26
Limitations on the Utility of Exact Master Equations G. W. Ford 1 , R. F. O’Connell 2,* School of Theoretical Physic s Dublin Institute for Advanced Studies 10 Burlington Road Dublin 4, Ireland Abstract The low temperature solution of the exact master equation for an oscillator coupled to a linear passive heat bath is known to give rise to serious divergences. We now show that, even in the high temperature regime, problems also exist, notably the fact that the density matrix is not necessarily positive. Key words: PACS: * Corresponding author Email address: [email protected] (R. F. O’Connell). 1 Permanent address: Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 2 Permanent address: Department of Physics and Astronomy, Louisiana State Uni- versity Preprint submitted to Elsevier Science 3 November 2004

2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

LimitationsontheUtilityofExactMaster

Equations

G.W.Ford1

,R.F.O’Connell2,∗

SchoolofTheoreticalPhysicsDublinInstituteforAdvancedStudies10Burlington

RoadDublin4,Ireland

Abstract

Thelowtemperaturesolutionoftheexactmasterequationforanoscillatorcoupled

toalinearpassiveheatbathisknowntogiverisetoseriousdivergences.Wenow

showthat,eveninthehightemperatureregime,problemsalsoexist,notablythe

factthatthedensitymatrixisnotnecessarilypositive.

Keywords:

PACS:

∗Correspondingauthor

Emailaddress:[email protected](R.F.O’Connell).1Permanentaddress:DepartmentofPhysics,UniversityofMichigan,AnnArbor,

MI48109-11202Permanentaddress:DepartmentofPhysicsandAstronomy,LouisianaStateUni-

versity

PreprintsubmittedtoElsevierScience3November2004

Page 2: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

1Introduction

Inapreviouspublication[1],wepresentedageneralsolutionoftheexact

masterequationforanoscillatorcoupledtoalinearpassiveheatbath.This

wasachievedbysolvingthegeneralizedquantumLangevinequationforthe

initialvalueproblem[2]whichenabledustoobtainexplicitexpressionsforthe

time-dependentcoefficientsoccuringintheexactmasterequation.Mext,we

illustratedthegeneralsolutionwiththeconstructionofexplicitexpressions

fortheprobabilitydistributionsfortwoexamples:wavepacketspreadingand

”Schrodingercat”stateforafreeparticle.Thisenabledustodiscoverthatthe

lowtemperaturesolutiongaverisetodivergences.Thepurposeofthepresent

paperistoshowthatproblemsalsoexistinthehightemperatureregime.

Thus,wearemotivatedtoextendourpreviousanalysistoobtainexplicit

expressionsfortheWignerfunctionandtheelementsofthedensitymatrix,

andwiththeaidoftheseresultstocriticallyexaminetheequationandits

solution.

Attheoutsetwemustpointoutthattheexactmasterequationhasdrawbacks

thatseriouslylimititsutility.Forthemostpartthesearerelatedtothe

factthattheinitialstateisnecessarilyoneinwhichtheparticleandheat

bathareuncoupled,whilethesubsequentmotionisdescribedbythefully

coupledsystem.Themostseriousoftheseisthattheequation(andtherefore

itssolution)hasanirreparabledivergence,irreparableinthesensethatit

persistsinacut-offmodelwithfinitebathrelaxationtime[1].Webelievethis

divergenceisrelatedtoawellknownphenomenonofquantumfieldtheory:

theHilbertspacespannedbytheeigenfunctionsofthecoupledHamiltonian

isorthogonaltothatoftheuncoupledHamiltonian[3].Itcanbeshownthat

2

Page 3: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

thisisthecaseforthesystemofcoupledoscillatorsthatisthemicroscopic

basisforthederivationoftheexactmasterequationanditssolution[4,5].

Theexceptionisthehightemperaturelimit,wherethedivergencedoesnot

appearsince,byconvention,onethereneglectsthezero-pointoscillationsof

thebath.Wethereforeconfineourdiscussiontothatlimit.However,evenin

thatcasetherearefurtherdifficulties.Thefirstoftheseisthattheinitialstate

breaksthetranslationalinvarianceofthesystem.Thisismanifestinaninitial

squeezecenteredattheoriginthat,forafreeparticle,resultsinadriftofthe

meanpositiontowardtheorigin.Forthisreasonintheexamplesweconsider

onlythecaseofafreeparticle,wherethisdifficultyismostapparent.

Aseconddifficultywiththeequationinthehightemperaturelimitisthat

forshorttimesthediagonalelementsofthedensitymatrix,whichhavethe

physicalinterpretationofprobabilities,arenotnecessarilypositive.Thisis

awellknowndifficultywiththeweakcouplingmasterequation,solvedbya

furthertimeaveragetobringittotheso-calledLindbladformthatguarantees

positivity[6].Itwassupposedthattheexactmasterequation,withitstime-

dependentcoefficients,wouldbeimmunebut,asweshallshowexplicitly,in

thehightemperaturelimitthisdifficultyremains.Thesituation,therefore,

isthatthereareconcernsthatseriouslylimittheutilityoftheexactmaster

equation.Theirreparabledivergencecanonlybeavoidedwiththeneglectof

zero-pointoscillationsinthehightemperaturelimit,andeventhereproblems

remainwiththefailureoftranslationalinvarianceandpositivity.

