108
44 2009

2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia [email protected] • Jean Boyazoglu, 51 Porte de France, 06500,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

442009

2 0 0 944

ISBN 978-92-5-006269-3 ISSN 1014-2339

TC/M/I0831Tri/1/5.09/2300

9 7 8 9 2 5 0 0 6 2 6 9 3

Page 2: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

Editors - Editeurs - Editores:S. Galal & I. Hoffmann

Viale delle Terme di Caracalla,00153 Rome, Italy

Animal Genetic Resources Information ispublished under the auspices of the Foodand Agriculture Organization of theUnited Nations (FAO). It is edited in theAnimal Genetic Resources Group of theAnimal Production and Health Divisionof FAO. It is available direct from FAO orthrough FAO sales agents.

ANIMAL GENETIC RESOURCESINFORMATION will be sent free of chargeto those concerned with the sustainabledevelopment and conservation ofdomestic livestock. Anyone wishing toreceive it regularly should send their nameand address to the Editor, at the addressshown above.AGRI can also be found in the “Library”of DAD-IS at www.fao.org/dad-is.

Le Bulletin d’information sur les ressourcesgénétiques animales est publié sous lesauspices de l’Organisation des NationsUnies pour l’alimentation et l’agriculture(FAO). Cette publication est éditée par leGroupe des ressources génétiques de laDivision de la production et de la santéanimales de la FAO. On peut se le procurerdirectement au siège de la FAO ou auprèsdes dépositaires et agents de vente despublications de l’Organisation.

LE BULLETIN D’INFORMATION SURLES RESSOURCES GÉNÉTIQUESANIMALES sera envoyé gratuitement auxpersonnes intéressées par ledéveloppement durable et la conservationdu cheptel national. Les personnessouhaitant recevoir cette publicationrégulièrement voudront bien faire parvenirleurs nom et adresse à l’éditeur, àl’adresse susmentionnée.AGRI peut être consulté également dansla “Bibliothèque” de DAD: www.fao.org/dad-is.

El Boletín de información sobre recursosgenéticos animales se publica bajo losauspicios de la Organización de lasNaciones Unidas para la Agricultura y laAlimentación (FAO). Se edita en el Grupode Recursos Zoogenéticos de la Direcciónde Producción y Sanidad Animal de laFAO. Se puede obtener directamente de laFAO o a través de sus agentes de venta.

EL BOLETÍN DE INFORMACIÓN SOBRERECURSOS GENÉTICOS ANIMALES seráenviado gratuitamente a quienes esténinteresados en el desarrollo sostenible yla conservación del ganado doméstico. Sise desea recibirlo regularmente, se ruegacomunicar nombre, apellido y direcciónal editor a la dirección arriba indicada.AGRI puede consultarse también en la“Biblioteca” de DAD-IS en:www.fao.org/dad-is.

ANIMAL GENETIC

RESOURCES INFORMATION

BULLETIN

D’INFORMATION

SUR LES RESSOURCES

GÉNÉTIQUES ANIMALES

BOLETÍN DE

INFORMACIÓN SOBRE RECURSOS

GENÉTICOS ANIMALES

CONTENTS Page

442009

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

ORGANISATION DES NATIONS UNIES POUR L’ALIMENTATION ET L’AGRICULTURE

ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN

Basic demographic data – a prerequisite for effectivemanagement of animal genetic resources ........................................................... 1

B. Scherf & D. Pilling

Production environment recording .......................................................................... 7B. Scherf & M. Tixier-Boichard

Community-based management of farm animal genetic resourcesin practice: framework for focal goats in two ruralcommunities in Southern Benin ........................................................................ 11

L.H. Dossa, C. Wollny, M. Gauly & I. Gbégo

South African developed meat type goats: A forgottenanimal genetic resource? .................................................................................. 33

A. Pieters, E. van Marle-Köster, C. Visser, & A. Kotze

Genetic diversity and zebu genes introgression in cattle populationalong the coastal region of the Bight of Benin ................................................. 45

O.D. Koudandé, G. Dossou-Gbété, F. Mujibi, H. Kibogo, D. Mburu,G.A. Mensah, O. Hanotte & J.A.M. van Arendonk

Evaluación de la variabilidad y potencial genético de poblacionesde bovinos criollos colombianos...................................................................... 57

R. Martínez, J. Gallego, G. Onofre, J. Pérez & R. Vasquez

Molecular characterization of two common Chadian cattle breeds ........................ 67C. Flury, B.N.R. Ngandolo, B. Müller, J. Zinsstag & H.N. Kadarmideen

Characterization of Banni buffalo of Western India ............................................... 77B. P. Mishra, K.P. Singh, D.B. Chavan, D.K. Sadana,R.S. Kataria, P. Kathiravan & S.P.S. Ahlawat

Establishing a conservation flock for “Vorwerkhuhn” chickenbreed – a case study of in-situ conservation of localchicken breeds in Germany............................................................................... 87

S. Weigend, K. Stricker & F.-G. Röhrßen

Recent Publications ............................................................................................... 89

Editorial policies and procedures ........................................................................... 93

Page 3: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

Editorial Advisory Board (EAB) of Animal Genetic Information (AGRI)

• Editor-in-Chief: I. Hoffmann, Chief Animal Production Service, FAO• Editor: S. Galal• Technical Editor: C. Mosconi• Editorial Board: L. Alderson

J. S. BarkerJ. BoyazogluJ.V. Delgado BermejoJ.F. GarciaH. JianlinJ. MuellerO. MwaiC. NimbkarD. NotterL. OllivierE. vanMarle-Koster

The following is the address for each of the members of the Editorial Advisory Board.

