78
2 - Deformation of mantle minerals Les Houches 2018

2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

2 - Deformation of mantle minerals

Les Houches 2018

Page 2: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

2

Seismic data mantle structure and flow

horizontal shear waves velocities anisotropy (direction and amplitude)

Yuan and Beghein, 2013

Les Houches 2018

Page 3: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

3

A multiscale problem

Ando et al, Nature, 2007

B. Reynard

rock

atomic

regional

103 km < 10-10 m

crystal

planet

Deformation and transformation processes span 10-9 s to 108 Yr

Les Houches 2018

Page 4: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

4

q Deformation 101

q Agents of deformation at crystal scale ?

q Consequences on physical properties « Viscosity »

Preferred orientations and seismic velocities

q Experimental tools for HP deformation

q Where we stand for mantle minerals

q Deformation of multi-phase aggregates

Les Houches 2018

Page 5: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Deformation 101

Les Houches 2018

Page 6: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

6

generic macroscopic case

Société Francophone des Biomatériaux Dentaires (SFBD) elastic deformation: linear and reversible

stress proportional to deformation : material elasticity, with E Young’s modulus, σ = E ε

σ

ε

Les Houches 2018

Page 7: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

7

<- flow stress depends on T, P, microstructure, f(O2)…

Société Francophone des Biomatériaux Dentaires (SFBD) plastic deformation: non linear, irreversible

permanent deformation

σ = F/S

ε = ΔL/L0

generic macroscopic case

Les Houches 2018

Page 8: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

8

P/T effects on rheology

T increase

P increase

Les Houches 2018

Page 9: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

9

rock = polycrystal

What controls the macroscopic behavior ...?

Ando et al, Nature, 2007

Les Houches 2018

Page 10: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

10

rock = polycrystal l  individual crystals l  grain boundaries l  microstructure

l  grain size(s) l  grain orientations l  grain shapes

l  contrasts in mineral properties…. Ando et al, Nature, 2007

Les Houches 2018

Page 11: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

What are the agents of deformation at the crystal and polycrystal scale ? Resulting physical properties ?

Les Houches 2018

Page 12: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

12

Crystals deform through the motion of lattice defects

direct deformation: •  many chemical bonds to break •  energetically not favorable •  high stress

S.Merkel Les Houches 2018

Page 13: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

13

physics of worms l  Let's consider a worm...

l  This how they do...

crystals do the same...

Move all legs forward ? High energy cost.

S.Merkel Les Houches 2018

Page 14: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

14

Crystals deform through the motion of lattice defects

Les Houches 2018

Page 15: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

15

Point defects:

vacancy interstitial substitution

Mobility : diffusion

Rheoman.eu / Multiscale modeling of the mantle rheology, 2018, eds. P. Cordier, A. Goryaeva.

Les Houches 2018

Page 16: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

16

Dislocation

Dislocations

Movie ref.: Kasher and Roberston, Acta Mater. 2012

Creep, in-situ

Les Houches 2018

Page 17: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

17

dislocations q  dislocation = linear defect

“line” in the crystal structure

q  moves under the effect of a shear stress

q  moves parallel to crystallographic plane(s) (more or less)

q  Displacement prop. to some interatomic distance (Burgers vector)

shear stress

slip plane

edge dislocation

line

REF

Les Houches 2018

Page 18: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

18

slip plane and directions depend on the structure

rule of thumb q  Slip direction: short translation in the lattice q  Slip plane: dense packing plane

example: MgO

MgO crystal structure

½<110> slip

½<110> slip in {100}, {110} or {111}

Which dislocation ?

Les Houches 2018

Page 19: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

19

Dislocation climb

à Diffusion-mediated (high T)

Rheoman.eu / Multiscale modeling of the mantle rheology, 2018, eds. P. Cordier, A. Goryaeva.