Despitetheseproblems,wearguethatthesolutionoftheexactmasterequa-

tioncanbeuseful.Inparticular,weshowthatwhentheinitialparticletemper-

atureistakentobeequaltothatofthebath,weobtainresultsthatforshort

3

Page 4: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

timesareidenticalwiththoseobtainedfromacalculationwhichconsidersen-

tanglementatalltimes[7].Finally,animportantresultisthedemonstration

thatmeasuresofdecoherencebasedontheWignerfunctionareidenticalwith

thosebasedontheoff-diagonalelementsofthedensitymatrix.Wearguethat

theWignerfunction,beingeverywherereal,isthepreferabledescription.

2Generalsolutioninhightemperaturelimit

Theexactmasterequation,intermsoftheWignerfunctionW(q,p,t)forthe

completesystemofoscillatorplusheatbath,maybeexpressedintheform

∂W

∂t=−

1

mp∂W

∂q+mΩ

2(t)q

∂W

∂p

+2Γ(t)∂pW

∂p+~mΓ(t)h(t)

∂2W

∂p2+~Γ(t)f(t)∂

2W

∂q∂p,(1)

andwenotethepresenceoffourtime-dependentcoefficientsforwhichwe

obtainedexplicitexpressions[1].

Thegeneralsolutionoftheexactmasterequationismostsimplyexpressed

intermsoftheWignercharacteristicfunction(theFouriertransformofthe

Wignerfunction).

W(Q,P;t)=∫dq∫dpe−i(qP+pQ)/~W(q,p;t).(2)

Expressedintermsofthisfunction,thegeneralsolutiongiveninEq.(4.15)

of[1]takesthesimpleform,

W(Q,P;t)=exp−〈X

2〉P

2+m

⟨XX+XX

⟩QP+m

2⟨X

2⟩Q

2

2~2×W(mGQ+GP,m

2GQ+mGP;0).(3)

4

Page 5: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

InthisexpressionX(t)isthefluctuatingpositionoperator,definedinEq.

(2.16)of[1],whileG(t)istheGreenfunction,definedingeneraltobe

G(t2−t1)=1

i~[x(t1),x(t2)]θ(t2−t1),(4)

inwhichx(t)isthetime-dependentHeisenbergcoordinateoperatorandθis

theHeavisidefunction.

Itwasshownin[1](Sec.V.A.2)thatthequadraticexpectations〈X2〉,⟨XX+XX

and⟨X

2⟩arelogarithmicallydivergent,whichhastheeffectthatthesolution

(3)vanishesidenticallyfornon-zeropositivetimes.There,too,itwasshown

thatthedivergenceisirreparable,inthesensethatitpersistsinamodelwith

ahighfrequencycut-off.AswasstatedintheIntroduction,itappearsthat

thisisareflectionofthewellestablishedfactthatthestatesoftheuncou-

pledsystem(theinitialstate)areorthogonaltothoseofthecoupledsystem

(statesforlatertimes)[4,5].Thisfact,surprisingfromthepointofviewof

thequantummechanicsoffinitesystems,isafeatureonlyofsystemswithan

infinitenumberofdegreesoffreedom.Inourcaseitistheheatbaththatmust

beinfinite.Inanyevent,theupshotisthat,whilethederivationoftheexact

masterequationisformallycorrect,thereisnousefulresult.Theexception

isthehightemperaturelimit,wherebyconventiononeneglectszero-point

oscillations.Wethereforerestrictourfurtherdiscussiontothislimit.Indeed,

itisthislimit(orbettersaid:approximation)thathasbeenconsideredinall

previousdiscussionsoftheexactmasterequation.

Inconsideringtheresultinthehightemperaturelimit,werestrictourdiscus-

siontotheOhmicmodelofcouplingtotheheatbath,whichisadequatefor

ourpurposes.ThismodelcorrespondstoNewtonianfriction,withretarding

5

Page 6: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

forceproportionaltothevelocity.Inadditionweconsideronlythecaseofa

freeparticle,movingintheabsenceofanyexternalpotential.Choosingthe

frictionconstanttobemγ,theGreenfunctionthentakesthesimpleform:

G(t)=1−e−γtmγ

.(5)

Inthehightemperaturelimitthemomentsappearinginthesolutioncanthen

bewrittenintheform:

⟨X

2⟩=2mγkT

t ∫

0

dt′G2(t′)

=kT

mγ2[2γt−(1−e−γt)(3−e−γt)],⟨XX+XX

⟩=2mγkTG

2(t)

=2kT

mγ(1−e−γt)2

,

⟨X

2⟩=2mγkT

t ∫

0

dt′G2(t′)

=kT

m(1−e−2γt

).(6)

WeshouldemphasizethatintheseexpressionsTisthetemperatureofthe

bath.Intheinitialstatethebathandtheparticleareuncoupled,sointhe

generalsolution(3)W(Q,P;0),theinitialWignercharacteristicfunction,may

bechosentohaveanyformconsistentwithasingleparticlenotcoupledto

abath.Intheexamplesweconsidertwopossibilities:theparticleinitiallyat

zerotemperatureandatatemperatureequaltothatofthebath.