• Irene Hoffmann, FAO, Viale delle Terme di Caracalla 1, 00153 Rome, [email protected]

• Salah Galal, Animal Production Department, Faculty of Agriculture, University of Ain Shams, PO Box 68,Hadaeq Shubra 11241, Cairo, [email protected]

• Lawrence Alderson, Countrywide Livestock Ltd, 6 Harnage, SY5 6EJ Shrewsbury, Shropshire, UK,[email protected]

• Stuart Barker, Emeritus Professor University of New England; Honorary Professor University of Queensland,114 Cooke Road, Witta, Maleny, Qld 4552, [email protected]

• Jean Boyazoglu, 51 Porte de France, 06500, Menton (PACA), [email protected]

• Juan Vicente Delgado Bermejo, Departamento de Genética, Universidad de Córdoba, Campus de RabanalesEdificio C-5 (Gregor Mendel), 14071 Córdoba, [email protected]

• Jose Fernando Garcia, Universidade Estadual Paulista, Departamento de Apoio, Produção e Saúde Animal,Laboratório de Bioquímica e Biologia Molecular Animal, Rua Clóvis Pestana, Aracatuba, [email protected]

• Han Jianlin, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences, No. 2, Yuan MingYuan Xi Lu, Haidian District, Beijing 1000193, P.R. [email protected]

• Joaquin Mueller, National Institute of Agricultural Technology (INTA), CC 277, Valle Verde, San Carlos deBariloche, 8400 Rio Negro, [email protected]

• Okeyo Mwai, International Livestock Research Institute (ILRI), P.O. Box 30709 Nairobi 00100, Kenya,[email protected]

• Chanda Nimbkar, Animal Husbandry Division, Nimbkar Agricultural Research Institute, P.O. Box 23,Phaltan, Maharashtra, [email protected]

• David Notter, Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University,Blacksburg, VA 24061, [email protected]

• Louis Ollivier, 8 Impasse Calmette, 78350 Jouy-en-Josas, [email protected]

• Este vanMarle-Koster, Department of Animal & Wildlife Sciences, Faculty of Natural & AgriculturalSciences,University of Pretoria, 0002 Pretoria, South [email protected]

• Cesare Mosconi, European Association for Animal Production (EAAP), Via G. Tomassetti 3, 00161 Rome, [email protected]

Page 4: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

I

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Editorial – The 5th session of the Intergovernmental TechnicalWorking Group on Animal Genetic Resources for Food andAgriculture. Recommendations and advices

The Fifth Session of the IntergovernmentalTechnical Working Group on Animal GeneticResources for Food and Agriculture took place inRome in January 2009. This first meeting of theWorking Group following the Interlaken Conferencerepresented an important opportunity to fostermomentum in the implementation of the Global Planof Action for Animal Genetic Resources. The positiveoutcomes of the meeting, and the spirit ofcollaboration that characterized the discussions,were therefore very much to be welcomed. TheReport of the Session1 contains clearrecommendations and advice to the Commission onGenetic Resources for Food and Agriculture, inparticular on the design and elements of a FundingStrategy for the Global Plan of Action and on aprocess for evaluating progress in implementation.

A key objective for the immediate future is totranslate the Strategic Priorities of the Global Planinto effective plans for action at country level. TheWorking Group recommended that the Commissionwelcome the Draft guidelines to assist the preparationof national strategies and action plans for animal geneticresources for food and agriculture presented to themeeting by the FAO Secretariat, and that it requestFAO to finalize and publish these guidelines.Preparation of a National Strategy and Action Planwill help countries to decide on how to achievemore effective utilization of their animal geneticresources, taking national circumstances andpriorities, including the availability of human andfinancial resources, fully into account. It willprovide a means to better engage diverse interestswithin the livestock sector and to enhanceunderstanding among policy-makers and thegeneral public of the importance of animal geneticresources, the multiple roles and values of livestock,and the need to maintain the genetic diversity thatwill enable adaptation to changing conditions.

The Working Group also recommended that theCommission reaffirm the relevance of theestablishment of country-based early warning andresponse systems for animal genetic resources aspart of broader national strategies for the

management of these resources, taking into accountnational circumstances and the relevant StrategicPriorities and Actions of the Global Plan of Action.The Working Group stressed the importance ofnational back-up storage systems for animal geneticresources and recommended that the Commissionencourage countries to establish such systems, ifthey have not done so already.

The Working Group recommended that theCommission acknowledge the importantcontributions of small-scale livestock keepers,particularly in developing countries, as custodiansof much of the world’s animal genetic resources. Itstressed the importance of capacity-building tosupport the improvement of local and multi-functional breeds in low- and medium-inputproduction systems, and institutional support toaddress the particular needs of such systems, whileensuring respect for the knowledge, innovationsand practices of indigenous and local communities,and the application of relevant national legislationand international agreements. It also recommendedthat the Commission note the need for countries totake into account the contributions of small-scalelivestock keepers and promote their full andeffective participation in the implementation of theGlobal Plan of Action; in the preparation andimplementation of National Strategies and ActionPlans for Animal Genetic Resources; and asappropriate, food security, poverty alleviation andlivelihood security policies and programmes.

