30
20. Fresnel equations EM Waves at an Interface Fresnel Equations: Reflection and Transmission Coefficients Brewster’s Angle Total Internal Reflection Evanescent Waves The Complex Refractive Index Reflection from Metals

20. Fresnel equations 20. Fresnel equations - Hanyangoptics.hanyang.ac.kr/~shsong/20-Fresnel equations.pdf · 20. Fresnel equations 20. Fresnel equations • EM Waves at an Interface

  • Upload
    others

  • View
    30

  • Download
    1

Embed Size (px)

Citation preview

  • 20. Fresnel equations 20. Fresnel equations

    • EM Waves at an Interface

    • Fresnel Equations: Reflection and Transmission Coefficients

    • Brewster’s Angle

    • Total Internal Reflection• Evanescent Waves

    • The Complex Refractive Index• Reflection from Metals

  • 2 2

    2 2

    2 2 2

    2 2 2

    cos sin:cos sin

    cos sin:c

    :

    os sin

    r

    r

    E nTE rE n

    E

    r reflection coefficient

    n nTM rE n n

    θ θ

    θ θ

    θ θ

    θ θ

    − −= =

    + −

    − −= =

    + −

    2 2

    2 2 2

    2cos:cos sin

    2 cos:cos sin

    :

    t

    t

    t transE

    TE tE nE nTM tE

    mission coeffi e

    n

    ci nt

    n

    θ

    θ θθ

    θ θ

    = =+ −

    = =+ −

    n2

    θE

    Et

    Erθr

    θt

    n1

    We will derive the Fresnel equations We will derive the Fresnel equations

    1

    2

    nnn ≡

  • EM Waves at an InterfaceEM Waves at an Interface

    r

    TE mode

  • EM Waves at an InterfaceEM Waves at an Interface

    ( )( )( )

    exp

    exp

    :

    :

    :

    ( ), ,

    exp

    i oi i i

    r or r r

    t ot t t

    E E i k r t

    E E i k r t

    E E

    Incident beam

    Reflected beam

    Transmitted beam

    At the boundary between the two media the x y plane

    i k r t

    all waves must exist simultaneouslya

    ω

    ω

    ω

    ⎡ ⎤= ⋅ −⎣ ⎦⎡ ⎤= ⋅ −⎣ ⎦⎡ ⎤− ⎦

    = ⋅⎣

    rr r r

    rr r r

    rr r r

    ( ) ( ) ( )

    ,

    exp exp exp

    oi i i or r r ot t t

    i r t

    nd .Therefore, for all t and for all r on the inter

    the tangential component must be equal on both sides of the interface

    n E n E n E

    face

    n E i k r t n E i k r t n E i k r tω ω ω⎡ ⎤ ⎡ ⎤ ⎡× ⋅ − + × ⋅ − = × ⋅ −⎣ ⎦ ⎣

    ×

    × + = ×

    r

    r r rr r rr r r) )

    )

    )

    r r r) )

    ( ) ( ) ( ) : Phase matching at the boundary!

    ,:

    i i r r t t

    the only way that this can be true over the entire interfAssuming that the wave amplitudes are cons

    k r

    ace and for al

    t k r t k r

    tl t is i

    t

    antf

    ω ω ω⇒ ⋅ − = ⋅ − = ⋅ −

    ⎤⎣ ⎦

    r r rr r r

  • EM Waves at an InterfaceEM Waves at an Interface

    ( ) ( ) ( )

    (Frequency does not change at the boundar

    0,

    y!)

    (Phases on the boundary does not chan

    0

    )

    ,

    ge!

    i r t

    i t

    t

    r

    i r

    i i r r t t

    At r this results int t t

    At t this results in

    k r k r k

    S

    r

    k r t k r t k r t

    ω ω ωω ω ω

    ω ω ω

    == =

    =

    = =

    ⋅ ⋅ = ⋅⇒ =

    ⋅ − = ⋅ − = ⋅ −

    r r rr

    r

    r r

    r r rr r r

    ( ) ( ) ( )

    ,

    0

    .