Les Houches 2018

Page 20: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

20

…multiple mechanisms:

l  intra-granular -  ‘Atomic’ diffusion (red arrows) -  dislocation glide (blue edges) -  dislocation climb (mediated by

diffusion)

l  grain boundaries -  diffusion (red arrows) -  disclinations (spirals) -  dislocation assisted boundary

sliding (green arrows, +planar defects)

-  diffusion assisted boundary sliding

picture S. Merkel

Les Houches 2018

Page 21: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Consequences on microstructure and on physical properties

‘viscosity’

Les Houches 2018

Page 22: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

22

Resulting properties: constitutive laws, from deformation to stress

!ε = !ε(P,T ,d ,COH ,...) ??????

Les Houches 2018

Page 23: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

23

Deformation to stress: constitutive laws

!ε = Aσ ne−QRT

!ε = Aσ nd − pCOHe−E+PV*RT

activation energy

stress exponent

activation energy E activation volume V*

grain size exponent

!ε = Ae−ERT

1− στ

⎝⎜

⎠⎟p⎡

⎢⎢

⎥⎥

q

Low temperature

Under pressure

Peierls stress

Les Houches 2018

Page 24: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

24

Deformation to stress: constitutive laws

!ε = Aσ nd − pCOHe−E+PV*RT

Olivine dislocation creep, Mei and Kohlstedt 2000

Les Houches 2018

Page 25: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

25

Deformation to stress: constitutive laws

!ε = Aσ nd − pCOHe−E+PV*RT

Olivine dislocation and diffusion creep, Mei and Kohlstedt 2000

Les Houches 2018

Page 26: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

26

association of plastic mechanisms

in series

in parallel

e.g. grain boundary sliding + dislocation creep

Les Houches 2018

Page 27: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

27

Why n=3 or how to build a constitutive law

Strain produced by a density ρ of dislocations with b burgers vector, moving a distance x :

Les Houches 2018

Page 28: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

28

Why n=3 or how to build a constitutive law

Strain produced by a density ρ of dislocations with b burgers vector, moving a distance x :

ε = ρbx

!ε = ρbvρ ≈σGb⎛

⎝⎜

⎠⎟

2

constant (steady state) àwith v velocity

!ε∝σ 3v ≈ vC ∝σ

Weertman 1999: if dislocation climb + glide operate in series, and slower process is climb

à

Les Houches 2018

Page 29: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

29

Exponents vs. deformation mechanisms

l  Diffusion dominated regime -  p > 0 -  n ≈ 1 -  newtonian viscosity, function of d and T

l  Dislocation creep dominated regime -  p ≈ 0 -  n ≈ 2-5 -  non-linear viscosity, depends on σ and T

l  Grain boundary sliding -  p ≈ 2 -  n ≈ 2

Viscosity

Les Houches 2018

Page 30: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

30

association of plastic mechanisms

in series

in parallel

e.g. grain boundary sliding + dislocation creep

Les Houches 2018

Page 31: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

31

deformation maps dominant deformation mechanism, depending on external conditions

parameters: stress temperature grain size strain rate pressure…

several mechanisms can be active at the same time

Frost and Ashby, Deformation-Mechanism Maps

Les Houches 2018

Page 32: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

32

When looking at experimental flow laws in the literature, keep in mind

•  conditions under which they have been measured (P, T, ε, d, composition)

•  several mechanisms may act concurrently - microstructural understanding (characterisation) is a must have for use of a flow law, and a fortiori for extrapolation

Les Houches 2018

Page 33: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

33

Further consequences of pressure : the famous “a-slip to c-slip switch” in olivine slip systems

Les Houches 2018

Page 34: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

34

Further consequences of pressure : the famous “a-slip to c-slip switch” in olivine slip systems

a

b

c

b

a

c

J. Durinck, P. Cordier

shear along <a> in (010)

shear along <c> in (010)

Les Houches 2018

Page 35: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Consequences on microstructure and on physical properties preferred orientations and seismic velocities

Les Houches 2018

Page 36: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

36

Olivine (Mg,Fe)SiO4

P wave velocity 0 GPa – 300 K

Anisotropy: single crystal

Stereographic projection:

S. Merkel Les Houches 2018

Page 37: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

37

Bridgmanite Single crystal anisotropy in both Vp and Vs about 8 % at 1000 km prof., 13 % at 2500 km.

