2001 Respiratory Review

Embed Size (px)

Citation preview

  • 8/13/2019 2001 Respiratory Review

    1/46

    Review of Respiratory

    Physiology

  • 8/13/2019 2001 Respiratory Review

    2/46

    Steady State

    Lung O2Uptake rate

    = Cell O2Utilization rate

    Cell CO2Production rate

    = Lung CO2Release rate

  • 8/13/2019 2001 Respiratory Review

    3/46

    Gaseous Environment.

    Atmosphere: Nitrogen and Oxygen,

    negligible Carbon Dioxide.

    Clinical Relevance of Environment Altitude: PO2depends on PB

    Suffocation: PO2depends on fractional O2

    Oxygen therapy: PO2depends on fractional O2

    P F PI I BO O2 247 ( )

  • 8/13/2019 2001 Respiratory Review

    4/46

    Diffusion and Diffusion

    Abnormality

  • 8/13/2019 2001 Respiratory Review

    5/46

    Ficks Law for Diffusion for Gases

    O2

    CO2

    T

    P1

    P2

    A

    ( )V A D

    TP P

    gas

    1 2

  • 8/13/2019 2001 Respiratory Review

    6/46

    Single Breath DLCO

    Single inspiration of a dilute CO

    mixture

    10 second breath-hold

    Measure CO uptake using infrared

    detector to compare inspiratory and

    expiratory concentrations

    Normal Value: 25 ml/min/mmHg

  • 8/13/2019 2001 Respiratory Review

    7/46

    Clinical Interpretation of DLCO.

    Decreases with loss of surface area.

    Decreases with increasing membrane

    thickness

    Decreases with ventilation/perfusionmismatching

    Summary: DLCO better index of overalllung function than diffusion capabilitiesper se.

  • 8/13/2019 2001 Respiratory Review

    8/46

    Two Factors Affect Gas Transfer

    Rate

    Diffusion rate of a gas Perfusion Rate (Pulmonary blood

    flow)

    Gases must be carried away to maintainlocal diffusion gradients in the lung.

  • 8/13/2019 2001 Respiratory Review

    9/46

    O2Diffusion duringNormoxia

  • 8/13/2019 2001 Respiratory Review

    10/46

    Lung Mechanics in Obstructive

    and Restrictive Disease

  • 8/13/2019 2001 Respiratory Review

    11/46

    Measuring vital capacity and its

    subcomponents. Use a spirometer.

    TLC

    RV

    VC

    TV

    FRC

    ICIRV

    ERV

    RV

    Can Use

    Spiromenter

    Cant Use a Spirometer

  • 8/13/2019 2001 Respiratory Review

    12/46

    Measuring Residual Volume

    Cant use a Spirometer

    Use instead:

    Nitrogen Washout

    Helium Dilution Method

    Plethysmograph

  • 8/13/2019 2001 Respiratory Review

    13/46

    Obstructive Disease

    Difficult to get air out of the lungs

    Obstruct expiration

    Examples:

    emphysema

    chronic bronchitis

    asthma.

  • 8/13/2019 2001 Respiratory Review

    14/46

    Restrictive Disease

    Difficult to get air in to the lungs

    Restrict inspiration

    Examples:

    intersitial fibrosis

    sarcoidosis

    muscular diseases

    chestwall deformities.

  • 8/13/2019 2001 Respiratory Review

    15/46

    Lung Capacity and Disease

    Summary

    Obstructive Disease:

    Decreased VC

    IncreasedTLC, RV, FRC.

    Restrictive Disease:

    Decreased VC

    DecreasedTLC, RV, FRC.

  • 8/13/2019 2001 Respiratory Review

    16/46

    Fig 5: Lung Capacity and

    Disease

    Normal

    RV

    ERV

    TV

    IRV

    FRC

    VC

    Restrictive

    RV

    ERV

    TV

    IRV

    FRC

    VC

    Obstructive

    RV

    ERV

    TV

    IRV

    FRC

    VC

    125

    100

    75

    50

    25

    0

    %NormalTLC

  • 8/13/2019 2001 Respiratory Review

    17/46

    Forced Vital Capacity

    FEV1.0 / FVC Ratio

  • 8/13/2019 2001 Respiratory Review

    18/46

    Small Airways Disease

    FEF25-75

  • 8/13/2019 2001 Respiratory Review

    19/46

    Flow -Volume Curves

    Peak Flow

  • 8/13/2019 2001 Respiratory Review

    20/46

    Pulmonary Function Summary

    Obstructive

    Disease

    Restrictive

    Disease

    FEV1.0

    Decreased Decreased

    FVC Decreased Decreased

    FEV1.0/FVC Decreased Unchanged or

    IncreasedPeak Flow Decreased Decreased or

    Unchanged

    RV/TLC Increased Unchanged

  • 8/13/2019 2001 Respiratory Review

    21/46

    CLINICAL USE OF IDEAL

    ALVEOLAR GAS VALUES

  • 8/13/2019 2001 Respiratory Review

    22/46

    Ideal Alveolar Gas Equation.

    P PP

    RP F R

    RA IA

    A IO OCO

    CO O2 2

    2

    2 21

    Clinically Useful Form:

    Complete Form:

    P PP

    RA I

    A

    O O

    CO

    2 2

    2

  • 8/13/2019 2001 Respiratory Review

    23/46

    USE #1

    Compare PAO

    2to P

    aO

    2

    Healthy people: PAO2= PaO2

    Two Approaches to Comparison

    (PAO2 - PaO2) difference

    PaO2/ PAO2 ratio

  • 8/13/2019 2001 Respiratory Review

    24/46

    A-a Difference

    PAO2- PaO2

    Normally 5-20 mmHg

    Because of normal anatomical shunt

    Ventilation/Perfusion mismatching.