    ,

    i r i t t r

    i i

    i r t

    ubtracting any pair of these factors results in

    k k r k k r k k r

    This equation k r constant is the equation for a plane perpendicular to k rConsequently the above relation implies t

    k k a

    a

    nd k

    h t

    ar

    − ⋅ = − ⋅ = − ⋅ =

    ⋅ = ⋅

    r r

    r r r r r rr r

    r

    r

    r

    rr r

    . e coplanar in the plane of incidence

  • EM Waves at an InterfaceEM Waves at an Interface

    co

    0,

    ,

    sin si

    ns

    n

    ,

    sin

    ta

    s

    n

    n

    t

    i

    i r i i r r

    i

    ii r

    t

    r i ri

    r

    At t

    Considering the relation for the incident and reflected beams

    k r k r k r k r

    Since the incident and reflected beams are in t

    k r k r

    he same mediumnk k

    k r

    c

    θ θ

    ω θ θ θ θ

    =

    ⋅ = ⋅ ⇒ =

    = = ⇒ = ⇒

    ⋅ = ⋅ =

    =

    ⋅ =

    r rr r

    r r rr r r

    : law of reflection

    sin sin : law of

    ,

    sin s n

    re

    i

    ,

    i t i i t t

    i ti ii tt t

    Considering the relation for the incident and transmitted beams

    k r k r k r k r

    But the incident and transmitted

    n

    beams are in different median nk nk

    c c

    θ

    θ

    θ

    ω ω θ =

    ⋅ = ⋅ ⇒ =

    = = ⇒

    r rr r

    fraction

  • Development of the Fresnel EquationsDevelopment of the Fresnel Equations

    cos co

    ' ,

    s co

    :

    si r t

    i i r r t t

    E E EB B B

    From Maxwell s EM field theorywe have the boundary conditions at the interface

    Th tangential

    components of both E and B are equal onboth sides o

    e above co

    f the i

    nditions imply that th

    for the T

    e

    E case

    θ θ θ+ =

    − =

    r r

    0

    cos cos

    .,

    c

    :

    os

    .

    i i r r t t

    i t

    i r t

    We have alsoassumed that as is true formost dielectric materia

    nterface

    E E EB B B

    For the TM mode

    lsμ μ μ

    θ θ θ− + = −+ =

    ≅ ≅

    TE-case

    TM-case

  • Development of the Fresnel EquationsDevelopment of the Fresnel Equations

    1

    1 1

    1

    2

    2

    1

    :

    cos cos

    :

    cos cos c

    v

    s

    c

    o

    os

    i i r

    i r t

    i

    r t t

    i

    i r r t t

    cRecall that E B Bn

    Let n refractive index of incident mediumn refractive index of refracting me

    For the TM m

    diu

    ode

    E

    For the TE mode

    E E En E n E

    E En

    n

    E n

    n

    c

    m

    E

    EB

    θ θ θ

    θ θ θ

    =⎛ ⎞= = ⇒⎜

    ⎟⎝ ⎠

    ==

    =

    =

    =

    +

    +

    +

    2r tE n E=

    TE-case

    TM-case

    n1

    n2

    n1

    n2

  • Development of the Fresnel EquationsDevelopment of the Fresnel Equations

    2

    1

    cos cos:cos cos

    cos cos:co

    :

    sin sin

    cos 1

    s cos

    i tr

    i i t

    i tr

    i

    t

    i

    t

    t

    i

    t

    Eliminating E

    nnn

    n

    n n

    nETE case rE n

    nETM case rE

    from each set of equationsand solving for the reflection coefficient we obtain

    where

    We know that

    n

    θ θθ θ

    θ θθ θ

    θ θ

    θ

    −= =

    +

    −=

    =

    =

    =

    +

    =

    −2

    2 2 22

    sinsin 1 sinit in nnθθ θ= − = −

    TE-case

    TM-case

    n1

    n2

    n1

    n2

  • Now we have derived the Fresnel EquationsNow we have derived the Fresnel Equations

