43
20. Feb. 2002, LT P 1 Electronics for the e experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful for other experiments

20. Feb. 2002, LTP1 Electronics for the e experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

Embed Size (px)

Citation preview

Page 1: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 1

Electronics for the e experiment

• Short introduction and status• Trigger electronics• DAQ electronics• Slow Control

Developments useful for other experimentsDevelopments useful for other experiments

Page 2: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 2

Search for e at 10-14

1m

e+

Liq. Xe ScintillationDetector

Drift Chamber

Liq. Xe ScintillationDetector

e+

Timing Counter

Stopping TargetThin Superconducting Coil

Muon Beam

Drift Chamber

MEG Detector

• LFV Process forbidden by SM

• oscillations expected to enhance LFV rate

• Present limit: 1.2 • 10-11 (MEGA)

• SUSY Theories: ~ 10-12

• LFV Process forbidden by SM

• oscillations expected to enhance LFV rate

• Present limit: 1.2 • 10-11 (MEGA)

• SUSY Theories: ~ 10-12

Required:

• stopping rate: 108/s

Resolutions (all FWHM):

• Ee: 0.7%

• E: 1.4% @ 52.8 MeV

• e: 12 mrad

• te: 150ps

Required:

• stopping rate: 108/s

Resolutions (all FWHM):

• Ee: 0.7%

• E: 1.4% @ 52.8 MeV

• e: 12 mrad

• te: 150ps

Ee = 52.8 MeV

Kinematics e= 180°

E = 52.8 MeV

e

Page 3: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 3

Detector Design

2002

2003

2004

2005

2006

2007

Tests & Design

Assembly

Engineering Run

Data taking

.

.

.

Page 4: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 4

Cryogenics Design

Page 5: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 5

Status update• New xenon purification with SAES

mono-torr getter filter. Should reduce all non-noble gases to < ppb level

• Very low noise on PMTs (1mV peak-to-peak) 0.2% resolution when summing all 240 PMTs

• PMT gain equalized reproducible with LED method to ~3%, limited by HV stability

• Beam time at TERAS starts today

Page 6: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 6

Trigger Requirements

Beam rate 108 s-1

Fast LXe energy sum > 45MeV 2103 s-1

interaction point e+ hit point in timing counter time correlation – e+ 200 s-1

angular corrlation – e+ 20 s-1

Beam rate 108 s-1

Fast LXe energy sum > 45MeV 2103 s-1

interaction point e+ hit point in timing counter time correlation – e+ 200 s-1

angular corrlation – e+ 20 s-1

Ee = 52.8 MeV

Kinematics e= 180°

E = 52.8 MeV

e

M.C.

e+

Page 7: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 7

LXe energy sum

• Total ~800 PMTs

• Common noise contributes significantly to analog sum

• AC coupling Baseline drift

• How to evaluate of shower center?

• Total ~800 PMTs

• Common noise contributes significantly to analog sum

• AC coupling Baseline drift

• How to evaluate of shower center?

Page 8: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 8

Digital Trigger• Commodity electronics available

– 100 MHz FADC 10 bit (10$)– FPGA 100k Gates, 90kB, 230 MHz, 300 pins

(100$)– SRAM 10ns, 128kB (30$)– LVDS 200Mb/s/line, (2$)– VME32/VME64

FADC

FPGAFADC

FADC SRAM

Trigger

PMT

PMT

PMT

Page 9: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 9

Lat

ch

Lat

ch

Lat

ch

Lat

ch

Lat

ch

Baseline SubtractionBaselineSubtractionL

atch

10 bit

100 MHz Clock

-+

<thr

+

-

BaselineRegister

Uses ~120 out of 5000 logic cells

8 channels/FPGA use 20% of chip

Uses ~120 out of 5000 logic cells

8 channels/FPGA use 20% of chip

Baselinesubtracted

signal LUT10x10

Calibrated and

linearized signal

Page 10: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 10

QT Algorithmoriginal

waveform

smoothed anddifferentiated (Difference Of

Samples)Threshold in DOS

Region for pedestal

evaluation

integration area

t• Inspired by H1 Fast Track Trigger (A.