A two-pronged approach to reporting onprogress in the implementation of the Global Plan ofAction was discussed a) Reporting by countries,regions, FAO and other organizations on theprocess of implementation of the Global Plan ofAction; and b) Reporting by countries on the statusand trends of animal genetic resources which willalso help to assess the actual impact of theimplementation of the Global Plan of Action. For thefirst type of report, the Working Grouprecommended that the Commission adopt a

1All ITWG 5 documents are available at:http://www.fao.org/ag/againfo/programmes/en/genetics/angrvent-5th-docs.html

Page 5: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

II

progress reporting interval of four years. Withregard to status and trends reports on animalgenetic resources, the Working Grouprecommended that the Commission request FAO toprepare synthesis reports based on data andinformation provided by countries through DAD-IS,and make these reports available to the Commissionat each of its regular sessions. In this regard, theWorking Group stressed the need for regular

updating of national data and information onanimal genetic resources, and the importance ofproviding financial and technical support fordeveloping countries to assist them in updatingtheir data and information.

The Editors

Page 6: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

III

La Cinquième session du Groupe de travailtechnique intergouvernemental sur les ressourceszoogénétiques pour l’alimentation et l’agriculture aeu lieu à Rome en janvier 2009. Après la Conférenced’Interlaken, cette première réunion du Groupe detravail a représenté une importante occasion pourpromouvoir la réalisation du Plan d’action mondialsur les ressources zoogénétiques. Les résultats positifsde la réunion, ainsi que l’esprit de collaboration quia caractérisé les discussions, ont été hautementappréciés. Le rapport de la réunion1 contient desrecommandations et conseils précis pour laCommission sur les ressources génétiques pourl’alimentation et l’agriculture, et en particulier sur leconcept et les éléments pour une Stratégie definancement de la mise en oeuvre du Plan d’actionmondial et sur le processus d’évaluation des progrèsobtenus dans la mise en oeuvre.

L’objectif principal pour le futur immédiat est laconversion des Priorités stratégiques du PlanMondial en plans effectifs d’action au niveaunational. Le Groupe de travail a recommandé que laCommission adopte l’ébauche des Directives pour lapréparation des stratégies nationales et des plans d’actionsur les ressources zoogénétiques pour l’alimentation etl’agriculture présentée lors de la réunion par leSecrétariat de la FAO, et que l’on sollicite de la FAOla finalisation et publication de ces directives. Lapréparation d’une Stratégie nationale et un Pland’action aideront les pays à décider commentobtenir une utilisation plus effective de leursressources zoogénétiques tout en tenant comptepleinement des circonstances et des priorités auniveau national, y compris la disponibilité deressources humaines et financières. De cette façonon mettra à disposition un outil pour faciliter unmeilleur accord entre les différentes parties quiexistent dans le domaine de l’élevage et unemeilleure compréhension parmi les législateurs et lepublic sur l’importance des ressourceszoogénétiques, les différents rôles et valeurs del’élevage, ainsi que la nécessité de conserver ladiversité génétique pour permettre son adaptationaux conditions changeantes.

Le Groupe de travail a aussi recommandé que laCommission reconfirme l’importance d’établir auniveau national des systèmes d’alerte etd’intervention rapide pour les ressourceszoogénétiques à l’intérieur d’autres stratégiesnationales plus larges pour la gestion de cesressources, tout en considérant les circonstancesnationales et l’importance des Priorités et desactions stratégiques du Plan d’action mondial. LeGroupe de travail a souligné l’importance dessystèmes nationaux de sauvegarde pour lesressources zoogénétiques et a recommandé à laCommission d’encourager les pays pour qu’ilsétablissent ce type de systèmes s’ils ne l’ont pasencore fait.

Le Groupe de travail a recommandé que laCommission reconnaisse l’importance de lacontribution des petits éleveurs, en particulier dansles pays en voie de développement, en tant quegardiens de la plus grande partie des ressourceszoogénétiques existante dans le monde. On asouligné l’importance du renforcement descapacités de réalisation pour soutenirl’amélioration des races locales et multifonctionnelles dans des systèmes de moyen et faibleapport, ainsi que le soutien des institutions pourrésoudre les besoins spécifiques de ces systèmes,tout en respectant les connaissances, lesinnovations et les pratiques des communautésindigènes et locales et l’application de la législationnationale appropriée et des accords internationaux.Il a également recommandé que la Commission notele besoin des pays à prendre en considération lescontributions des petits propriétaires et à favoriserleur pleine et effective participation dans laréalisation du Plan d’action mondial; dans lapréparation et réalisation des Plans nationaux de

Cinquième session du Groupe de travail techniqueintergouvernemental sur les ressources zoogénétiques pourl’alimentation et l’agriculture

1Tous les documents ITWG 5 sont disponibles sur:http://www.fao.org/ag/againfo/programmes/en/genetics/angrvent-5th-docs.html

Page 7: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

IV

stratégie et d’action pour les ressourceszoogénétiques; et, si nécessaire, dans lesprogrammes et les politiques de sécuritéalimentaire, atténuation de la pauvreté et sécuritédes moyens d’existence.