    TE-case

    TM-case

    n1

    n2

    n1

    n2

    2 2

    2 2

    2 2 2

    2 2 2

    cos sin:

    cos sin

    cos sin:

    cos

    :

    :

    s

    in

    i ir

    i i i

    i ir

    i i i

    transmission coefficient t

    TE

    reflection coefficienSubst

    c

    ts r

    nETE case rE n

    n nETM case rE n

    as

    ituting we obtain the Fresnel equations for

    For the

    e

    n

    θ θ

    θ θ

    θ θ

    θ θ

    − −= =

    + −

    − −= =

    + −

    2 2

    2 2 2

    2cos:cos sin

    2 co

    :

    s:

    1: 1

    cos sin

    t i

    i i i

    t i

    i i i

    EtE n

    E nTM case tE n

    TE t rT nt r

    n

    M

    θ

    θ θ

    θ

    θ θ

    =

    = =+ −

    = =+

    += +

    1

    2

    nnn ≡

    These mean just the boundary conditions

  • Power : Reflectance(R) and Transmittance(T)Power : Reflectance(R) and Transmittance(T).

    1

    ,,

    :

    :

    tr

    i i

    i r t

    R and T are the ratios of reflected and transmitThe quantitiesThe ratiosrespectively to

    ted powers

    PPR TP P

    R T

    r and t are ratios of electric field amplitudes

    From conservation of ener

    the incident power

    P P P

    We can

    gy

    = =

    = += + ⇒

    21 0

    20 00

    :

    cos cos

    cos cos cos

    1

    cos

    1 c22

    i i i r r r t t t

    i i r r

    i i r r t

    i i r r t

    i

    t

    t

    t t

    iexpress the power in each of the fie

    n terms of the product of an irradiance and areaP I A P I A P I A

    I

    lds

    I A I A I A

    But n c

    I I

    I n c

    I A I I A

    E

    A

    E

    θ θ θ

    ε

    θ θ θ

    ε

    =⇒=+

    =+

    = = =

    +

    = 2 21 0 0 2 0 0

    2 2 2 20 2 0 0

    2 220 0

    2 20 0

    02 2 2 20 1 0 0 0

    1 1os cos cos2 2

    cos cos 1cos

    cos coscos

    co

    s

    s

    co

    i

    r t t t

    i i

    r r t t

    r t t r t t

    i i i i

    i

    i i

    i

    n cE n cE

    E n E E E

    E ER r T n

    n R TE

    E

    n E E

    nE

    E

    θ ε θ ε θ

    θ θθ

    θ θθ θ

    θ⎛ ⎞ ⎛ ⎞

    =

    = +

    ⎛ ⎞⇒ = + = + = +⎜ ⎟

    ⎝ ⎠

    = = =⎜ ⎟ ⎜⎝ ⎝

    ⇒⎠ ⎠

    2t⎟ 2

    2

    coscos*

    coscos

    *

    tnttnT

    rrrR

    i

    t

    i

    t⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    ==

    θθ

    θθ

  • 20-2. External and Internal Reflection20-2. External and Internal Reflection

    1 2

    1

    2

    1

    1 22

    :

    1:

    1

    Internal reflection

    External reflect

    n n

    nnn

    i n

    n

    on

    n

    n

    n

    < = >

    ⇒ =>

    <

    2 2

    ,

    sin i

    For internal reflection

    n may be an im total inteaginary rnal refnum lecber .tionθ− ⇒

    ( ) 1( ) :

    0 tan p

    pp

    Note for polarizing angBrewster's angle for the Tle

    r wh

    M se

    nen

    ca

    θ

    θ

    θ −=⇒ =

    External reflection

    r

    transmission

    t

    θi

    n=1.50

    critical angle : θi = θc

    1

    2sinnnnc =≡θ

    No reflection of TM mode

  • Derivation of Brewster’s AngleDerivation of Brewster’s Angle

    ( )

    ( )