6

Page 7: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

3Example:Gaussianwavepacket

3.1Initialparticletemperaturezero

WeconsiderfirstaninitialstatecorrespondingtoaGaussianwavepacket,

withwavefunctionoftheform

φ(x,0)=1

(2πσ2)1/4exp−(x−x0)

2

4σ2.(7)

Thisisastationarywavepacket,centeredatx0withmeansquarewidthσ2.It

isaminimumuncertaintywavepacket,sincethemeansquaremomentumhas

theminimumvalue~2/4σ

2.ThecorrespondingWignercharacteristicfunction

is

W(Q,P;0)=

∞∫

−∞dxe−iPx/~φ(x−

Q

2,0)φ∗(x+

Q

2,0)

=exp−Q

2

8σ2−σ

2P

2

2~2−ix0P

~.(8)

Thisinitialstateiswhatistermedapurestate.Theconditionforapurestate

isusuallystatedintermsofthedensitymatrix:Trρ2=1.Intermsofthe

Wignercharacteristicfunction,thisconditionbecomes

1

2π~

∞∫

−∞dQ

∞∫

−∞dP

∣∣∣W(Q,P)

∣∣∣2

=1.(9)

Itiseasytoshowthatastateisapurestateifandonlyifitcanbeassociated

toawavefunction.Suchapurestatenecessarilycorrespondstoaparticleat

zerotemperature;afinite-temperaturestateisamixedstate.

7

Page 8: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

Puttingtheexpression(8)fortheinitialWignercharacteristicfunctioninthe

generalsolution(3)weseethat

W(Q,P;t)=exp−A

(0)11P

2+2A

(0)12PQ+A

(0)22Q

2

2~2−ix0(m

2GQ+mGP)

~,(10)

wherewehaveintroduced

A(0)11=

⟨X

2⟩+σ

2m

2G

2+~

2G

2

4σ2

=kT

mγ2[2γt−(1−e−γt)(3−e−γt)]+σ2e−2γt

+~

2(1−e−γt)2

4m2γ2σ2,

A(0)12=m

⟨XX+XX

2+σ

2m

3GG+

~2mGG

4σ2

=kT

γ(1−e−γt)2

−mγσ2e−2γt

+~

2(e−γt−e−2γt

)

4mγσ2,

A(0)22=m

2⟨X

2⟩+σ

2m

4G

2+~

2m

2G

2

4σ2

=mkT(1−e−2γt)+m

2e−2γt

+~

2e−2γt

4σ2.(11)

Herewehaveusedthesuperscript“(0)”toindicatethattheparticleisinitially

atzerotemperaturebeforesuddenlybeingcoupledtothebathattemperature

T.

WenowformtheWignerfunctionwiththeinverseFouriertransform

W(q,p;t)=1

(2π~)2

∫dQ

∫dPe

i(qP+pQ)/~W(Q,P;t).(12)

Withtheexpression(10)forW(Q,P;t),theintegrationisastandardGaussian

integral[1],withtheresult

W(q,p;t)=W(0)

(q−mGx0,p−m2Gx0;t),(13)

8

Page 9: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

where

W(0)

(q,p;t)=1

2π√A

(0)11A

(0)22−A

(0)212

exp−A

(0)22q

2−2A

(0)12qp+A

(0)11p

2

2(A(0)11A

(0)22−A

(0)212)

(14)

istheWignerfunctioncorrespondingtoasingleminimumuncertaintywave

packetinitiallyattheorigin.

TheWignerdistribution(13)correspondstoaGaussiandistributioninphase

space,centeredatthepoint(〈x(t)〉,〈p(t)〉),where

〈x(t)〉=mGx0=x0e−γt,

〈p(t)〉=m2Gx0=−mγx0e−γt.(15)

ThewidthofthedistributionischaracterizedbythecoefficientsA(0)jk,which

havetheinterpretation

A(0)11=∆x

2≡⟨x

2(t)⟩−〈x(t)〉

2,

A(0)22=∆p

2≡⟨p

2(t)⟩−〈p(t)〉

2,

A(0)12=

1

2〈x(t)p(t)+p(t)x(t)〉−〈x(t)〉〈p(t)〉.(16)

Thebreakingoftranslationalinvarianceisevident,sincethecenterofthe

distributiondriftstotheorigin,whichisaspecialpoint.Wegetmoreinsight

intothisphenomenonbyformingthelimitastgoestozerothroughpositive

values,

W(q,p;0+

)=1

π~exp−

(q−x0)2

2σ2−2σ

2(p+mγq)

2

~2.(17)

Hereweseethattheparticlehasreceivedanimpulse−mγqproportionalto

thedisplacementanddirectedtowardtheorigin.Thisisexactlytheactionthat

producesasqueezedstate[8,9].Indeed,asonecanreadilyverify,theWigner

9

Page 10: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

function(17)correspondstoapurestatewithassociatedwavefunction

φ(x,0+

)=1

(2πσ2)1/4exp−(x−x0)

2

4σ2−imγ

2~x

2.(18)

Thus,thestateimmediatelyafterthecouplingtothebathisstillazero

temperaturepurestate.However,asaresultofthesqueezetowardtheorigin,it

isnolongeraminimumuncertaintystate.Itstillcorrespondstoawavepacket

centeredatx0withmeansquarewidthσ2,butthemeansquaremomentum

uncertaintyisnow∆p2

=~2/4σ

2+m

2,greaterthantheminimumvalue.