On a discuté d’une double approche pourinformer sur l’état de réalisation du Plan d’actionmondial: a) rapports par pays, régions, de la FAO etdes autres organisations sur l’état de la réalisationdu Plan d’action mondial; et b) rapports par pays surla situation et tendance des ressourceszoogénétiques qui aideront à évaluer l’impact actuelde la réalisation du Plan mondial d’action. Pour lepremier type de rapport le Groupe de travail arecommandé que la Commission adopte laprésentation des rapports sur l’avancement du

travail avec un intervalle de quatre ans. En ce quiconcerne les rapports sur la situation et tendancedes ressources zoogénétiques, le Groupe de travail arecommandé que la Commission sollicite de la FAOla préparation de rapports synthétiques basés surles données et l’information fournis par les pays àtravers DAD-IS et que ces rapports soientaccessibles à la Commission lors de chacune de sesréunions ordinaires. A ce sujet, le Groupe de travaila souligné le besoin d’une mise à jour régulière desdonnées et des informations nationales sur lesressources zoogénétiques, ainsi que l’importance defournir une aide financière et technique aux pays envoie de développement pour les aider dans la mise àjour de leurs données et informations.

Les Editeurs

Page 8: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

V

La Quinta reunión del Grupo de Trabajo TécnicoIntergubernamental sobre los RecursosZoogenéticos para la Alimentación y la Agriculturatuvo lugar en Roma en enero del 2009. Tras laConferencia de Interlaken, esta primera reunión delGrupo de Trabajo ha representado una ocasiónimportante para fomentar la realización del Plan deAcción Mundial sobre los Recursos Zoogenéticos. Losresultados positivos de la reunión1, así como elespíritu de colaboración que caracterizaron lasdiscusiones, fueron muy apreciados. El informe dela reunión contiene claras recomendaciones yconsejos para la Comisión sobre Recursos Genéticospara la Alimentación y la Agricultura, en particular,sobre el diseño y los elementos para una Estrategiade financiación para el Plan de Acción Mundial, ysobre el proceso de evaluación de los progresosobtenidos en su realización.

El objetivo principal para el futuro inmediato esla conversión de las Prioridades Estratégicas delPlan de Acción Mundial en planes efectivos de accióna nivel nacional. El Grupo de Trabajo recomendóque la Comisión adoptara el borrador de las Líneasguía para la preparación de estrategias nacionales yplanes de acción sobre los recursos zoogenéticos para laalimentación y la agricultura presentado a la reuniónpor la Secretaría de la FAO, y que se solicitara a laFAO que finalicen y publiquen estas líneas guía. Lapreparación de una Estrategia Nacional y un Plande Acción ayudará a los países a decidir cómoconseguir una utilización más efectiva de susrecursos zoogenéticos, teniendo en cuentaplenamente las circunstancias y prioridadesnacionales, incluida la disponibilidad de recursoshumanos y financieros. De esta forma, seproporcionara un medio para alcanzar un mejorcompromiso entre los distintos intereses dentro delsector ganadero y un mayor entendimiento entre loslegisladores y el público sobre la importancia de losrecursos zoogenéticos, las múltiples líneas deconducta y valores de la ganadería, así como lanecesidad de mantener la diversidad genética quepermitirá la adaptación a las condicionescambiantes.

El Grupo de Trabajo también recomendó que laComisión reafirmara la importancia delestablecimiento a nivel nacional de sistemas dealerta y respuesta rápidas para los recursoszoogenéticos como parte de las más ampliasestrategias nacionales para la gestión de estosrecursos, teniendo en cuenta las circunstanciasnacionales y la importancia de las Prioridades yAcciones Estratégicas del Plan de Acción Mundial. ElGrupo de Trabajo subrayó la importancia de lossistemas nacionales de salvaguardia de los datossobre recursos zoogenéticos y recomendó a laComisión alentar a los países para que establezcaneste tipo de sistemas en caso de que no lo hayanhecho todavía.

El Grupo de Trabajo recomendó que la Comisiónreconociera la importante contribución de lospequeños agricultores, en particular de los paísesen vía de desarrollo, en cuanto guardianes de lamayor parte de los recursos zoogenéticos existentesen el mundo. Se subrayó la importancia de reforzarlas capacidades para apoyar la mejora de las razaslocales y multi funcionales en sistemas de baja ymedia producción, y el apoyo institucional pararesolver las necesidades particulares de esossistemas, manteniendo el respeto por losconocimientos, innovaciones y prácticas de lascomunidades indígenas y locales, y el uso de lalegislación nacional relevante y de los acuerdosinternacionales. También recomendó que laComisión tomara nota de la necesidad de los paísesde tener en cuenta las contribuciones de lospequeños propietarios ganaderos y promoviera suplena y efectiva participación en la realización delPlan de Acción Mundial; en la preparación yrealización de los Planes Nacionales de Estrategia yAcción para los Recursos Zoogenéticos; y, cuandosea necesario, en los programas y políticas de

Quinta reunión del Grupo de Trabajo Técnico Intergubernamentalsobre los Recursos Zoogenéticos para la Alimentación y laAgricultura

1Todos los documentos de ITWG 5 están disponibles en:http://www.fao.org/ag/againfo/programmes/en/genetics/angrvent-5th-docs.html

Page 9: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

VI

seguridad alimentaria, alivio de la pobreza yseguridad de sustento.