    4

    2 2 2

    2 2 2

    2 2 2

    4 2 2 2

    2 22 22

    2 2

    2

    cos sin0

    c

    ( ) :

    cos sin

    cos sin 0

    1 1 4 1 sin sin1 1 4cos sin2cos 2cos

    1 1 4si

    os si

    n 4si

    n

    p

    p p

    p p

    p p

    p pp

    p

    p

    p

    p

    p

    p

    p

    Brewster's angle for polarizing angle for the TM case

    n n

    n n

    n

    n nr

    n n

    θ

    θ θ

    θ θ

    θ θ

    θ θθ

    θ θ

    θ θ

    θ θ

    θ

    ⇒ = −

    − + =

    ± − −± −⇒ = =

    ± − +=

    − −= =

    + −

    ( )42

    1

    2

    2

    22

    2

    1 1 2sinn2cos 2cos

    sin s

    1.5

    cin

    tos

    ancos

    0, 56.31

    pp

    p

    pp

    p

    p

    p

    p

    p

    For n

    n n n

    θθ

    θ θ

    θθ

    θθ

    θ

    θ −=

    ± −=

    = ⇒ ⇒

    = =

    =

    °

    Exist both in external and internal

    externalreflectioninternal

    reflection

    θp θp

    θc

    R

  • Total Internal Reflection (TIR) Total Internal Reflection (TIR)

    2

    1

    1 1

    total internal refl

    sin , (TE and TM) .

    , ,

    * 1

    :

    ect

    .

    i

    1

    )

    on(c

    c

    nFor internal reflectio

    For n for both cases

    called

    TE ca

    r is a complex numberR rr

    r

    For

    n

    s

    n

    R

    n

    TI

    θ θ

    θ θ

    − == =

    ⇒⇒ =

    = <

    =

    >

    2 2

    2 2

    2 2 2

    2 2 2

    cos sin:

    cos sin

    cos sin:

    cos sin

    i ir

    i i i

    i ir

    i i i

    nEe rE n

    n nETM cas

    i

    i

    i

    ie r

    E n n

    θ θ

    θ θ

    θ θ

    θ θ

    − −= =

    + −

    − −= =

    + −

    internalreflection

    R

    r

    TIR

    θc

  • 20-3. Phase changes on External Reflection20-3. Phase changes on External Reflection

    ( ) ( )( )0

    0

    , ,,

    .

    :

    exp

    ex

    180 ( ) 00

    p

    0

    xp

    0

    e

    r i

    i

    i

    the phase shift is for r

    For

    When r is a real number as it always is for external reflectionthen the phase shift is fora

    r

    nd

    E r E

    r E i k r t

    r E i k r t

    r

    i

    π

    π

    π

    ω

    ω

    ° = <

    <

    = −

    ⎡ ⎤= ⋅ −⎣ ⎦⎡ ⎤= ⋅

    °

    ⎣ ⎦

    >

    +−

    r r

    r r

    externalreflection

    TE TMπ π

    r

    수직입사인경우TE 경우만π-phase 변화,즉, 위상반전이일어나는가?

  • (Ex) Why two r’s are opposite in their signs at θi 0 ?(Ex) Why two r’s are opposite in their signs at θi 0 ?

    Transmission coeff.

    Reflection coeff.

    Brewster angleonly for TM pol.

    rTM > 0

    rTE < 0

    The opposite signs in r’s correspond completelyto the phase shift of π after reflection in both cases.

    E3 is opposite to E1

    E3 is opposite to E1

    r

    t

    TE

    TM

  • Phase Shifts for Internal ReflectionPhase Shifts for Internal Reflection

    2

    . :

    0 0 18

    cos sin sit

    ( )

    ancos si

    0

    n

    0

    ii i

    c

    c

    i

    TIR case r is comWhen then r is a real number and the phase shift will be andWhen then and for both the TE and TM cases has the form

    a ib i er e ea

    p

    ib

    for r for rx

    e

    le

    i

    αα φ

    α

    θθ θ

    α α αα α

    θ

    −− −

    +

    − −= = = = = ⇒

    < ° > <

    =+ +

    ≥°

    2 2

    2 2

    2 2

    2

    ncos

    cos sin:

    cos si

    ( ).