Schnöning)

• Difference of Samples (= 1st derivation)

• Hit region defined when DOS is above threshold

• Integration of original signal in hit region

• Pedestal evaluated in region before hit

• Time interpolated using maximum value and two neighbor values in LUT 1ns resolution for 10ns sampling time

• Inspired by H1 Fast Track Trigger (A. Schnöning)

• Difference of Samples (= 1st derivation)

• Hit region defined when DOS is above threshold

• Integration of original signal in hit region

• Pedestal evaluated in region before hit

• Time interpolated using maximum value and two neighbor values in LUT 1ns resolution for 10ns sampling time

Page 11: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 11

Finding center of shower

ε (|φ(center)-(max. PMT)| < 3.5°) > 99%

Enough to find PMT with max. value Enough to find PMT with max. value

Page 12: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 12

Schema for max. finding

8

8

Latch

Latch B

A A<B

8

Index bit

8

8

Latch

Latch B

A A<B

8

Index bit

Latch

Latch B

A A>B

8

Index bit

LSB

MSB

index

value

Page 13: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 13

e+ - coincidence

or

or

or

e+

counterLUT

> 45MeV

LUT

AND phi

e+ phi

Trigger

back-toback

other veto

LUTmaxPMT

LXeSum

Page 14: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 14

Trigger latency

BS

BS

BS

BS

Max

Max

Max

.

.

.

T[ns] 0 50 100 110 120..200 220 230

>45MeV

e+

AND

10 stages = 1024 chn

. . .

ADC

ADC

ADC

ADC

.

.

.

Page 15: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 15

VME Boards

VMEInterface(Cypress)

3.3V 2.5VFADC

LVDS

FPGA

SRAM

FADC

FADC

FADC

FADC

FADC

FADC

FADC

LVDS

FPGA

FPGA

FPGA

SRAM

VMEInterface(Cypress)

3.3V 2.5V

LVDS

FPGA

SRAM

LVDS

LVDS

LVDS

FPGA

FPGA

FPGA

SRAM

LVDS

LVDS

LVDS

LVDS

LVDS

LVDS

LVDS

LVDS

Type1 Type2

8 channels

LVDS

8 channelsclck, clear 48 bits output

LVDS

LVDS

Page 16: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 16

Board hierarchy

• 42 Type 1 boards for 600 channels

• 6 Type 2 boards (VME 9U)

• 3 VME crates (2x6U, 2x9U)

• Total latency 350ns

• Processing power 600 * 100 MHz * 10 bit = 75 GB/s

• “Golden Rule”: plan for FPGAs with 2x gates

• Totally re-programmable

• Estimated costs: 230k$

• Made by INFN, Pisa

• 42 Type 1 boards for 600 channels

• 6 Type 2 boards (VME 9U)

• 3 VME crates (2x6U, 2x9U)

• Total latency 350ns

• Processing power 600 * 100 MHz * 10 bit = 75 GB/s

• “Golden Rule”: plan for FPGAs with 2x gates

• Totally re-programmable

• Estimated costs: 230k$

• Made by INFN, Pisa

Page 17: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 17

Prototype board

ADCSignal-

Generator DACFPGA

Peter Dick

Page 18: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 18

DAQ Hardware Requirementsn

E[MeV]50 51 52

e

Micheledge

t

PMTsum

e

e

e

51.5 MeV

0.511 MeV

• ’s hitting different parts of LXe can be separated if > 2 PMTs apart (15 cm)

• Timely separated ’s need waveform digitizing > 300 MHz

• If waveform digitizing gives timing <100ps, no TDCs are needed

• ’s hitting different parts of LXe can be separated if > 2 PMTs apart (15 cm)

• Timely separated ’s need waveform digitizing > 300 MHz

• If waveform digitizing gives timing <100ps, no TDCs are needed

~100ns

Page 19: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 19

Fast waveform Digitizing

VMEInterface(Cypress)

3.3V 2.5VFADC

LVDS

FPGA

SRAM

FADC

FADC

FADC

FADC

FADC

FADC

FADC

LVDS

FPGA

FPGA

FPGA

SRAM

8 channels

LVDS

8 channelsclck, clear 48 bits output

• Trigger boards can directly be used for Drift Chamber (10ns sampling 1ns interpolation 2-3ns chamber resolution)

• Waveforms stored in SRAM, sparcified readout via LVDS

• Calorimeter readout needs sampling with > 1GHz

Analog Waveform Domino Sampling Chip

2GHz 40MHz, 12 bit

DSC FADC FPGA

SRAM

Page 20: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 20

Domino Sampling Chip

• 0.5 – 1.2 GHz sampling speed

• 128 sampling cells• Readout at 5 MHz, 12 bit• ~ 100 CHF/channel

Needed:• 2.5 GHz sampling speed• Circular domino wave• 1024 sampling cells• 40 MHz readout• < 100ps accuracy

