

dout_Idout_Q

rdy_in rdy_out

mfclkrst

din_Idin_Q

dout_Idout_Q

rdy_in rdy_out

dllclkrst

din_Idin_Q

dout_Idout_Q

rdy_in rdy_out

ln_pmb_cp_rmclkrstdin_Idin_Q

rdy_in

dout_Idout_Q

rdy_out

freq_compphase_in

din_Idin_Q

rdy_in

dout_Idout_Q

rdy_out

ph_compdin_Idin_Qrdy_in

dout_Idout_Qrdy_out

FFTclkrst

din_Idin_Q

rdy_in

XK_REXK_IM

fft_dv

DOUT_RE

rdy_out_DDOUT_IM

ch_eq

acc_XS_REacc_XS_IMrdy_out_PMB

DIN_REDIN_IMrdy_out_D

clkrst

ch_estclkrst

acc_XS_REacc_XS_IM

rdy_out_PMB

DOUT_REDOUT_IMrdy_out_D

XK_REXK_IM

fft_dv

IFFTclkrst

dout_Qdout_I

rdy_out

XK_RE

rdy_inXK_IM

clkrst

din_Idin_Qrdy_in

doutrdy_out

viterbiclkrst

doutrdy_out

dinrdy_in

freq_est

rst

din_Idin_Q phase

rdy_intriggersw_st_pmb

clkrst

sout_Isout_Q

rdy_out_s

din_Idin_Q

rdy_in

dout_Idout_Q

rdy_out

ren

Timing Synchronization

Frequency Offset Compensation

Frequency Domain Equalization Phase Offset Compensation

88

88

1111

1111

1111 14

1111

1414

14

14

14

1414

1414

1414

1414

ph_err_estdin_Idin_Qrdy_in

phaseph_I

ph_Qrdy_out

1414

2007-05-07

Tian-Wei Huang–NTUSlide 23

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

5 GHz MIMO-OFDM Transceiver Architecture

• Transmitter

• Receiver PreambleChannel

IFFTS/P P/S MUX/RRC

S:STBCL:None

Encoder Inter-leaver Mapper DEMUX

DataChannel

Group-Wise

ST-BlockCoding

VBLAST

Group-Wise

Decoder

ST-Block

Decoder

RRC FFT

Preamble

TimeSynchronization

ChannelEstimation

PhaseEstimation

De-Mapper

De-Inter

leaver

ViterbiDecoder

OutputData

FrequencyEstimation

Pilot Subcarrier

2007-05-07

Tian-Wei Huang–NTUSlide 24

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Functionality Description of MIMO-OFDM Transceiver (1)

• Transmitter– Channel Encoder : Using the convolution code for error

correction– Interleaver : The transmitted information is better resistant to the

channel distortion by distributing the same coded bits into different positions in the packet

– A MIMO system is typically designed to meet two different, yet opposite, targets: • High spectral efficiency (Spatial Multiplexing) : VBLAST• Reliable transmission (Spatial Diversity) : Space-time block codes

(STBC)– Preamble : The preamble channels, coded by the rule of STBC,

will be attached in front of the data channel modulated by IFFT

2007-05-07

Tian-Wei Huang–NTUSlide 25

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Functionality Description of MIMO-OFDM Transceiver (2)

• Receiver– Time Synchronization : To find out where the symbol boundaries

are and what the optimal timing instants are to minimize the effects of inter-symbol-interference (ISI) and inter-carrier-interference (ICI)

– Frequency Estimation : To correct the frequency offset, which is caused by the difference of oscillator frequencies at the transmitter and the receiver

– Channel Estimation : Owing to the same symbol structure as data symbols, long preamble becomes the best candidate for performingthis job

– Phase Estimation : To correct the frequency offset that varyiesduring the reception of the packet

– Space-Time Block Decoder : Decode the data with diversity gain

– VBLAST Decoder : Decode the data with multiplexing gain

2007-05-07

Tian-Wei Huang–NTUSlide 26

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Parameters of MIMO-OFDM Transceiver

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of Long Preambles / Packet

2Number of Receive Antennas

2Number of Transmit Antennas

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of Long Preambles / Packet

2Number of Receive Antennas

2Number of Transmit Antennas

2007-05-07

Tian-Wei Huang–NTUSlide 27

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Performance of MIMO-OFDM Receiver

2007-05-07

Tian-Wei Huang–NTUSlide 28

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

5-GHz MIMO-OFDM Baseband HW Architecture (1)

• Transmitter

clk

data_in

RST

data_out

wen

clkdata_in

RST

data_i_1data_i_2

data_q_1data_q_2

wen

mapperclkmod_even_imod_odd_imod_even_qmod_odd_qRST

ant1_iant1_qant2_i

ant2_qwen

delay_1clk

2222

delay_1clk

22

clkDI_inDQ_inRST

ifft_i_outifft_q_out

clkdata_i_indata_q_inRST

os_cp

data_i_outdata_q_out

wen

clkRST

pmb_gen_tx1pmb_i

pmb_q

sel

w2_iw2_q

w1_iw1_q

f_i

f_q

pmb_data_mux

D_inRST

RRCRRC_out

D_inRST RRC_out

22 10 10

10

10

10

1010

1010

clkDI_inDQ_inRST

ifft_i_outifft_q_out

clkdata_i_indata_q_inRST

data_i_outdata_q_out

wen

clkRST

pmb_gen_tx2pmb_i

pmb_q

sel

w2_iw2_q

w1_iw1_q

f_i

f_q

D_inRST

RRCRRC_out

D_inRST RRC_out

22 1010

10

10

10

1010

1010

delay_1clkdelay_90clk

TX1

TX2

clk

data_in

RSTencode

wen

interleaverSTBC(demux)

+pt_ztconv

delay_1clk

IFFT

os_cp pmb_data_muxIFFT

2007-05-07

Tian-Wei Huang–NTUSlide 29

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

5-GHz MIMO-OFDM Baseband HW Architecture (2)

• Receiver

RX1

RX2

D_inRST

rx_rrc

RRC_out

D_inRST RRC_out

D_inRST RRC_out

D_inRST RRC_out

clkrx1_i_in

rx1_q_in

rx2_i_in

rx1_q_inRST

frm_str

time_sync

RST data_i_indata_q_inclk

rm_os+rm_cp

data_i_outdata_q_out

wen

clkDI_inDQ_inRST

FFT

ifft_i_outifft_q_out

clkdata_i_indata_q_inRST

mv_pt_ztdata_even_i_out

data_even_q_outdata_odd_i_out

data_odd_q_outwen

10

10

11

11 14

RST data_i_indata_q_inclk

rm_os+rm_cp

data_i_outdata_q_out

wen

clkDI_inDQ_inRST

FFT

ifft_i_outifft_q_out

clkdata_i_indata_q_inRST

mv_pt_zt11 14

14

11

11

delay_90clk

data_delay_43clk

data_even_i_outdata_even_q_out

data_odd_i_outdata_odd_q_out

wen

14

rx1_data_even_irx1_data_even_qrx1_data_odd_irx1_data_odd_qrx2_data_even_irx2_data_even_qrx2_data_odd_irx2_data_odd_q

rst

ch_estH11_i

H11_qH21_i

H21_qH12_i

H12_qH22_i

H22_q

ph_estrx1_phi_even_i

rx1_phi_even_qrx1_phi_odd_i

rx1_phi_odd_qrx2_phi_even_i

rx2_phi_even_qrx2_phi_odd_i

rx2_phi_odd_q

H11_iH11_qH21_iH21_qH12_iH12_qH22_iH22_qrx1_data_even_irx1_data_even_qrx1_data_odd_irx1_data_odd_qrx2_data_even_irx2_data_even_qrx2_data_odd_irx2_data_odd_qrst