    n

    cos sin

    tan tan

    i ir

    i i i

    i i

    is the phase shift for total internal

    ba

    i nETE case rE i n

    reflection TI

    a b n

    R

    αα

    θ θ

    θ θ

    θ

    α

    φ α

    φ

    θ

    =

    − −= =

    =

    + −

    = = −

    =

    2 21

    2 21

    2

    2 2sin2 cos

    sin

    2 tancos

    sin2 tan

    c

    :

    os

    iTE

    iTM

    i n

    A similar analysis for the TM case gives

    n

    nn

    θ

    θφ

    θ

    θ

    θ

    φθ

    φ

    ⎛ ⎞−⎜ ⎟=⎜ ⎟⎝ ⎠

    ⎛ ⎞−

    ⎜ ⎟=⎜ ⎟⎝

    ⎛ =⎟⎝ ⎠

    ⎞⎜ r

    Internal reflection

    TIR

  • Phase Shifts for Internal ReflectionPhase Shifts for Internal Reflection

    π π

    TM TE

    2 2 2 21 1

    2

    sin sin2 tan 2 tan

    cos cosi i

    TM TE

    n nn

    θ θφ φ

    θ θ− −⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  • Phase Shifts for Internal ReflectionPhase Shifts for Internal Reflection

    'p

    'p c

    2 21

    c2

    c

    2 21

    180 ( ) <0 <

    sin2 tan <

    cos

    0 <

    sin2 tan

    cos

    TM

    i

    TE i

    nn

    n

    π θ θφ θ θ θ

    θθ θ

    θ

    θ θ

    φ θθ

    ⎧⎪⎪⎪⎪= θ θ

    ⎧⎪⎪ ⎞⎨ ⎟⎪ ⎟⎪ ⎠⎩

    c

    c

    0 <:

    0 >TM TEθ θ

    φ φθ θ

    ⎧=− ⎨

    >⎩

    o

    o

    45 53 1.5TM TE iNote near when nφ φ θ− = = =o o

  • Phase Shifts for Internal Reflection:The Fresnel Rhomb

    Phase Shifts for Internal Reflection:The Fresnel Rhomb

    45 53 1.5TM TE iNote at when nφ φ θ− = = =o o

    Linearly polarized light (45o)

    CircularlyPolarized

    light

  • 20-5. Evanescent Waves at an Interface20-5. Evanescent Waves at an Interface

    ( )( )( )

    ( )

    : exp

    : exp

    : exp

    exp

    si

    :

    n

    i oi i i

    r or r r

    t ot t t

    t ot t t

    t t t

    Incident beam E E i k r t

    Reflected beam E E i k r t

    Transmitted beam E E

    For the transmitted

    i k

    bea

    r t

    E E i k r

    k

    m

    t

    r k

    ω

    ω

    ω

    ω

    θ

    ⎡ ⎤= ⋅ −⎣ ⎦⎡ ⎤= ⋅ −⎣ ⎦⎡ ⎤= ⋅ −⎣ ⎦

    ⎡ ⎤= ⋅ −⎣ ⎦

    ⋅ =

    rr r r

    rr r r

    rr r r

    r r

    r r )( ) ( )( )

    2

    22

    cos

    sin cos

    sin, cos 1 sin 1

    , :

    sin

    sinc

    ( )

    o s 1it

    t t

    t t t

    it t

    iWhen n

    x k y x x yy

    k x y

    Butn

    th

    i a purely imaginary numbe

    total internal reflection

    r

    en

    n

    θ

    θ

    θθ

    θ

    θθ

    θ

    θ

    + ⋅ +

    = +

    =

    = −

    >

    − =

    ) ) )

  • Evanescent Waves at an InterfaceEvanescent Waves at an Interface( )

    2

    2 2

    sin

    sin 1

    ,:

    sin

    :

    sin sin21 1

    :

    tt t

    it

    i

    i

    t

    t

    iwith an TIR condition n

    i y

    For the transmitted beamwe can write the phase factor as

    k r k xn

    Defining the coefficient

    kn n

    We can write the transmitted wa s

    n

    v

    E

    e a

    θ

    α

    θ θπαλ

    θ

    θ⎛ ⎞⋅ = +⎜ ⎟

    ⎜ ⎟⎝ ⎠

    =

    − −

    =

    =

    >

    r r

    ( )0sin ep

    .