Page 21: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 21

Domino Ring Sampler (DRS)

• Free running domino wave, stopped with trigger

• Sampling speed 2 GHz (500ps/bin)

• Readout 40 MHz 12 bit

• 1024 bins 150ns waveform + 350ns delay

• Free running domino wave, stopped with trigger

• Sampling speed 2 GHz (500ps/bin)

• Readout 40 MHz 12 bit

• 1024 bins 150ns waveform + 350ns delay

input

Page 22: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 22

Domino Celldomino enable

• “Tail-biting” mechanism to chop off domino wave

• Coupling in of Domino Start in all cells for homogeneity

• Minimal number of components in critical path

• Global Domino Enable

• Capacitor to slow down speed

• “Tail-biting” mechanism to chop off domino wave

• Coupling in of Domino Start in all cells for homogeneity

• Minimal number of components in critical path

• Global Domino Enable

• Capacitor to slow down speed

Page 23: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 23

Domino Wave stability

NMOS=PMOSNMOS<PMOSw/o tail biting

NMOS<PMOSwith tail-biting

“starving” widened stable

Page 24: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 24

Gate sampling

signal

trigger gate

500ps 50ps

• Domino stop only accurate by one cell (500ps)

• Need 50ps timing resolution

• Domino stop only accurate by one cell (500ps)

• Need 50ps timing resolution

Trigger gate samplingTrigger gate sampling

Page 25: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 25

DAQ Board8

inpu

ts

triggergate

FADC

3 state switches

FPGA

SRAM

shift register

• 9 channels 1024 bins / 40 MHz = 230 ms acceptable dead time

• Zero suppression in FPGA• QT Algorithm in FPGA (store waveform if multi-hit)• Readout controller in FPGA (instead pattern generator)

• 9 channels 1024 bins / 40 MHz = 230 ms acceptable dead time

• Zero suppression in FPGA• QT Algorithm in FPGA (store waveform if multi-hit)• Readout controller in FPGA (instead pattern generator)

40 MHz 12 bitVME

Interface(Cypress)

3.3V 2.5V8 channel

DRS

TriggerInput

Board inter-connect

FPGA

FPGA

SRAM

SRAM

SRAM

SRAM

FADC

8 channelDRS

8 channelDRS

FADC

8 channelDRS

Trigger BUS(2nd level tr.)

Page 26: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 26

Status DRS

• Simulation finished in AMS 0.35 process

• Layout started• Switch to 0.25 process• First version summer ’02• Readout with trigger

prototype board• Costs per channel:

~25$ (board) + 6$ (chip)

Page 27: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 27

DAQ Muegamma

PMT

FADCFPGA

trigger

2GHz

40MHz

DC TriggerBoard

trigger

100MHz

DSC

TriggerBoard

CPU

CPU

LXee+

wiresstrips

Waveformor QT readout

DAQ board

Waveformor QT readout

Split andPreamplifier

optional2nd level trigger

Page 28: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 28

“Redefinition” of DAQ

Conventional New

AC coupling Baseline subtraction

Const. Fract. Discriminator

DOS – Zero crossing

ADC Numerial Integration

TDCBin interpolation (LUT)

Wafeform Fitting

Scaler (250 MHz) Scaler (50 MHz)

Oscilloscope Waveform sampling

400 US$ / channel 50 US$ / channel

TDCDisc.

ADC

Scaler

Scope

FADC

FPGA

SRAM

DSC ~GHz

100 MHz

Page 29: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 29

Applications in other experiments• Technology in house (pool)• Substitution of old electronics (ADC, Scaler,

Discriminators)• LVDS-NIM converter and VME necessary• Integration in new experiments

VMEInterface(Cypress)

3.3V 2.5VFADC

LVDS

FPGA

SRAM

FADC

FADC

FADC

FADC

FADC

FADC

FADC

LVDS

FPGA

FPGA

FPGA

SRAM

LVDS

PMTPMT

PMT

BeamCounters

calorimeter

ttrigger= 10ns

tTDC 1ns

Page 30: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 30

Slow ControlHV

PC

RS

232

12345

Temperature, pressure, …

GP

IB

Valves

??? 15° C

heater

PLC

12:30 12.3

12:45 17.2

13:20 15.2

14:10 17.3

15:20 16.2

18:30 21.3

19:20 18.2

19:45 19.2

MIDASDAQ

Eth

ern

et

Terminal Server

Page 31: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 31

Slow Control BusHV

Temperature, pressure, … Valves

heater

MIDASDAQ

Page 32: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 32

LXe calorimeter HV requirements

• 12 stage bases @ 1000V• g = (U)12 1V accuracy = 1.2% gain

variation• Need <0.3V accuracy over full temperature

range• Low ripple• 1000 channels ~ 200k$ commercially• Fast readout for monitoring (RS232 would take