D. Mainprice: Seismic anisotropy in the deep earth from a mineral and rock physics perspective, in Treatise on geophysics, vol.2, 2007 Images : Rheoman.eu / Multiscale modeling of the mantle rheology, 2018, eds. P. Cordier, A. Goryaeva.

Les Houches 2018

Page 38: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

38

Bridgmanite single crystal at 88 GPa and 2000K

D. Mainprice: Seismic anisotropy in the deep earth from a mineral and rock physics perspective, in Treatise on geophysics, vol.2, 2007

Les Houches 2018

Page 39: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

39

Post-perovskite Single crystal anisotropy in Vp 15% and Vs 22% at 120 GPa.

D. Mainprice: Seismic anisotropy in the deep earth from a mineral and rock physics perspective, in Treatise on geophysics, vol.2, 2007 Images : Rheoman.eu / Multiscale modeling of the mantle rheology, 2018, eds. P. Cordier, A. Goryaeva.

Les Houches 2018

Page 40: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

40

D. Mainprice: Seismic anisotropy in the deep earth from a mineral and rock physics perspective, in Treatise on geophysics, vol.2, 2007

Post-perovskite single crystal

Les Houches 2018

Page 41: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

41

No preferred orientations Random fabric Anisotropies of each crystal cancel each other

Anisotropy : polycrystal

Les Houches 2018 S. Merkel

Page 42: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

42

Plastic deformation Dislocation glide Grain rotations Non-random crystal orientations

olivine ex. of slip system

Anisotropy: plastic deformation

Les Houches 2018 S. Merkel

Page 43: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

43 Les Houches 2018 S. Merkel

Page 44: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Experimental tools for deformation

Les Houches 2018

Page 45: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

45

high-pressure deformation tools

No stress probe available / large frictions above 2 GPa

Early 2000: new deformation apparatus needed, solid pressure medium + new measurement « device » needed….

Griggs, Heard, Paterson…

Deformation-Dia (2003)

Rotational Drickamer (RDA, 2001)

D T-cup (2010?)

DAC

geot

herm

Multi-anvil

Les Houches 2018

Page 46: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

46

Diamond anvil cells

Les Houches 2018

images S. Merkel

q Highest pressure tool (to lower mantle, core conditions)

q  Sample sizes: 100’s microns x 10’s microns

q  Laser heat, resistive heat: large T range

q  « uncontrolled » deformation

few 100 microns

Page 47: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

47

Large volume presses q  Lower pressures q  Larger samples ! larger grain sizes possible q  Smaller T gradients q  Control H2O, f(O2) q  (easier) decoupling of

deformation from pressure (constant V) Durham et al, 2002

D-Dia

Les Houches 2018

Page 48: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

48

Les Houches 2018

ESRF ID06-LVP

Page 49: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

49

Highest pressures and shear geometry

Nishiyama et al, 2008,

Kawazoe et al, 2009

Experimental cell for RDA Yamazaki and Karato, Rev Sci Instr (2001)

Rotational Drickamer (RDA): opposed anvils D-Dia double-stage

Les Houches 2018

Page 50: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

50

Measuring stresses under high pressure ?

Coupling high pressure tools with synchrotron radiation: in-situ measures

Inc. X rays

ψ

Inc. X rays

ψq  Transparent anvils (sintered

diamonds, cBN, …) q  Transparent high pressure

cell (amorphous boron – epoxy, graphite furnace, hBN…)

Compres.us

Wang et al. 2003

Les Houches 2018

Page 51: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

51

D-Dia typical cell assemblies

1.6 mm 2.0 mm

Boron + epoxy

1.2 mm

crushable alumina

densified alumina

BN

graphite

1.2 mm

Sample

thermocouple

buffer rod (Vp, Vs)