Se discutió sobre un doble enfoque parainformar acerca del estado de realización del Plan deAcción Mundial: a) Informes por países, regiones, dela FAO y otras organizaciones sobre el estado derealización del Plan de Acción Mundial, y b) Informespor países sobre la situación y tendencia de losrecursos zoogenéticos que ayudará a evaluar elimpacto actual de la realización del Plan de AcciónMundial. Para el primer tipo de informe, el Grupo deTrabajo recomendó que la Comisión adoptara lapresentación de informes sobre el avance del trabajoa intervalos de cuatro años. En cuanto a los

informes sobre la situación y tendencia de losrecursos zoogenéticos, el Grupo de Trabajorecomendó que la Comisión solicitara a la FAO lapreparación de informes sintéticos basados en losdatos y la información proporcionada por lospaíses a través de DAD-IS y que estos informesfueran accesibles a la Comisión durante cada unade sus reuniones ordinarias. A este respecto, elGrupo de Trabajo subrayó la necesidad de unaactualización continúa de los datos e informacionesnacionales sobre recursos zoogenéticos, así como laimportancia de proveer ayuda financiera y técnica alos países en vía de desarrollo para apoyarles en laactualización de sus datos e informaciones.

Los Editores

Page 10: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

1

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 1-6

Summary

Demographic data describe the size, structure anddistribution of livestock populations and how thesechange over time. They are fundamental todetermining the risk status of breed populationsboth on a national and a global scale. Currently, nopopulation data are available for 36 percent of thebreeds recorded in the Domestic Animal DiversityInformation System (DAD-IS), and for many otherbreeds data are updated so infrequently thatmonitoring trends in risk status is difficult orimpossible. Data on the geographical distribution ofbreeds are also generally inadequate. A baselinesurvey of the breed population needs to be followedby periodic monitoring. The required frequency ofthe monitoring activities will depend on thegeneration interval of the species in question. Datamay be collected via breed-level censuses orsurveys, or estimated based on species level data. Itis important that national decision-making takesaccount of the global demographics of the breed; aclassification system distinguishing breeds presentonly in one country from those present in severalcountries has been developed. Much remains to bedone to improve the availability of demographicdata. Moreover, methods need to be developed thataccount for the risks of genetic erosion associatedwith indiscriminate cross-breeding. A further keyrequirement is the development of methods forrepresentative sampling of national animalpopulations to allow estimates of their totalpopulation size and other demographic data to beobtained in a cost-effective manner.

Résumé

Les données démographiques indiquent la taille, lastructure et la distribution des populationsdomestiques et comment elles changent dans letemps. Ces données sont fondamentales pourdéterminer la situation de risque des races auniveau national et mondial. Actuellement il n'existe

Basic demographic data – a prerequisite for effective managementof animal genetic resources

B. Scherf & D. Pilling

FAO, Animal Production and Health Division, Viale delle Terme di Caracalla, 00153 Rome, Italy

aucune donnée de population pour 36% des racesenregistrées dans le Système d'Information sur laDiversité des Animaux Domestiques (DAD-IS), etdans la plupart des autres cas les données sontmise à jour avec si peu de fréquence qu'il est difficileet même impossible de suivre la situation de risqueet la tendance. Très souvent aussi les données sur ladistribution géographique des races ne sont pasappropriée. Une enquête de base sur lespopulations a besoin d'un suivi continu. Lafréquence nécessaire pour faire le suivi des activitésdépendra de l'intervalle entre générations desespèces à l'étude. Les données doivent être saisies àtravers les recensements par races ou les enquêtes,ou aussi à travers les estimations basées sur lesdonnées au niveau des espèces. Il est important queles législateurs au niveau national tiennent comptede la démographie mondiale de la race. Un systèmede classement a été mis au point qui détermine lesraces présentes seulement dans un pays de cellesqui se trouvent dans différents pays. Il reste encorebeaucoup à faire pour améliorer la disponibilité desdonnées démographiques. Cependant, il estnécessaire de développer des méthodes quivalorisent les risques de l'érosion génétique associésaux croisements sans contrôle. Il est aussi importantde développer des méthodes représentativesd'échantillonnage des populations animales auniveau national afin de permettre l'évaluation de lataille totale des populations et des autres donnéesdémographiques qui peuvent s'obtenir en forme decoût effectif.

Resumen

Los datos demográficos describen el tamaño,estructura y distribución de las poblacionesganaderas y cómo éstas cambian en el tiempo. Estosdatos son fundamentales para determinar lasituación de riesgo de las razas tanto a nivelnacional como a escala mundial. Actualmente noexisten datos sobre población para el 36% de lasrazas registradas en el Sistema de Información

Page 11: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2Basic demographic data for management of AnGR

sobre Diversidad de Animales Domésticos(DAD-IS), y para muchas otras razas los datos seactualizan con tan poca frecuencia que resultadifícil e incluso imposible monitorear la situaciónde riesgo y tendencia. También los datos sobre ladistribución geográfica de las razas resultan amenudo inadecuados. Una encuesta de base sobrelas poblaciones necesita un seguimiento ymonitoreo periódico. La frecuencia requerida paramonitorear las actividades dependerá del intervaloentre generaciones de las especies en cuestión. Losdatos deben recogerse a través de los censos porrazas o de las encuestas, o también porestimaciones basadas sobre datos a nivel deespecies. Es importante que los legisladoresnacionales tengan en cuenta la demografía mundialde la raza; se ha puesto a punto un sistema declasificación que distingue las razas presentes soloen un país de las que se encuentran en diversospaíses. Todavía queda mucho por hacer paramejorar la disponibilidad de los datosdemográficos. Sin embargo, es necesario desarrollarmétodos que valoren los riesgos de la erosióngenética asociada a los cruces indiscriminados.Otra necesidad importante es el desarrollo demétodos representativos de muestreo de laspoblaciones animales a nivel nacional para permitirlas estimaciones del tamaño total de las poblacionesy otros datos demográficos que puedan serobtenidos en forma de costo efectivo.

Key words: National strategies, Effective populationsize, Population trends, Geographical distribution, Riskstatus, Management.

Introduction

Demographic data describe the size, structure anddistribution of livestock populations and how thesechange over time. They are fundamental to effectivedecision-making in animal genetic resources(AnGR) management, for example to address thequestion of whether a breed should be targeted forconservation or whether breeding strategies need tobe adapted in order to avoid the loss of within-breedgenetic diversity. The Global Plan of Action for AnimalGenetic Resources, adopted by 109 countries at thefirst International Technical Conference on AnimalGenetic Resources, held in Interlaken, Switzerlandin 2007, and endorsed by the FAO Conference,highlights “characterization, inventory and monitoringof trends and associated risks” as one of its fourStrategic Priority Areas (FAO 2007a).

The main focus of this paper is on the use ofdemographic data to inform strategic planning ofthe management of breed populations at nationallevel, and in particular the basic decision as towhether a breed should be included in aconservation programme (Figure 1). However, theyare also important for decision-making atsupra-national level and for planning of breedconservation and development on a more localscale.

Use of Demographic Data forPlanning National Strategies forthe Management of AnGR

In the context of national planning, one of the mainfactors to be considered is the risk status of thebreeds under consideration – essentially anindication of the likelihood that the breeds willbecome extinct if no remedial action is taken.Clearly, risk status is linked to the size of thepopulation – small populations are at greater risk ofbeing wiped out by a disastrous event and will bemore rapidly threatened by a downward trend. Thepreferred measure for the determination of riskstatus is the effective population size (Ne) (FAO,1992; Gandini et al., 2004). This allows the rate ofinbreeding, and hence the loss of genetic diversitywithin the population, to be inferred. CalculatingNe requires that data on the size of both the femaleand the male breeding populations are available.

In addition to the effective size of the population,risk status depends on population trends.Predicting future population trends andfluctuations, and hence the size of the population ata given point in the future, is difficult given thenumber of factors involved. Nonetheless, currenttrends in the size of the population need to bemonitored. A downward trend, particularly a rapiddownward trend, should serve as a warning, and(unless the potential loss of the breed is accepted) asa call to action.

A further important consideration fordetermining risk status is the geographicaldistribution of the population. Of particularimportance is the extent to which a breedpopulation is restricted to a limited geographicalarea. The more concentrated the population is inspatial terms, the greater the risk that all theanimals, or a large proportion of them, will beaffected by a localized disaster such as a diseaseepidemic. Data on breeds’ geographical distributionare important for a number of reasons in addition to

Page 12: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

3

Animal Genetic Resources Information, No. 44, 2009

Scherf & Pilling

assessing risk. They facilitate further, more in depth,studies; they allow more effective planning for, andresponse to, emergencies that threaten geneticdiversity; and, particularly if georeferenced, theyallow breed data to be related to environmental andsocio-economic datasets and hence more elaborateand comprehensive analysis (FAO/WAAP, 2008).

Finally, national-level assessment of risk status,and consequent decisions regarding conservationmeasures, need to be considered in the context of thedemography of the breed on an international scale.A breed that has unthreatened populations in othercountries is likely to be a lower priority forconservation efforts.

Determining risk status is, of course, only oneaspect of the decision as to whether a conservationprogramme should be undertaken for a particularbreed – genetic distinctiveness, adaptive traits,relative utility for food and agriculture, andhistorical or cultural factors need to be considered(Figure 1). Nonetheless, without basic demographicdata, decision-makers will be at a loss.

Collecting Demographic Data

The above discussion has illustrated the importanceof obtaining basic demographic data and the need

to document changes and trends. This requires abaseline survey followed by periodic monitoring.Monitoring should be conducted at least once pergeneration of the species, particularly for breedsclassified as at risk or potentially at risk. Thisrequires (monitoring) surveys at intervals of abouteight years for horses and donkeys, five years forcattle, buffalo, sheep and goats, three years for pigs,and two years for poultry species. Monitoring maybe required more frequently depending on thereproductive technology employed for each speciesand breed. Thus the reproductive technologygenerally employed in the respective breedpopulations should be recorded. Monitoring shouldserve as the basis for national early warning.

Various methods may be employed to determinethe total populations size, and these need to bedocumented (see Box 1). Analysis of data enteredinto the Domestic Animal Diversity InformationSystem (DAD-IS) 1 by countries’ NationalCoordinators2 revealed that 87 percent of entries arebased on a census or survey at breed level, while

1http://www.fao.org/dad-is2National Coordinators for the Management of AnimalGenetic Resources are officially appointed by therelevant authorities in each country.

Figure 1. Information required to design management strategies. Source: (FAO, 2007b).

Status of the breed: population size and structure

geographical distribution within the country populations of same breed in other countries

“Value” of the breed: genetic distinctiveness adaptive traitsrelative utility value for food and agriculture

historical or cultural use

No conservationprogramme

Conservationprogramme

Geneticimprovementprogramme

No planned geneticchanges

Pure/straightbreeding

Cross-breeding

Breeds not at risk

Breed population within a country

High riskof extinction

Breeds potentially at risk

Potential for improvement: target traits (genetic diversity within

population) preference of market and society

I n v i t r oconservation

I n v i v o conservation

Breeds at risk

Riskstatus

Elements of action plansCriteria

Page 13: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

4Basic demographic data for management of AnGR

11 percent are estimates based on a census atspecies level (e.g. a national agricultural census).However, for 36 percent of all breeds reported toDAD-IS, National Coordinators were unable toestimate the total population size. Moreover,population data for many of the breed populationhave been only reported for a single year or have notbeen updated regularly, making it difficult orimpossible to monitor trends.

Agricultural censuses are conducted regularlyby most countries (FAO, 2005). Some countries alsocarry out more specific national livestock censuses.At present, however, most national censuses do notcontain breed-level data. Incorporating breed-levelquestions within such censuses is potentially animportant means to improve the availability ofbreed demographic data. The 2006 NationalLivestock Census of Pakistan is an example of acensus that collected breed-level data (for cattle,buffaloes, sheep and goats; data for horses, mulesand asses were collected only at the species level)(Government of Pakistan, 2006). In the absence ofbreed-level data, a species-level census cannonetheless be the basis for a rough estimate ofbreed population size (see Box 1).

The smaller the breed population, the easier itwill usually be to provide an accurate estimate of itstotal size. These are the populations for whichhigher accuracy is more important, as they may beat risk of extinction. For these populations moredetailed surveys might be required.

Characterization at the molecular genetic levelmay be undertaken to explore genetic diversity

within and between populations, and to determinegenetic relationships among them. In the absence ofcomprehensive breed characterization data anddocumentation of the origin of breedingpopulations, molecular marker information mayprovide the most easily obtainable estimates ofgenetic diversity within and between a given set ofpopulations.

The International Dimension

As noted above, conservation decisions need to beconsidered in the light of the status of the breed onan international scale rather than merely based onnational level data. A basic requirement is todistinguish breeds that are present in more than onecountry from those present in only one country. Aclassification based on this distinction wasdeveloped during the preparation of The State of theWorld’s Animal Genetic Resources for Food andAgriculture (see Box 2). Identifying transboundarybreed populations enables coordination betweencountries planning conservation programmes.Regional transboundary breeds are found insubstantial numbers in most regions of the world;conservation measures for these breeds should beplanned at regional or subregional level.

Census at species level: census was conducted by species and not by breed; knowledge(or an estimate) of the proportion of the total population of a species that is made up of aparticular breed can be used to estimate the population size of that breed.

Census at breed level: population figures were obtained by breed in a regular census.Censuses usually cover the whole country or include representative samples of farms.

Survey at breed level: survey was carried out in a certain area only to estimate thepopulation size of the breed in its distribution area.

Survey at species level: survey carried out at species level from which breed populationsizes were obtained. In general surveys include more detail in the type of data collectedbut are usually not country-wide. Data extrapolation is needed.

Estimate: the population size is not really known but can be figured out on the basis ofexperience or last census.

Box 1. Methods to determine total population size (FAO 1998).

Page 14: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5

Animal Genetic Resources Information, No. 44, 2009

Scherf & Pilling

Conclusions

Despite the importance of demographic data todecision-making in AnGR management, muchremains to be done to fill the gaps and to addressthe priorities identified in the Global Plan of Action.For many breeds, no population data are available.For many others, trends in risk status cannot beadequately monitored because data are updated soinfrequently. Within-country geographicaldistribution of breed populations – important forplanning many aspects of AnGR management – ispoorly recorded. Once collected, demographic dataneed to be made available to those who need them –hence the importance of information systems forAnGR. Improved demographic data need to becomplemented by improved data on the phenotypicand molecular characteristics of the breeds’ inquestion and on their uses and roles in theproduction systems where they are kept. These dataalso need to be made widely available to therelevant stakeholders.

At the international level, linking national breedpopulations with a common gene pool acrosscountries has helped to provide a more realisticassessment of breeds’ risk status. However, regionaland global cooperation in the conservation andsustainable utilization of AnGR would benefitgreatly if more comprehensive demographic datawere available and used in the planning ofmanagement strategies.

In addition to addressing the problem of missingpopulation data, other weaknesses of currentsystems for monitoring genetic erosion need to beovercome. A major problem is the lack of measuresthat capture genetic dilution caused byindiscriminate crossbreeding – a problem that isconsidered by many experts to be a major threat toAnGR diversity. At the same time, there are many

nondescript local populations for which it isunclear whether they form (relatively) homogenousgroups that can be distinguished fromneighbouring populations. Molecularcharacterization studies help to unravel suchrelationships, but need to be better coordinated andthe results better combined.

A final point to emphasize is the need for thedevelopment of methods for representativesampling of national animal populations toestimate their total population size and otherdemographic data in a cost-effective manner.

List of References

FAO. 1992. The management of globalanimal genetic resources. Proceedings of an ExpertConsultation, Rome, Italy, April 1992. J. Hodges(Ed.). Animal Production and Health Paper no.104.Rome.

FAO 1998. DAD-IS 2.0 User’s manual fornational co-ordinators for farm animal geneticresources. (available at: http://lprdad.fao.org/cgi-bin/getblob.cgi?sid=-1,50005853).

FAO. 2005. A system of integratedagricultural censuses and surveys. Volume 1. WorldProgramme for the Census of Agriculture 2010.Rome

Local breeds: breeds that occur only in one country.

Transboundary breeds: breeds that occur in more than one country. Theseare further differentiated into:

– Regional transboundary breeds:transboundary breeds that occur only in one of the sevenSoW-AnGR regions3.

– International transboundary breeds:transboundary breeds that occur in more than one region.

Box 2. Local versus transboundary breeds.