~3 min to read)

• 12 stage bases @ 1000V• g = (U)12 1V accuracy = 1.2% gain

variation• Need <0.3V accuracy over full temperature

range• Low ripple• 1000 channels ~ 200k$ commercially• Fast readout for monitoring (RS232 would take

~3 min to read)

Page 33: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 33

Field Bus Solutions

• CAN, Profibus, LON available

• Node with ADC ~100$• Interoperatibility not

guaranteed• Protocol overhead• Local CPU? User

programmable?• How to integrate in HV

(CAEN use CAENET)

• CAN, Profibus, LON available

• Node with ADC ~100$• Interoperatibility not

guaranteed• Protocol overhead• Local CPU? User

programmable?• How to integrate in HV

(CAEN use CAENET)

Reinhard Schmidt

Page 34: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 34

RS485 bus• Similar to RS-232 but

– Up to 256 (1/8 load) units can be connected to a single segment

– single line, half duplex– differential twisted pair– Segment length up to km

• MAX 1483 transceiver chip for HV control• MAX 1480 for opto decoupled applications• Use repeater to extend to many segments

Page 35: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 35

Generic Node

• ADuC812 / C8051F000 Microcontrollers

• MAX 1483 Tranceiver• Flat ribbon connector• Power through bus• Costs ~30$• Piggy back board

• ADuC812 / C8051F000 Microcontrollers

• MAX 1483 Tranceiver• Flat ribbon connector• Power through bus• Costs ~30$• Piggy back board

B

RxD

9

INT

A

7

54

21

9

1

8

1 5

TC

KT

DI

TM

ST

DO

2

+3

V

4

A5 A4

1 1

P0.

2

TxD

1

P0.

4

B

+ 3V

-12V

+ 3V

6

0

3

2 2

1 6 2

1

+3

V

DG

ND

+1

2V

8

P 0

11.0

59 M

Hz

AG

ND

+3V

I/O _2

1 0

I/O _1

D E

A

RES

5V

in in

g nd g nd

/RS TP3 .4

+5VD G N D

J1

7

4

1

J1

+ 3V

J3

LED

+ 5V

0 6

+3

V

+3

V

2 2

SCS 200

A7 A6

J2

9

A2 A1

2J4

P0.