Les Houches 2018

Page 52: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

52

radiography for strain in-situ

Time (s)‏

Str

ain

(% ‏(

dε/dt=2.7 10-6 s-1

dε/dt=1.7 10-5 s-1

Metal sheets above and below P = 7 GPa T = 1673 K

pictures P. Raterron

Les Houches 2018

Page 53: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

53

diffraction for stress in-situ

nλ = 2dsinθ

www.hyperphysics.phy-astr.gsu.edu

Les Houches 2018

Page 54: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

54

diffraction for stress in-situ polycrystal diffraction of monochromatic x-rays

nλ = 2dsinθ

Les Houches 2018

Page 55: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

55

diffraction for stress in-situ

figure S. Merkel

Les Houches 2018

Page 56: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

56

diffraction for stress in-situ Unrolled pattern (« cake »)

Measures: •  isotropic part σP •  t = σ1-σ3

elastic theory, Sing et al, 1998, Uchida et al, 1996

Les Houches 2018

Page 57: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

57

diffraction for stress in-situ

q  lattice strains: for each diffraction plane, a « stress » measure

macroscopic stress … ? not straigthforward ! Some tools exist but still no satisfactory way to have « absolute » stress measurements.

Les Houches 2018

Page 58: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

58

X-ray diffraction for microstructure

peak intensities variations and broadening q preferred orientations

« texture » q microstrains, crystallite size

preferred orientation -> slip systems -> + elastic constants = seismic properties of rocks

inverse pole figure for the maximum compression direction,

assuming cylindrical symmetry olivine at 5GPa, 1600K, strain

11%

Les Houches 2018

Page 59: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

59

q  Experimental tools exist at the relevant P and T. f(O2), H2O can be (somewhat) controlled.

q  Natural strain rates *convection* down to 10-14, 10-16 s-1… : not attainable experimentally.

q  Go to natural microstructures

q  Models

q  Experiments and models need to be validated by geophysical observations and/or geological samples

Les Houches 2018

Page 60: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

60

Numerical modeling state of the art : example of MgO

Amodeo et al, 2018 Amodeo et al, 2016 Amodeo et al, 2014

Atomistic calculations Dislocation cores, lattice scale

Dislocation dynamics « DD » Dislocation interactions

crystal scale

Finite elements models polycristal

Great for bridging temporal scales Complex compositions and large unit cells: difficult ! Grain growth, nucleation, … currently not possible

Multiscale modeling of the mantle rheology, 2018, eds. P. Cordier, A. Goryaeva.

Les Houches 2018

Page 61: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Where we stand on mantle minerals (experimental) deformation

Les Houches 2018

Page 62: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

62

(non exhaustive) experimental data on mantle minerals deformation

slip systems/deformation mechanisms

controlled deformation experiments

comments

olivine +++ +++ increasingly sophisticated constitutive laws and deformation maps

majorite + +

wadsleyite ++ +(+)

ringwoodite ++ +(+) LVP difficult

bridgmanite ++ (+) DAC most of the stab. field

post-perovskite

++ - DAC only

periclase +++ at ambient PT

++ Commonly investigated in material science

perovskites +++ at ambient PT

+ ? Commonly investigated in material science

Les Houches 2018

Page 63: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

63

Wadsleyite deformation map

Farla et al, PCM2015

Les Houches 2018

Page 64: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

64

Merkel and Cordier, 2016 in Deep earth: physics and chemistry of the lower mantle and core.

Slip systems in lower mantle minerals

Les Houches 2018

Page 65: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

65

Ex. of seismic anisotropy of post-perovskite and D’’

DAC experiments

Wu et al, 2017

Les Houches 2018

Page 66: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

66

Ex. of seismic anisotropy of post-perovskite and D’’

-> (001)[100] and [010] or {110} were active

DAC experiments Modeling slip systems

Wu et al, 2017

Les Houches 2018

Page 67: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

67

Wu et al, 2017

Shear wave splitting larger than geophysical observations. Other deformation mechanisms which do not produce anisotropy ? -  Diffusion ? -  Planar defects ? -  Second phase ?