14

12

14

12

lnpmb_fft_rom

z1_even_iz1_even_qz1_odd_iz1_odd_q

z2_even_iz2_even_qz2_odd_iz2_odd_q

H phi

data_delay_22clk

delay_53clk

rst

delay_4clk

de_map

wen

delay_1clk

data_in

rst

data_out

wen rst

delay_1clk

data_indata_out

wen

de_STBC(VBLAST)de_map

de_leav viterbidecoder

2007-05-07

Tian-Wei Huang–NTUSlide 30

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

• Transmitter

• Receiver

High Throughput MIMO-OFDM Technique

S/PS/P IFFTIFFTM Short

CPShortCP

Ant 1M-QAMSymbols

DEMUXDEMUX MBit →M-QAMBit →

M-QAMInformation

BitsInformation

Bits

S/PS/P IFFTIFFTM Short

CPShortCP

Ant NM-QAMSymbols

M M

Reduce CP Length to Increase ThroughputAnt 1

Ant MStackingStackingM

Matched Filter

Matched Filter

BlockingMatrix

BlockingMatrix

DimensionReducing

DimensionReducing

Weighting Matrix

Weighting Matrix

Per-ToneVBLAST

Per-ToneVBLAST

OutputData

Robustness Mechanismagainst Channel MismatchRobustness Mechanism

against Channel Mismatch

Robust Low-Complexity ISI/ICI Canceller

FFTFFT

FFTFFT

2007-05-07

Tian-Wei Huang–NTUSlide 31

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Functionality Description of High Throughput MIMO-OFDM

• The transmitter is performed in a similar way as it is in MIMO-OFDM system, except that the CP length is shortened to increase throughput

• Therefore, ISI and ICI are enhanced such that interference cancellation mechanism is required

• Robust Low-Complexity ISI/ICI Canceller– Matched Filter: To match the received signal– Blocking Matrix: To separate the interference part from the

received signal– Dimension Reducing & Weighting Matrix: An adaptive

estimation of the combination of ISI and ICI– Robust Mechanism against Channel Mismatch: A mechanism

that guarantees the performance of interference cancellation when channel mismatch is present

2007-05-07

Tian-Wei Huang–NTUSlide 32

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Complete Hardware Platform• Baseband transceiver consists of four FPGAs

60 GHzInterface

5 GHz RFTransceiver

Xilinx Virtex2 6000 FPGA

MAC/BBmodule

AD/DAmodule

RF module

USBInterface

2007-05-07

Tian-Wei Huang–NTUSlide 33

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Description of HW Platform (1)• Modules at the platform

– RF Module (MAX 2828)• Specifically designed for single-band IEEE 802.11a

applications covering world-band frequencies of 4.9 GHz to 5.875 GHz

– AD/DA Module (ADS2807and DAC2900)• ADS2807 is an analog to digital converter which provides a

high bandwidth track-and-hold and gives excellent spurious performance up to and beyond the Nyquist rate.

• DAC2900 is a digital to analog converter which offers exceptional dynamic performance, and enables to generate very-high output frequencies suitable for “Direct IF”applications

2007-05-07

Tian-Wei Huang–NTUSlide 34

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Description of HW Platform (2)– MAC/BB module (FPGA-based)

• Composed of four Xilinx Virtex-II 6000 modules, giving significant improvement in processing speed, size, weight, power, and costs compared to DSP solutions

• Both 5 GHz MIMO-OFDM and 60 GHz SC basebandtransceivers are implemented on this module

– USB Interface module• USB interface was designed into the platform to provide a

convenient input for audio/video signals

2007-05-07

Tian-Wei Huang–NTUSlide 35

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

SummaryPresented the 60/5 Dual-Mode Broadband and Wireless Network (DMBWN) as a backward compatible system Future works will be devoted to realize the 60 GHz transceiver, and switched beamforming smart antenna, which can be integrated with the developed 5 GHz system. Academically, we will continuously make efforts to develop advanced signal processing algorithms, such as cross-layer signaling, channel estimation and interference cancellation methods, for the proposed dual-band WLAN system.

2007-05-07

Tian-Wei Huang–NTUSlide 36

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Next Step Towards Down Selection• A Formal Joint Submission would be made

in July Meeting in San Francisco• National Taiwan University/ TEEMA

(Taiwan Electrical & Electronic Manufacturers’Association) has agreed to create a joint submission with COMPA

2007-05-07

Tian-Wei Huang–NTUSlide 37

doc.: IEEE 802.15-07/0692r0

TG3c Presentation

Thank you!