3

D I

R OR E

g nd

V c c

MAX1483

RE

SE

T

+ 5V

C 4 2 ,2uF

n c

in in

g nd

g ndn c

1 o ut

n c

8in

g nd

78L03

+ 12V

C 7 2 ,2uF

P 1

+5V

D G N D

56

23

0

P 2

4K

7R

2

1

AG

ND

-12

V

AV

+ AG

ND

1 2 .10 .2001

S C S 200

R .S CH M ID T

A0

1 o ut 8n c

C 6 2 ,2uF

RE

SE

T

C1

22

,2u

F

C9

27p

F

C 10 2 ,2uF

79L12V R 3

78L12

V R 1

J2

A3

C 3 2 ,2uF

V R 2C 2 2 ,2uF

C 1 2 ,2uF

+ 15V

-15v

4K 7R 1

Pau l-Scherrer-InstitutCH-5432 Villigen / PSI

C 112 ,2uF

C8

27p

F

C 5 2 ,2uF

17

AV

+

20

/RS

T6

2V

DD

23

P3

.35

9P

1.7

26

P3

.05

6P

0.7

29

TD

O5

3P

2.3

32

P1

.55

0P

0.5

1 6AV +

1 3A IN 6

1 0A IN 3

7A IN 0

4C P 0 +

1C P 1 -

3 3 P 2 .0

3 6 P 1 .2

3 9 P 0 .0

4 2 P 0 .1

4 5 P 3 .7

4 8 P 0 .3

19

XTA

L2

18

XTA

L1

1 5A G N D

1 2A IN 5

9A IN 2

6V R E F R

5A G N D

8A IN 1

11A IN 4

1 4A IN 7

63

DA

C1

64

DA

C0

3C P 0 -

2C P 1 +

22

TC

K

25

P3

.1

28

TD

I

31

VD

D

24

P3

.2

27

P2

.1

30

DG

ND

60

P1

.6

57

P3

.5

54

P2

.2

51

P2

.5

55

P0

.6

58

P3

.4

52

P2

.4

3 4 P 1 .4

3 7 P 1 .1

4 0 V D D

4 3 P 2 .7

3 5 P 1 .3

3 8 P 1 .0

4 1 D G N D

4 6 P 3 .6

4 7 P 0 .2

4 4 P 2 .6

21

TM

S6

1D

GN

D

49

P0

.4

6051F000

U 1

Page 36: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 36

2 versions

• Generic node with signal conditioning (OP-AMPs)

• Sub-master with power supply and PC connection (Parallel Port, USB planned)

• Integration on sensors, in crates• RS232 node planned

BUS OrientedBUS Oriented

Crate OrientedCrate Oriented

• 19” crate with custom backplane• Generic node as piggy-back• Cards for analog IO / digital IO / temperature /

220V / …• Crate connects to parallel port (USB planned)

Page 37: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 37

Protocol• Asynchronous 345 kBaud• 16-bit addressing (65536 nodes)• CRC-code for error detection• Optional acknowledge• Concept of channels and configuration

parameters (256 each per node)

• Asynchronous 345 kBaud• 16-bit addressing (65536 nodes)• CRC-code for error detection• Optional acknowledge• Concept of channels and configuration

parameters (256 each per node)

command LSB MSB CRC

address command

command channel value CRC

write data

node

param1

param2

param3

channel1

channel2

channel3

ADC

ADC

port

1 Byte

Page 38: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 38

Midas Slow Control Bus• 256 nodes, 65536 with one level of repeaters• Bus length ~500m opto-isolated• Boards for voltage, current, thermo couples, voltage output,

TTL IO, 220V output, available from pool on request• Readout speed: 0.3s for 1000 channels• C library, command-line utility, Midas driver, LabView driver• Connects to parallel port, USB planned• Nodes are “self-documenting”• Configuration parameters in EEPROM on node• Node CPU can operate autonomously for interlock and

regulation (PID) tasks (C programmable)• Nodes can be reprogrammed over network

http://midas.psi.ch/mscb

• 256 nodes, 65536 with one level of repeaters• Bus length ~500m opto-isolated• Boards for voltage, current, thermo couples, voltage output,

TTL IO, 220V output, available from pool on request• Readout speed: 0.3s for 1000 channels• C library, command-line utility, Midas driver, LabView driver• Connects to parallel port, USB planned• Nodes are “self-documenting”• Configuration parameters in EEPROM on node• Node CPU can operate autonomously for interlock and

regulation (PID) tasks (C programmable)• Nodes can be reprogrammed over network

http://midas.psi.ch/mscb

Page 39: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 39

LabView Logger• Used for POLDI

detector HV and gas monitoring

• Graph, logging and alarm notification

Page 40: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 40

High Voltage System

Page 41: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 41

HV performance• Regulates common HV source• 0-2400V, ~1mA• DAC 16bit, ADC 14bit• Current trip ~10s • Self-calibration with two high

accuracy reference voltages• Accuracy <0.3V absolute• Boards with 12 channels,

crates with 192 channels• 30$/channel

• Regulates common HV source• 0-2400V, ~1mA• DAC 16bit, ADC 14bit• Current trip ~10s • Self-calibration with two high

accuracy reference voltages• Accuracy <0.3V absolute• Boards with 12 channels,

crates with 192 channels• 30$/channel

Prototype

Page 42: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 42

Conclusions

• Lots of new electronics for Muegamma• Can be useful for other experiments• Knowledge and support in-house• Open to suggestions and modifications

• Lots of new electronics for Muegamma• Can be useful for other experiments• Knowledge and support in-house• Open to suggestions and modifications

Credits to Reinhard Schmidt and Peter DickCredits to Reinhard Schmidt and Peter Dick

Page 43: 20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful

20. Feb. 2002, LTP 43

Muegamma Web Site

http://kochbuch.unix-ag.uni-kl.de/bin/rezept?17731http://kochbuch.unix-ag.uni-kl.de/bin/rezept?17731

http://meg.psi.ch/doc/talks/s_ritt/feb02_psihttp://meg.psi.ch/doc/talks/s_ritt/feb02_psi

Transparencies:

Cake: