2. Electric Fields and Gauss’ Law

Embed Size (px)

Citation preview

  • 8/9/2019 2. Electric Fields and Gauss Law

    1/25

  • 8/9/2019 2. Electric Fields and Gauss Law

    2/25

    e 2

    q = k

    rE r

    r

    When calculating the electric field due to a

    continuous charge distribution, we approach

    the problem by dividing up the distribution

    into tiny elements of charge q. Each of

    these elements can be treated as a point

    charge, which will yield an electric field of

    The total field can then be approximated as

    the sum off all such elements:

    ie 2

    i

    qk

    ri} iE r

    r

  • 8/9/2019 2. Electric Fields and Gauss Law

    3/25

    Sinc w hav a continuous dist ibution, w can g t a mo xact

    valu by l tting th siz of th cha g l m nts app oach z o:

    i

    i

    0i

    dlim

    ip

    ! ! iE r rr

    wh re the integralisoverthe entire charge distribution. A

    commonconditionofthese integralsisthatthe charge

    distributionisuniform (constantcharge density). Inthiscase we

    canma e the followingsubstitutions:

    Ifthe charge Q isdistributedoveravolume V,we candefine the

    volume charge densityas

    Q/V

  • 8/9/2019 2. Electric Fields and Gauss Law

    4/25

    Ifthe charge Q isdistributedoverasurface area A,we can

    define the surface charge densityas

    Q/A

    Ifthe charge Q isdistributedoveraline oflengthl,we can

    define the linearcharge densityas

    Q/l

    The amountsofcharge inadifferential elementofcharge d fora

    volume,surface,orline thenbecome

    d = dV, d = dA, d = dl

  • 8/9/2019 2. Electric Fields and Gauss Law

    5/25

    Example: A rodoflengthl hasacharge Q uniformlydistributed

    throughoutitslength. Findthe electricfieldalongthe atapoint

    alongthe axisofthe rodadistance a awayfromone endoftherod.

    Treating each elementasapointcharge,the electricfieldfor each

    elementwillpointinthe xdirection. Since anintegralisbasically

    asumofelementswe canassume thatallthe elementswillhave

    fieldsthatwilladdupinthe same directionandthusthe total

    electricfieldwillpointinthe xdirection (thiswillallowusto

    avoidintegratingoverthe unitvectors).

  • 8/9/2019 2. Electric Fields and Gauss Law

    6/25

    Each elementwillhave an electricfieldmagnitude of

    e e2 2

    d dxdE = k = k r x

    e

    e

    2 2dx dx -1E = k k k e e ex x x

    k Q1 1= k -

    ( )

    x l a

    l+a l+a

    a ax a

    a l + a a l a

    !

    !

    ! !

    !

    -

    -

    Soourtotal electricfield,atdistancesfrom P varyingbetweenx = aandx = l+ a willbe

  • 8/9/2019 2. Electric Fields and Gauss Law

    7/25

    A thin ringofradiusacarries

    acharge Q distributed

    uniformlyalongitslength.

    Findthe electricfieldatadistance xalongitscentral

    axis.

    e 2

    dd k

    r

    The electricfielddue to each elementd willbe

    The electricfieldwillhave componentsperpendiculartothe axis

    ofthe ringandparalleltothe axisofthe ring (the xaxis,inour

    case).We mentionthisbecause allcomponentsotherthanthose in

    the xdirectionwillcancel.

  • 8/9/2019 2. Electric Fields and Gauss Law

    8/25

    For everycharge element

    we have acorresponding

    elementonthe opposite side

    ofthe ring. Bothare thesame distance awayfrom

    the fieldpointandthuswill

    have the same magnitude of

    electricfield.

    The directionofthe fieldissuchthatallcomponentswillcancelother

    thanthe xcomponents.x e 2

    e 2 2 2 2

    e 2 2 3/ 2

    ddE = dE = k (cos)

    r

    d x= k

    x +a x +a

    dk

    (x +a )

    !

  • 8/9/2019 2. Electric Fields and Gauss Law

    9/25

    Normallywe needtosetd = dl,butsince every elementofcharge

    is the same distance awayfromthe fieldpoint (inotherwords,x

    and a are constant),

    e e e2 2 3/ 2 2 2 3/ 2 2 2 3/ 2

    d 1 QE k = k d = k

    (x +a ) (x +a ) (x +a )!

  • 8/9/2019 2. Electric Fields and Gauss Law

    10/25

    A convenientwaytovisualize an electricfieldisby representingthe

    fielddirectionusinglinesthatareparalleltothe electricfieldvector

    ataspecificpointinspace.These electricfieldlineswere first

    introducedby Michael Faradayandare extremelyusefulinusing

    symmetryto reduce aproblem.The twosimple rulesofthumbwhendrawing electricfieldlinesare:

    1) The electricfieldvectoristangenttothe electricfieldline atany

    point.2) The densityofthe fieldlinesisproportionaltothe electricfield

    strength

  • 8/9/2019 2. Electric Fields and Gauss Law

    11/25

    Some more usefulguidelinesare:

    1. Electricfieldlinesoriginate onpositive chargesand

    terminate onnegative charges.

    2. The numberoflinesisproportionaltothe amountofcharge3. Notwofieldlinescancross.

  • 8/9/2019 2. Electric Fields and Gauss Law

    12/25

  • 8/9/2019 2. Electric Fields and Gauss Law

    13/25

  • 8/9/2019 2. Electric Fields and Gauss Law

    14/25

  • 8/9/2019 2. Electric Fields and Gauss Law

    15/25

    Electricfluxisa quantitythatmeasuresthe numberoffieldlines

    penetratingasurface ofinterest.While notseeminglike an

    importantconcept,thiswillleadustoan extremelyvaluable tool

    forcalculatingthe electricfieldofhighlysymmetriccharge

    distributions.