Theresultofthesqueezeisthatthedistribution(13)driftstowardtheorigin.

Lessobviousperhaps,thesamephenomenonappearsinashrinkingwidthof

theprobabilitydistributionatshorttimes.Atlongertimesthewidthexpands

duetothermalspreading

3.2Initialparticletemperatureequaltothatofthebath

Aswehavenoted,theminimumuncertaintywavepacket(7)consideredabove

correspondstoaparticleattemperaturezero.Aperhapsmorerealisticinitial

statewouldbethatforaparticleinitiallyattemperatureT,equaltothatof

thebath.In[1]weshowedthattheinitialstateattemperatureTisobtained

fromthatattemperaturezerobythereplacement

W(Q,P;0)→exp−mkTQ

2

2~2W(Q,P;0).(19)

Thisfinitetemperaturestateisamixedstate,nolongersatisfyingthecondi-

tion(9)forapurestate.Itcannotbeassociatedtoawavefunction.Making

thisreplacementwiththezerotemperatureform(8)andrepeatingthesteps

10

Page 11: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

leadingtotheresult(13),weobtain

W(q,p;t)=W(T)

(q−mGx0,p−m2Gx0;t),(20)

wherenowtheWignerfunctioncorrespondingtoasingleGaussianwave

packetinitiallyattheorigintakestheform

W(T)

(q,p;t)=1

2π√A

(T)11A

(T)22−A

(T)212

exp−A

(T)22q

2−2A

(T)12qp+A

(T)11p

2

2(A(T)11A

(T)22−A

(T)212)

,(21)

inwhich

A(T)11=A

(0)11+mkTG

2

=2kT

mγ2(γt−1+e−γt)+σ2e−2γt

+~

2(1−e−γt)2

4m2γ2σ2,

A(T)12=A

(0)12+m

2kTGG

=kT

γ(1−e−γt)−mγσ2

e−2γt+~

2e−γt(1−e−γt)

4mγσ2,

A(T)22=A

(0)22+m

3kTG

2

=mkT+m2γ

2e−2γt

+~

2e−2γt

4σ2.(22)

Notethatthemotionofthecenterofthedistributionisthesameasthat

giveninEq.(15)forthecaseofinitialparticletemperaturezero.Theonly

changeisanincreaseinthewidthoftheGaussiandistributionduetothermal

spreading,thewidthsbeinggivenbytheexpressions(16)withA(T)jkinplace

ofA(0)jk.Weagaingetmoreinsightintothisbyformingthelimitastgoesto

zerothroughpositivevalues,

W(q,p;0+

)=1

π~√

1+4σ2

λ2T

exp−(q−x0)

2

2σ2−(p+mγq)

2

2(~2

4σ2+mkT).(23)

HereweseethatthatthereisthesameinitialsqueezeasinEq.(17),butthe

squeezeactsonastatewithmeansquaremomentumuncertaintyincreased

11

Page 12: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

bythemeansquarethermalmomentum,mkT.Theresultisthatimmediately

afterthesqueezethemeansquaremomentumuncertaintyis∆p2

=~2/4σ

2+

mkT+m2γ

2.However,theinitial∆x

2=σ

2andisunaffected.bythesqueeze.

4Example:PairofGaussianwavepackets

4.1Initialparticletemperaturezero

Thewavefunctionforaninitial”Schrodingercat”stateconsistingoftwo

separatedminimumuncertaintyGaussianwavepacketshastheform

φ(x,0)=1

(8πσ2)1/4(1+e−d2/8σ2)1/2(exp−

(x−d2)

2

4σ2+exp−(x+

d2)

2

4σ2).(24)

TheinitialWignercharacteristicfunctionisthengivenby

W(Q,P;0)=1

1+e−d2/8σ2exp−Q

2

8σ2−σ

2P

2

2~2(cosPd

2~+e−d2/8σ2

coshQd

4σ2).(25)

Therefore,fromthegeneralsolution(3)wecanwrite,

W(Q,P;t)=1

1+e−d2/8σ2exp−A

(0)11P

2+2A

(0)12PQ+A

(0)22Q

2

2~2

×(cos(m

2GQ+mGP)d

2~+e−d2/8σ2

cosh(mGQ+GP)d

4σ2). (26)

HeretheA(0)ijareagaingivenby(11).

TheinverseFouriertransform(12)againinvolvesonlystandardGaussian

integrals.WethuseasilyseethattheWignerfunctionforawave-packetpair

is

12

Page 13: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

W(q,p;t)=1

2(1+e−d2/8σ2)W

(0)(q−

mGd

2,p−

m2Gd

2)

+W(0)

(q+mGd

2,p+

m2Gd

2)

+2e−A(0)(t)W

(0)(q,p)cosΦ

(0)(q,p:t),(27)

whereW(0)

istheWignerfunction(14)forasingleminimumuncertaintywave

packetattheoriginandwehaveintroduced

A(0)

(t)=(A

(0)11−~2G2

4σ2)(A(0)22−~2m2G2

4σ2)−(A(0)12−~2mGG

4σ2)2

A(0)11A

(0)22−A

(0)212

d2

8σ2

Φ(0)

(q,p;t)=(GA

(0)22−mGA

(0)12)q+(mGA

(0)11−GA

(0)12)p

A(0)11A

(0)22−A

(0)212

~d4σ2.(28)

Thefirsttwotermsinbracketsin(27)correspondtoapairofGaussianwave

packetsoftheform(13),centeredinitiallyatx0=±d/2andpropagating

independently.Wecancallthesethedirectterms.Thethirdtermisanin-

terferenceterm.Thedirecttermsareamaximumattheircenters,whichare

driftingtowardtheoriginbutfordÀσwillforshorttimesbewellawayfrom

theorigin.Theinterferencetermisamaximumattheoriginandinitiallyits

peakheightisexactlytwicethatofeitherofthedirectterms.(However,as

onecanreadilyverify,theareaundertheinterferencetermisindependentof

timeandafactore−d2/8σ2smallerthantheareaunderthedirectterms.)The

factore−A(0)(t),equaltotheratioofthepeakheightoftheinterferencetermto

twicethepeakheightoftheeitherofthedirectterms,istakenasameasure

oftheinterferenceinphasespace.InFig.1weshowA(0)

asafunctionofγt

andthereweseethatforγt¿1,A(0)

islinearint.Usingtheexpressions(11)

forthequantitiesA(0)11and(5)forGwecanreadilyshowthatforshorttimes

A(0)

(t)∼=d2

λ2th

γt,(29)

13

Page 14: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

whereλthisthemeandeBrogliewavelength,

λth=~ √mkT

.(30)

ForaseparationlargecomparedwiththethermaldeBrogliewavelength,this

correspondstoadecayofthepeakheightoftheinterferencetermonatime

scaleshortcomparedwithγ−1,

τd=λ

2th

d2γ−1.(31)

Thisisthefrequentlyappearing”decoherencetime”[7].

Itisofinteresttoformtheprobabilitydistribution,whichingeneralisgiven

by

P(x;t)=

∞∫

−∞dpW(q,p;t)

=1

2π~

∞∫

−∞dPe

ixP/~W(0,P;t).(32)

Usingtheexpression(26)fortheWignercharacteristicfunction,thiscanbe

written

P(x;t)=1

2(1+e−d2/8σ2)[P

(0)(x−mG

d

2)+P

(0)(x+mG

d

2)

+2a(t)exp−m

2G

2d

2

8A(0)11

P(0)

(x)cos~Gdx

4σ2A(0)11

),(33)

where

P(0)

(x)=1

√2πA

(0)11

exp−x

2

2A(0)11

(34)

istheprobabilitydistributionforasingleminimumuncertaintywavepacket

initiallycenteredatheoriginandwehaveintroducedtheattenuationcoeffi-

14

Page 15: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

cient,

a(t)=exp−〈X2〉d

2

8σ2A(0)11

.(35)

Theattenuationcoefficientisameasureoftheinterferenceasitwouldbe

observedintheprobabilitydistribution.Weshouldemphasizethattheproba-

bilitydistributioncanbedirectlymeasured.Thisistobecontrastedwiththe

Wignerdistributioninphasespace,whichisnotdirectlyobservable.

Theintegratedprobabilityintheinterferencetermisequaltoe−d2/8σ2,inde-

pendentoftime.FordÀσthisisnegligiblysmall.Butitistheamplitude

oftheinterferencefringesthatisobservedandmeasuredbytheattenuation

coefficient(35).

Forshorttimes,γt¿1,usingtheexpressions(6)for〈X2〉and(11)forA

(0)11,

weseethattheattenuationcoefficienttakestheform

a(t)∼=exp−t3

3τd[t2+(2mσ2/~)2].(36)

Thisinitiallyfallsveryslowlyfromunity,butafteratime2mσ2/~(thetime

forthemeansquarewidth∆x2

todouble)willdecaywithacharacteristictime

3τd,whereτdisthecharacteristictime(31)forthedecayoftheinterference

termintheWignerfunction.

Withnocouplingtothebaththeinterferencepatternintheprobabilitydis-

tributionwouldnotappearuntilthedirecttermsbegintooverlapduetowave

packetspreading.Takingγ→0intheexpression(11)forthemeansquare

width,weseethatthiswouldbeatimeofordertmix=2mσd/~¿τd.What

thismeansisthatneithertherapiddisappearanceoftheinterferenceterm

15

Page 16: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

intheWignerdistribution,northecorrespondingrapiddecayoftheattenu-

ationcoefficient,cancouldbedirectlyobserved.Allthatcanbeseenisthe

non-appearanceoftheinterferencetermintheprobabilitydistribution.

4.2Initialparticletemperatureequaltothatofthebath

ThecorrespondingresultsfortheparticleinitiallyatthetemperatureTof

thebathareobtainedusingtheprescription(19).Theresultis

W(q,p;t)=1

2(1+e−d2/8σ2)

W

(T)(q−

mGd

2,p−

m2Gd

2)

+W(T)

(q+mGd

2,p+

m2Gd

2)

+2e−A(T)(t)W

(T)(q,p)cosΦ

(T)(q,p:t)

,(37)

where

A(T)

(t)=(A

(T)11−~2G2

4σ2)(A(T)22−~2m2G2

4σ2)−(A(T)12−~2mGG

4σ2)2

A(T)11A

(T)22−A

(T)212

d2

8σ2

Φ(T)

(q,p;t)=(GA

(T)22−mGA

(T)12)q+(mGA

(T)11−GA

(T)12)p

A(T)11A

(T)22−A

(T)212

~d4σ2.(38)

ThisexpressionfortheWignerfunctionhasthesameformasthatfoundabove

forthecasewheretheinitialparticletemperatureiszero.Theonlydifference

isthatA(0)jk→A

(T)jk.Theareaundertheinterferencetermisstillindependent

oftimeandsmallerthantheareaunderthedirecttermsbythesamefactor

e−d2/8σ2.Themaindifferenceisthatthepeakheightoftheinterferenceterm

ismuchreduced.Theratioofthepeakheightoftheinterferencetermtotwice

thatofthedirecttermsisgivenbythefactore−A(T)(t)but,asweseeinFig.

16

Page 17: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

1,A(T)

nolongervanishesatt=0.Instead,wenowfindforγt¿1,

A(T)

(t)∼=d2

2λ2th+8σ2.(39)

ForseparationlargecomparedwithboththethermaldeBrogliewavelength

andtheslitwidth,thiswillbealargenumberandthepeakheightofthe

interferencetermwillbecorrespondinglysmall.Thus,weseethatthereis

notimescaleforthedisappearanceoftheinterferenceterm,itisalready

negligiblysmallatt=0.Wemightsaythatthisisjustthepoint.What

hasoccurredisthatanincoherentsuperpositionofpurestateshaswiped

outtheinterferenceterm.Inthepresentcasethisistheresultoftheinitial

preparationofthestate.Inthepreviouscaseofaninitialpurestate,this

occursasaresultofthe”warmingup”oftheparticleinatimeτd.Ineither

casetheinterferencetermisgonelongbeforeitseffectcouldbeobservedin

theprobabilitydistribution.

Theprobabilitydistributionisofthesameform(33),butwithA(T)11(t)replac-

ingA(0)11(t).Theattenuationcoefficientisnowgivenby

a(t)=exp−(〈X

2〉+mkTG

2)d

2

8σ2A(T)11

(40)

Forγt¿1thisbecomes

a(t)∼=exp−kTd

2

8mσ4t2(41)

Theseresultsforshorttimesareidenticalwiththoseobtainedfromanexact

calculationassumingentanglementoftheparticlewiththebathatalltimes

[7]).Sincethecouplingtothebath,asmeasuredbythedecayrateγ,does

notappeartheycanalsobeobtainedfromacalculationwithoutdissipation

17

Page 18: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

usingonlythefamiliarformulasofelementaryquantummechanics[10].Thus

weseethat,whiletheexactmasterequationgivesherecorrectresults,itdoes

soonlyfortimessoshortthatcouplingtothebathcanbeneglected.

5Densitymatrix

ThedensitymatrixisaHermitianoperator,ρ,definedsuchthatforanywave

functionψcorrespondingtoastateoftheparticleintheHilbertspace〈ψ,ρψ〉

istheprobabilitythatthesystemisinthestate.Fromthenotionofprobability,

weseeimmediatelythethedensitymatrixmustbeapositivedefiniteoperator.

Considertheeigenfunctionsφaandthecorrespondingeigenvaluespaofthe

densitymatrix,

ρφa=paφa.(42)

Clearly,theeigenvaluepaistheprobabilitythatthesystemisinstateφaand

isthereforenecessarilypositive.Weassumethedensitymatrixisnormalized,

sothat

a

pa=1.(43)

Thisisasumofpositivetermsequaltounity.Itfollowsimmediatelythat

Trρ2=

a

p2a≤1.(44)

Moreover,theequalityholdsifandonlyifthereisexactlyoneeigenstate

withprobabilityone,allothershavingprobabilityzero.Thisisexactlythe

condition(9)forapurestate.

18

Page 19: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

Incoordinatespacetheelementsofthedensitymatrixaregivenintermsof

theWignercharacteristicfunctionbytheformula:

〈x|ρ|x′〉=∞∫

−∞dpe

i(x−x′)p/~W(

x+x′

2,p)

1

2π~

∞∫

−∞dPe

i(x+x′)P/2~W(x′−x,P).(45)

Thenormalizationcondition(43)becomes

Trρ=

∞∫

−∞dx〈x|ρ|x〉=W(0,0)=1.(46)

Thatis,theWignercharacteristicfunctioncorrespondingtoanormalized

densitymatrixmusthavethevalueunityattheorigin.

Nextconsider

Trρ2=

∞∫

−∞dx

∞∫

−∞dx′〈x|ρ|x′〉〈x′|ρ|x〉

=1

2π~

∞∫

−∞dQ

∞∫

−∞dP

∣∣∣W(Q,P)

∣∣∣2,(47)

wherewehaveusedthatfactthatW(−Q,−P)=W(Q,P)∗.Thus,thecon-

dition(44)takestheform

1

2π~

∞∫

−∞dQ

∞∫

−∞dP

∣∣∣W(Q,P)

∣∣∣2≤1,(48)

withtheequalityholdingifandonlyifthedensitymatrixisthatofapure

state.Thisisthecondition(9)forapurestate.

19

Page 20: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

5.1Gaussianwavepacket

Considernowthecaseofaninitialstatecorrespondingtoasingleminimum

uncertaintywavepacket,forwhichtheWignercharacteristicfunctionattime

tisgiveninEq.(10).Theevaluationoftheformula(45)forthematrixelement

ofthedensityoperatorinvolvesasingleGaussianintegral.Theresultcanbe

written

〈x|ρ(t)|x′〉=expim

2G

~x0(x−x′)R(x−mGx0,x′−mGx0;t),(49)

wherewehaveintroduced

R(x,x′;t)=1

√2πA

(0)11

exp−4~2(A

(0)11A

(0)22−A

(0)212)(x−x′)2

+(x+x′)2

8A(0)11

+i~A

(0)12(x

2−x′2)

2~2A(0)11

,(50)

whichisthematrixelementcorrespondingtoasinglewavepacketinitially

centeredattheorigin.Usingtheexpressions(5)fortheGreenfunctionand

(11)forA(0)jk(t),weseethatviewedinthexx′planetheabsolutevalueofthe

densitymatrix,|〈x|ρ(t)|x′〉|,consistsofasingleGaussianpeak.Thispeakis

initiallycenteredatx=x′=x0andcircularlysymmetricwithwidthσ.In

thecourseoftimethecenterofthepeakdriftstotheoriginwhilestretching

inthedirectionx=x′.

Forshorttimes,thedensitymatrixisnotnecessarilypositive.Thesimplest

waytoseethisistoformTrρ2,usingtheaboveexpressionforthedensity

matrixelementorevaluatingdirectlytheexpression(47).Ineithercasewe

find

Trρ2=

~

2√A

(0)11A

(0)22−A

(0)212

.(51)

20

Page 21: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

InFig.2weshowaplotoverashortinitialtimeintervalofthisresult,

evaluatedusingtheexpressions(11)fortheA(0)jkwithparametersλth=4σ,

kT=5~γ.Thereweseeclearlythatthecondition(44)isviolatedforshort

times.Itfollowsthatforsuchtimestheremustbenegativeeigenvalues;the

densitymatrixisnotpositive-definite.Wegainsomeinsightintothisphe-

nomenonifweusetheexpressions(11)toexpand

Trρ2∼=1+(1−4

σ2

λ2th

)γt+···.(52)

FromthisweseethatTrρ2willincreaseaboveunitywheneverλth>2σ.

Thefailureofpositivityoccursforasharplypeakedwavepacket.

Toseeexplicitlythisfailureofpositivity,itwillbesufficienttotakex0=0.We

thenformtheexpectationofthedensitymatrixwithawavefunctionψ(x)∝

dφ(x,0+

)/dx,whereφ(x,0+

)isthestateimmediatelyafterthecouplingto

thebath(giveninEq.(18)withx0=0).Explicitly,

ψ(x)=x

σ(2πσ2)1/4exp−(1

4σ2+imγ

2~)x

2.(53)

Withthis,

〈ψ,ρ(t)ψ〉=∞∫

−∞dx

∞∫

−∞dx′ψ∗(x)〈x|ρ(t)|x′〉ψ(x′)

=−2[1−4~2(A

(0)11A

(0)22−A

(0)212)]

[(1+A11

σ2)(1+4σ2(A

(0)11A

(0)22−A

(0)212)

A11)+4σ2(A

(0)12+mγA

(0)11)2

~2A11]3/2.(54)

Thisexpectationwillbenegativewhenever4(A(0)11A

(0)22−A

(0)212)/~

2<1,thatis

exactlyforthosetimeswhenTrρ2givenby(51)isgreaterthanone.

Wehaveseenthatgeneralsolutionoftheexactmasterequationresultsina

densitymatrixthatcanhavenegativeeigenvalues.Howcanitbethatanexact

21

Page 22: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

resultcanleadtosuchanunphysicalconsequence?Theanswer,ofcourse,is

thatwebeenabletogiveanon-trivialmeaningtothesolutiononlyinthe

hightemperaturelimit,whichinvolvesaseriousapproximation(neglectof

zero-pointoscillations).Itisthisapproximateresultthatfailsthepositivity

test.