Ex. seismic anisotropy of post-perovskite and D’’

Les Houches 2018

Page 68: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Multi-phase deformation

Les Houches 2018

Page 69: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

69

load bearing frame interconnected weak layer Handy, 1994

q Which material is the weakest / strongest? q How do stress and strain partition in the phases? q What is the viscosity of the aggregate ?

Dealing with polymineralic deformation

Les Houches 2018

Page 70: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Bridgmanite/perovskite and MgO aggregates:

Les Houches 2018

Page 71: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

71

Bridgmanite « strong »

+ periclase « weak »

Marquardt and Miyagi, 2015

q Is MgO weaker or stronger than bridgmanite ? q Which one controls the overall behavior ?

Les Houches 2018

Page 72: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

72

elastic and plastic interactions between these phases and microstructural evolution ?

Experiments –  Girard et al, 2015, 50% MgO –  Kaercher et al, 2015, textures on two

phases analogs

Girard et al, Science 2015

Les Houches 2018

Page 73: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

73

Girard et al, Science 2015

Bridgmanite and MgO deformed to large strains in Rotational Drickamer under lower mantle conditions

Les Houches 2018

Page 74: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

74

Deformation experiments (D-DIA)

starting material

q  Analog for the lower mantle (Mg,Fe)SiO3+(Mg,Fe)O q  CaGeO3-pv + MgO two-phase polycrystal (70-30) q  CaGeO3-Pv single-phase polycrystal, same P-T-deformation

paths q  + unpub. run at strain > 25% 2-phases polycrystal, 1000K.

Les Houches 2018

800K$1000K$

600K$

1200K$

(0.01$

(0.008$

(0.006$

(0.004$

(0.002$

0$

0.002$

0.004$

0.006$

0.008$

0.01$

30$ 50$ 70$ 90$ 110$ 130$ 150$ 170$ 190$

Q(100)$Q(110)$Q(200)$Q(210)$Q(211)$Q(220)$

Textures$CaGePv$D0754$–$maximum$compressive$stress$inverse$pole$figures$$

Q(hkl)$

DiffracLon$#$

001$ 110$

111$

Page 75: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

75

800K$1000K$

600K$

1200K$

(0.01$

(0.008$

(0.006$

(0.004$

(0.002$

0$

0.002$

0.004$

0.006$

0.008$

0.01$

30$ 50$ 70$ 90$ 110$ 130$ 150$ 170$ 190$

Q(100)$Q(110)$Q(200)$Q(210)$Q(211)$Q(220)$

Textures$CaGePv$D0754$–$maximum$compressive$stress$inverse$pole$figures$$

Q(hkl)$

DiffracLon$#$

001$ 110$

111$

Pv lattice strains in two-phase sample Wang et al, 2013

Les Houches 2018

Page 76: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

76

MgO lattice strains in two-phase sample Wang et al, 2013

Les Houches 2018

Page 77: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

77

9(2) GPa, 600 K

Bulk strain, %0 2 4 6 8 10 12

D0748, GePv single phase sampleD0754, GePv two-phased sampleGePv+MgO average in two phased sample

7(2) GPa, 800 K

Bulk strain, %0 2 4 6 8 10

5(1) GPa, 1000 K

Bulk strain, %0 2 4 6 8 10

Diff

eren

tial s

tres

s, G

Pa

0

1

2

3

4

5

GePv in two-phase

composite

Avg. GePv

+MgO

GePv single-phase

Wang, Hilairet et al. G3, 2013

q Two-phase sample stress average calculated with a Taylor approximation (volumetrically weighted average of phase stresses)

q Mechanical behavior still controlled by the strong phase (Pv)

……Larger strains and/or higher MgO content ?

Les Houches 2018

Page 78: 2 - Deformation of mantle minerals...2 - Deformation of mantle minerals Les Houches 2018 2 Seismic data mantle structure and flow horizontal shear waves velocities anisotropy (direction

Les Houches 2018