    xx pe t tt y

    amplitude will decay rapidThe evanescent waveas it penetrates into the lower refractive ind

    ly

    k xE i t

    ex med

    n

    ium

    θ ω α⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    Note that the incident and reflection wavesform a standing wave in x direction

    n2

    n1

    n1 > n2 h

    ( )0sinexp expt tt t

    k xE E i t yn

    θ ω α⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    x

    y

    2

    2

    1 1sin2 1

    t ot

    i

    E Ee

    h

    n

    λα θπ

    ⎛ ⎞= ⇒ = =⎟⎝ ⎠

    −⎜Penetration depth:

  • Frustrated TIRFrustrated TIR

    Tp = fraction of intensity transmitted across gap

    Zhu et al., “Variable Transmission Output Coupler and Tuner for Ring Laser Systems,”Appl. Opt. 24, 3611-3614 (1985).

    d

    n1=n2=1.5171.65

    d/λ

  • Frustrated Total Internal ReflectanceFrustrated Total Internal Reflectance

    Zhu et al., “Variable Transmission Output Coupler and Tuner for Ring Laser Systems,”Appl. Opt. 24, 3611-3614 (1985).

    Pellin-Broca prism

  • 20-6. Complex Refractive Index20-6. Complex Refractive Index

    0

    2 2 2

    0

    ( )

    1 2

    1

    I I

    R I

    R R

    For a material with conductivity

    n i n n i n

    n i n

    n

    n i σε ω

    σ

    σε ω

    ⎛ ⎞= + = +

    ⎛ ⎞= + = − +⎜ ⎟

    ⎝ ⎠

    ⎜ ⎟

    %

    %

    2 2

    0 02

    2

    02

    22 4 2

    0 0

    2

    02

    1 1 42

    2

    :

    1 22

    1 02 2

    :

    1 1 42

    2 I

    R I R I RI

    I I II

    I

    Solving for the real and imaginary components we obtain

    n n n n nn

    n n nn

    From the quadratic solution we obta n

    n

    i

    n

    σ σε ω ε ω

    σ σε ω ε ω

    σε ω

    σε ω

    − = = ⇒ =

    ⎛ ⎞ ⎛ ⎞⇒

    ⎛ ⎞+ +

    − = ⇒ − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ⎛ ⎞± + ⎜ ⎟

    ⎝⎜⎝=⇒

    ⎟⎠⎠=

    .IWe need to take the positive root because n is a real number

  • Complex Refractive IndexComplex Refractive Index

    2

    0

    0 0 00

    , ,

    2 2

    ,

    2 2I I R I

    With this approximation the complex refractive index for m

    For most metals with light in the microwave region

    n n

    etals becomes

    n

    Substituting our expression for the complex refractive index

    nσε ω

    σ εω

    σ σ σε ω ε ω ε ω

    >>

    = = =≅ ⇒

    ( ) ( ) ( )

    ( ) ( )

    0 0

    0

    ˆex

    ˆex ˆexp

    p

    .

    exp

    p R k

    k

    I

    R I

    k

    back intoour expression for the electric field we obtain

    E E i k r t E i

    ni u r tc

    n i n u r tc

    The first exponential term is oscillatory The

    n uc

    E

    E r

    ω

    ω ω

    ω ω⎧ ⎫⎡ ⎤⎡ ⎤= ⋅ − = + ⋅ −⎨ ⎬⎢ ⎥

    ⎧ ⎫⎡ ⎤⋅ −⎨ ⎬⎢ ⎥⎣⎡ ⎤− ⋅⎢ ⎥⎣ ⎦

    ⎣ ⎦ ⎣ ⎦⎩

    =⎦⎭

    rr r rr r

    r r r

    / .RThe second exponent

    M wave propagates with aial has a real argument

    velocity of(abso

    n crbed).