    Imagine thatwe have asurface whichisinthepresence ofan

    electricfield.We willfirstlookatthe fluxthroughsmall

    elementsofthe surface andthen evaluate the fluxovertheentire surface area.

  • 8/9/2019 2. Electric Fields and Gauss Law

    16/25

    Suppose an elementofarea, Ai,isbeing

    penetratedbyand electricfieldEi.We can

    representthis elementofareawithavector

    havingthe magnitude ofthe areaitselfanda

    directionnormal (perpendicular)tothe area

    element.The fluxthroughthis elementis

    definedas

    We can evaluate the totalfluxthroughthe surfacebysummingover

    allsuch elementsandmakingthe elementsize approachzero:

    cosAEAEluxElectric iiiiE !|!TT

    !! p AdEAElim iii0AE iTTTT

  • 8/9/2019 2. Electric Fields and Gauss Law

    17/25

    Foraclosedsurface the

    situationbecomesslightly

    more complicated. Firstofall,

    the normalvectorstoalltheelementsbyconventionpoint

    outoftheboundedvolume.

    Secondly,some ofthe dot

    productswillyieldnegative

    flux. A negative fluxsimplyrepresentsflowoffieldintoa

    volume,positive flux

    representsflowoutofa

    volume. Ifwe have aclosed

    surface,the fluxis representedslightlydifferently:

    ! AdE iETT

  • 8/9/2019 2. Electric Fields and Gauss Law

    18/25

    A constant electricfield

    flowsthroughasquare ofsidesl.The fieldpointsin

    the xdirection. Findthe net

    electricfluxthroughthe

    entire cube.

    Onlyfaces1and 2 willhave aflux,since E anddA are

    perpendicularthroughoutall elementsonthe otherfacesofthe cube

    (the dotproductinvolvesthe cosine ofthe anglebetweenE anddA).

    2

    1 d EdA cos180 = -E dA = -EA = -E! ! E Arr

    g l

    2

    2 d E d cos0 E d -E E! ! E A

    rrg l

  • 8/9/2019 2. Electric Fields and Gauss Law

    19/25

    Thus,total = i = -El2 +El2 = 0

    This resultmakessense,asthe source ofelectricfieldwas

    outside ofourvolume. Inthatcase,we expectasmanyfield

    linesflowingin (negative flux)aswe doflowingout (positive

    flux).

  • 8/9/2019 2. Electric Fields and Gauss Law

    20/25

    Gauss Lawgivesusa relationshipbetweenthe fluxthroughaclosedsurface andthe charge containedwithinthe surface. Imagine

    thatwe are evaluatingthe electricfluxthroughasphericalsurface

    withapointcharge atitscenter.

    Animaginarysurface for evaluatingelectricfluxiscalledaGaussian surface.

    Firstwe note thatthe electricfieldpoints

    radiallyawayfromthepointcharge.We

    alsonotice thatallthe areavectorsdAi onthe surface ofthe sphere alsopoint radially

    awayfromthe charge. Finally,we knowthat

    the electricfieldshouldbe constantonthe

    surface ofthe sphere.

  • 8/9/2019 2. Electric Fields and Gauss Law

    21/25

    Since E = keq/r2 forapointcharge,andthe surface areaofasphere

    is 4r2,

    2

    E 2

    0 0

    q q = EA = 4r

    4 r

    ! -

    -

    We usedthe substitution ke = 1/(40),where 0 isthepermittivity

    offree space (8.85x10-12 C2/(Nm2))

    We chose asphere tointegrate overbutthe shape couldbe a

    completelyarbitraryone,aswe cansee inthe nextslide.

    EAdAEcos0dAEAdEE !!!! TT

  • 8/9/2019 2. Electric Fields and Gauss Law

    22/25

    Allthe shapeshave the same electricflux

    since theyallcontainthe same numberof

    fieldlines.Thus,foranyshape

    surroundingourpointcharge q,

    E

    0

    q =

    Ifwe hadmanypointcharges,we couldsurround eachwitha

    sphere whichwouldgive the same resultasthe one above.We

    couldthensurroundallofthe individualGaussiansphereswithan

    arbitraryvolume,whichwouldhave tocontainthe same amountoffluxasallthe individualspherescombined:

    1 2E 1 2

    0

    q + q +..... = + +..... =

    *

  • 8/9/2019 2. Electric Fields and Gauss Law

    23/25

    We couldmake the same argumentforacontinuouscharge

    distribution,aswe cansplititupintomanyinfinitesimal elements

    andthenfindthe flux,yieldingthe same resultasbefore.

    Gauss Law

    The netfluxthroughanyclosedsurface is

    where qin isthe netcharge containedwithinthe surface.

    !!0

    inE

    qAdE

    TT

  • 8/9/2019 2. Electric Fields and Gauss Law

    24/25

  • 8/9/2019 2. Electric Fields and Gauss Law

    25/25

    Imagine thatwe didnt knowthe fielddue

    toapointcharge.We coulduse Gauss Law

    tofindthe fieldatadistance rfromthe

    charge. First,we constructasphere aroundthe chargebecause 1)allpointsonthe

    spheressurface are the same distance away

    fromthe charge,thusthe fieldshouldbe

    constant,and 2)the elementsofareadA

    point radiallyawayfromthe charge,inthesame directionas E.

    ine2 2 2

    0 0

    q q qE= = = k

    4 r 4 r r

    0

    in2

    E

    q)r4E(dAEcos0dAEAdEI

    T !!!!! TT