    A-a difference increases with

    pulmonary disease. Problem: Normal range changes on

    100% O2.

  • 8/13/2019 2001 Respiratory Review

    25/46

    a/A ratio

    Normally averages just over 0.8 (Am.Rev. Resp. Dis. 109: 142-145, 1974).

    a/A ratio falls with pulmonarydisease.

    Lower limit normal:

    young (room air) : 0.74 older(room air) : 0.78

    Both groups (100% O2): 0.82

  • 8/13/2019 2001 Respiratory Review

    26/46

    (A-a) Difference vs. a/A Ratio

    Normal

    Normal

    (A-a)PO2Difference(mmHg)

    a/A

    PO2

    ratio

    Sick

    Sick

  • 8/13/2019 2001 Respiratory Review

    27/46

    Use #2

    PAO

    2Estimates P

    cO

    2

    Useful for calculation of VenousAdmixture or Shunt

  • 8/13/2019 2001 Respiratory Review

    28/46

    Venous Admixture

    '

    '

    Q

    Q

    C C

    C C

    S

    T

    c a

    c v

    O O

    O O

    2 2

    2 2

    QT CaO2

    (QT - Qs ) CcO2

    Qs CvO2

    PAO2

  • 8/13/2019 2001 Respiratory Review

    29/46

    Diagnosis of True Shunt

    Breathing 100% oxygen -

    will notabolish hypoxemia due toshunt

    REASON: shunted blood never

    exposed to the high alveolar PO2.

  • 8/13/2019 2001 Respiratory Review

    30/46

    Blood Gases

  • 8/13/2019 2001 Respiratory Review

    31/46

    Oxygen Blood Gas Quantities

    Partial Pressure

    Saturation

    Content

    Carrying Capacity: O2content at

    100% saturation.

  • 8/13/2019 2001 Respiratory Review

    32/46

    Significance of Sigmoid Curve

    4 Point Curve

    Critical PO2

    V

  • 8/13/2019 2001 Respiratory Review

    33/46

    Defining Content and Capacity

    C Hb SOO

    2

    2136100%

    . [ ] %

  • 8/13/2019 2001 Respiratory Review

    34/46

    Blood

    Hemoglobin --> Allows Blood to hold

    more oxygen. P50: Reciprical to Hb-O2Affinity

    (H+, CO2, Temp, & 2,3-DPG)

    Capacity: Anemia, Polycythemia

    Hematocrit

    Hemoglobin

    Hemoglobin variants exist (e.g. Hbf)

  • 8/13/2019 2001 Respiratory Review

    35/46

    Four (+one) Things Change

    Oxyhemoglobin Affinity Hydrogen Ion Concentration, [H+]

    Carbon Dioxide Partial Pressure, PCO2

    Temperature [2,3-DPG]

    Special Case: Carbon Monoxide

  • 8/13/2019 2001 Respiratory Review

    36/46

    Three Things That Change O2

    Carrying Capacity

    Changes in Hb Concentration

    Presence of Carbon Monoxide

    Formation of Methemoglobin

  • 8/13/2019 2001 Respiratory Review

    37/46

    Minute Ventilation

    Flow (vol/time) moved into or out of

    the lungs.

    Measured by collecting expiredvolume for a fixed time.

    Normal value is 7.5 L/min (BTPS).

    V V fE T

  • 8/13/2019 2001 Respiratory Review

    38/46

    Partitioning Minute Ventilation.

    Alveolar Ventilation: the volume per

    min entering gas exchange surfaces.

    Dead space Ventilation: the volumeper min that is wasted

    ( )V V V V V f V f V f A E d T d T d

  • 8/13/2019 2001 Respiratory Review

    39/46

    Alveolar Ventilation Equation.

    (Rearranged)

    PV (STPD)

    863 mmHgACO

    CO2

    2

    ( )V BTPSA

  • 8/13/2019 2001 Respiratory Review

    40/46

    Defining Adequate Ventilation

    Normal--> PaCO2= 40 mmHg

    Hypoventilation --> High PaCO2

    Hyperventilation --> Low PaCO2

  • 8/13/2019 2001 Respiratory Review

    41/46

    Respiratory Acid-Base

    Henderson-Hasselbach Equation:

    Changes in PCO2cause changes in [H+] bymass action. Increased PCO2 resp. acidosis

    Decreased PCO2 resp. alkalosis.

    CO H O H CO H H CO 2 2 2 3 3 Carbonic Anhydrase

    pHH CO

    PCO

    6 1

    0 03

    3

    2

    . log[ ]

    ( . )

  • 8/13/2019 2001 Respiratory Review

    42/46

  • 8/13/2019 2001 Respiratory Review

    43/46

    Hypoxemia Analysis

    Step 1

    Is PACO2> 40 mmHg

    ANDa/A > 0.74 or (A-a) < 20 mmHg

    PureHypoventilation

    yes

    Choose between:

    ShuntDiffusion AbnormalityV/Q Mismatching

    No

    Continue

  • 8/13/2019 2001 Respiratory Review

    44/46

    Hypoxemia Analysis

    Step 2

    CanHypoxemia be eliminated

    by 100% O2

    TrueShunt

    No

    Choose between:

    Diffusion AbnormalityV/Q Mismatching

    Yes

    Continue

  • 8/13/2019 2001 Respiratory Review

    45/46

    Hypoxemia Analysis

    Step 3

    Is the DLCO

    Normal?

    Diffusion Normalmust be

    V/Q Mismatching

    yes

    No

    Cant choose between:Diffusion AbnormalityV/Q Mismatching

    or Combination

  • 8/13/2019 2001 Respiratory Review

    46/46

    Questions?