5.2Wavepacketpair

ForthewavepacketpairtheWignercharacteristicfunctionattimetisgiven

by(26).Withthistheformula(45)forthematrixelementofthedensity

operatorbecomesastandardGaussianintegral.Theresultis

〈x|ρ(t)|x′〉=1

2(1+e−d2/8σ2)

×[expiLd

2(x−x′)R(x−mG

d

2,x′−mGd

2)

exp−iLd

2(x−x′)R(x+

mGd

2,x′+mGd

2)

+e−A(0)

expiMd

2(x+x′)R(x−K

d

2,x′+K

d

2)

+e−A(0)

exp−iMd

2(x+x′)R(x+K

d

2,x′−Kd

2)],(55)

whereR(x,x′;t)isisthematrixelement(50)correspondingtoasinglewave

packetinitiallycenteredattheoriginandtoshortentheexpressionswehave

introduced

K=~

2(mGA

(0)11−GA

(0)12)

4σ2(A(0)11A

(0)22−A

(0)212)

,L=m

2G

~.,M=

~(mGA(0)12−GA

(0)22)

4σ2(A(0)11A

(0)22−A

(0)212)

.(56)

Viewedinthexx′plane,thedensitymatrixelement(55)willshowsfourpeaks

exactlyoftheform(49)ofsinglewavepackets;twodiagonalpeakscentered

atx=x′=±mGd/2andtwooff-diagonalpeakscenteredatx=−x′=

22

Page 23: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

±Kd/2.Theoff-diagonalpeaksaremultipliedbythesamefactore−A(0)(t)

thatmultipliestheinterferencetermintheWignerfunction(37).Theresult

isthatundertheconditiondÀλth,whilethepeaksslowlybroadenanddrift

towardtheorigin,theoffdiagonalpeaksrapidlyshrinkinamplitude.Thus,the

twodescriptionsofthedisappearanceoftheinterferenceterm,thatinterms

oftheWignerfunctionandthatintermsofthedensitymatrixelement,are

entirelyequivalent.Inthisconnectionnotethatthediagonaldensitymatrix

elementistheprobabilitydistribution(33).Thedescriptionintermsofthe

Wignerfunctionhastheadvantageofbeingreal,sosomewhatsimpler.Neither

theWignerdistributioninphasespacenorthedensitymatrixelementinxx′

spaceisdirectlyobservable,soeitherdescriptionistheoretical.

6Conclusion

Wehaveexhibitedanumberofsignificantfailuresoftheexactmasterequa-

tion:Duetotheirreparabledivergencethesolutionstrictlydoesnotexist

exceptinthehightemperaturelimit.Eveninthatapproximationthesolution

breakstranslationalinvariance.Finally,thesolutioncorrespondstoaden-

sitymatrixthatcanhavenegativeexpectedvalues.Butwemustremember

thatthederivationoftheequationaswellasitssolutionareformallycorrect.

Rather,thefailurescanallbetracedbacktotheassumptionofanunen-

tangeledinitialstate.Thepictureofaparticlesuddenlyclampedtoabath

correspondstonophysicallyrealizableoperation.Evenwhentheinitialpar-

ticletemperatureisadjustedtothatofthebathitreceivesaviolentsqueeze

towardtheorigin.Fromthisfollowsthe”unphysical”consequences:correctly

describedbytheexactmasterequation.Unfortunately,thefinalassessment

23

Page 24: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

isthattheexactmasterequationisofverylimitedutility.

Infact,inanexactdescriptiontheparticlemustbecoupledtothebath(en-

tangled)atalltimes.Thinkoftheexampleoftheblackbodyradiationfield,

whichiscoupledtotheparticlethroughitschargethatcaninnowaybe

switchedonoroff.Inphysicalapplicationsthecouplingtotheradiationfield

issufficientlyweakthatadescriptionintermsofthefamiliarweakcoupling

masterequation(ofLindbladform)isappropriate,buttheeffectsofrenor-

malizationandzero-pointoscillationsareneverthelesspresentatalltimes.

24

Page 25: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

References

[1]G.W.FordandR.F.O’Connell,Phys.Rev.D64105020(2001).

[2]G.W.FordandM.Kac,J.Stat.Phys.45,803(1987).

[3]L.vanHove,Physica18,145(1952).

[4]H.ArakiandS.Yamagami,Publ.Res.Inst.Math.Sci.18,283(1982).

[5]G.V.EfimovandW.vonWaldenfels,AnnalsofPhysics233,182(1994).

[6]G.Lindblad,Commun.Math.Phys.48,119(1976).

[7]G.W.FordJ.T.LewisandR.F.O’Connell,Phys.Rev.A64,032101(2001).

[8]G.A.Garrrett,A.G.Rojo,A.K.Sood,J.F.WhittakerandR.Merlin,Science

275,1638(1997).

[9]G.W.FordandR.F.O’Connell,AmericanJournalofPhysics70,319(2002).

[10]M.Murakami,G.W.FordandR.F.O’Connell,LaserPhysics13,180(2003).

25

Page 26: 2004 er b em v No 3 Science Elsevier to submitted t Preprin · useful. In particular, w e sho w that when the initial particle temp er-ature is tak en to b e equal to that of the

Fig.1.ThefunctionsA(0)(t)andA(T)(t)multipliedbyλ2th/d2plottedvs.γt.The

parameterschosenareλth=4σandkT=5~γ.

Fig.2.Trρ2foraninitialminimumuncertaintywavepacket.Theparameters

chosenareλth=4σ,kT=5~γ,thesameasforFig.1.Notethatatshorttimes

Trρ2>1.

26