  • Complex Refractive IndexComplex Refractive Index

    ( )* *0 0

    0

    ..

    ˆ2exp

    ˆ2exp

    I k

    I k

    The second term leads to absorption of the beam in metals due to inducinga current in the medium This causes the irradiance to decrease as the wavepropagates through the medium

    n u rI EE E E

    c

    n uI I

    ω

    ω

    ⋅⎡ ⎤≡ = −⎢ ⎥

    ⎣ ⎦

    = −

    rr r r r

    ( ) ( )0 ˆexp

    2 4:

    k

    I I

    rI u r

    c

    The absorption coefficient is defined n ncω πα

    α

    λ

    ⋅⎡ ⎤= − ⋅⎡

    = =

    ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

    rr

    ( ) ( )0 ˆex ˆexpp Ik kRn uni u r

    crt

    cE E ω ω⎧ ⎫⎡ ⎤⋅ −⎨ ⎬⎢ ⎥

    ⎡ ⎤− ⋅=⎣ ⎦⎩ ⎢ ⎥⎣ ⎦⎭

    rr r r

  • 20-7. Reflection from Metals20-7. Reflection from Metals

    2 2

    2 2

    2 2 2

    2 2 2

    cos sin:

    cos sin

    cos sin:

    cos sin

    :

    i ir

    i i i

    i ir

    i i i

    Reflection from metals is analyzed

    ETE case rE

    nETM cas

    by substituting the complex refractive index n in the Fresnel equation

    e rE n

    Sub

    n

    n

    n

    n

    sti u

    s

    t t

    θ θ

    θ θ

    θ θ

    θ θ

    − −= =

    + −

    − −= =

    + −

    % %

    %

    %

    %

    %

    %

    ( ) ( )( ) ( )

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    2 2 2

    2 2 2

    2 2 2 2 2

    2 2 2 2 2

    :

    cos sin 2:

    cos sin 2

    2 cos sin 2:

    2 cos sin 2

    i R I i R Ir

    i i R I i R I

    R I R I i R I i R Ir

    i R I R I i R I i R I

    R Iing we obtain

    n n i n nErE n n i n n

    n n i n n n n i n nErE n n i n n

    TE case

    T

    n n

    n n iM case

    n n

    i n

    θ θ

    θ θ

    θ θ

    θ θ

    − − − += =

    + − − +

    ⎡ ⎤− + − − − +⎣ ⎦= =⎡ ⎤− + + − − +

    = +

    ⎣ ⎦

    %

  • Reflection from Metals at normal incidence (θi=0)Reflection from Metals at normal incidence (θi=0)

    ( ) ( )( ) ( )

    ( ) ( )( ) ( )

    ( )( )

    ( )( )

    2 2 2

    2 2 2

    22 2

    22 2

    , 0 :

    cos sin 2

    cos sin 2

    1 2 1

    1 2 1

    :

    &

    1

    1

    i

    i R I i R Ir

    i i R

    R I

    R I

    I i R I

    R I R I R I

    R I R I R I

    At normal incidence

    n n i n nErE n n

    TE TM cases

    n i

    i n n

    n n i n n n i n

    n n i n n n i n

    power ref

    nr

    n i

    T ehe

    n

    l c

    θ

    θ θ

    θ θ

    = °

    − − − += =

    + − − +

    − − + − −= =

    + − +

    =−

    + −

    − −+

    ( )( )

    ( )( )

    ( )( )

    2 2

    2 2*

    2 2

    2 2

    1 1 1 21 1 1 2

    11

    R I

    R

    R I R I R R I

    R I

    I

    R I R R I

    is given by

    n i n n i n n n nR r rn i n n i n

    tance R

    n nR

    n n

    n n n⎡ ⎤ ⎡

    − +=

    ⎤− − − + ⎛ ⎞− + += = =⎢ ⎥ ⎢ ⎥ ⎜ ⎟+ − + + + + +⎝ ⎠⎣ ⎦ ⎣

    +

    +

  • Reflection from MetalsReflection from Metals

    At normal incidence(from Hecht, page 113)

    Reflectance

    θiλ

    visible