3Regions defined for the purpose of the SoW-AnGRreport: Africa, Asia, Europe and the Caucasus, LatinAmerica and the Caribbean, the Near and Middle East,North America and the Southwest Pacific.

Page 15: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

6Basic demographic data for management of AnGR

FAO. 2007a Global Plan of Action for AnimalGenetic Resources and the Interlaken Declaration.Rome. (available at www.fao.org/docrep/010/a1404e/a1404e00.htm).

FAO. 2007b. The State of the World’s AnimalGenetic Resources for Food and Agriculture,B. Rischkowsky & D. Pilling (Eds), Rome, Italy.

FAO/WAAP. 2008. Production environmentdescriptors for animal genetic resources. Report ofthe FAO/WAAP Expert Meeting, held in Caprarola,Italy, 6–8 May 2008, D. Pilling, B. Rischkowsky &B. Scherf (Eds), Rome, Italy.

Government of Pakistan. 2006. PakistanLivestock Census 2006. Lahore, Pakistan,Agricultural Census Organization.

Gandini, G.C., Ollivier, L., Danell, B., Distl,O., Georgoudis, A., Groeneveld, E., Martyniuk, E.,van Arendonk, J.A.M. & Woolliams, J.A. 2004.Criteria to assess the degree of endangerment oflivestock breeds in Europe. Livestock ProductionScience, 91(1-2): 173–182.

Page 16: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

7

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 7-10

Summary

Improved understanding of the adaptation oflivestock breeds to their production environments isimportant for many decisions in the field of AnGRmanagement, ranging from genetic improvement toconservation. However, adaptation is complex anddifficult to measure. One approach to this problemis to characterize adaptation indirectly bydescribing the production environments in which abreed has been kept over time, and to which it hasprobably become adapted. Comprehensive andcomparable descriptions of the productionenvironments in which animals are kept are alsoneeded to make meaningful evaluations ofperformance data and to enable comparativeanalysis of the performance of different breeds. Toaddress these requirements and in accordance withthe Global Plan of Action for Animal Genetic Resources,it has been proposed that a recognized set of“production environment descriptors” should beestablished and used throughout the world as acommon framework for describing breeds’production environments. An important aspect ofthe process will be the georeferencing of breeddistributions, which will allow them to be linked toa range of existing georeferenced data sets(e.g. climatic data). The link between a breed and aspecific production environment may offer a basisfor the development of a niche market; examples ininclude the Bresse chicken of France and theAbondance and Tarentaise cattle breeds of thenorthern Alps. Such niche markets representimportant opportunities for keeping traditionalbreeds in use.

Résumé

Améliorer nos connaissances sur l’adaptation desraces domestiques à leur milieu de production estimportant pour de nombreuses raisons dans ledomaine de la gestion des AnGR, qui va de

l’amélioration génétique à la conservation.Cependant, l’adaptation est complexe et difficile àmesurer. Une approche à ce problème est lacaractérisation de l’adaptation indirectement, àtravers la description des milieux de productiondans lesquels une race se trouve et auxquels elle adû probablement s’adapter. Il est aussi nécessaired’avoir des descriptions compréhensibles etcomparables des milieux de production danslesquels les animaux se sont trouvés pour réaliserune évaluation des données de performance etpermettre l’analyse de comparaison desperformances des différentes races. Pour atteindreces objectifs, et en accord avec le Plan Mondiald’Action pour les Ressources Zoogénétiques, il a étéproposé qu’un ensemble reconnu de « descripteursdes milieux de production » soit établi et utilisé dansle monde comme cadre commun de travail pour ladescription des milieux de production des races. Unaspect important du processus sera la saisie desréférences géographiques de la distribution de larace, ce qui permettra de la mettre en relation avecun ensemble de données déjà existantes etréférencées (p.e. données climatiques). La relationentre une race et un milieu spécifique de productionpeut offrir une base pour le développement d’unmarché de niche, comme c’est le cas du pouletBresse français et les races bovines Abondance etTarentaise du Nord des Alpes. Ces marchés deniche représentent des occasions importantes quipermettent de conserver les races traditionnelles.

Resumen

Mejorar los conocimientos sobre la adaptación delas razas domésticas a sus medios de producción esimportante por muchas razones en el campo de lagestión de los AnGR, que va desde la mejoragenética a la conservación. Sin embargo, laadaptación es compleja y difícil de medir. Unenfoque a este problema es la caracterización de laadaptación indirectamente a través de la

Production environment recording

B. Scherf1 & M. Tixier-Boichard2

1FAO, Animal Production and Health Division, Viale delle Terme di Caracalla, 00153 Rome, Italy2Institut national de la recherche agronomique, Jouy-en-Josas, France

Page 17: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

8Production environment recording

descripción de los medios de producción en los queuna raza se ha encontrado y a los queprobablemente se ha tenido que adaptar. Tambiénson necesarias las descripciones comprensibles ycomparables de los medios de producción en losque los animales han estado para realizarevaluaciones de los datos de rendimiento y permitirlos análisis de comparación de los rendimientos delas distintas razas. Para alcanzar estos requisitos yde acuerdo con el Plan Mundial de Acción para losRecursos Zoogenéticos, se ha propuesto que unconjunto reconocido de « descriptores de medios deproducción » sea establecido e utilizado en todo elmundo como marco común de trabajo para ladescripción de los medios de producción de lasrazas. Un aspecto importante del proceso seráreferenciar geográficamente la distribución de laraza, lo que permitirá relacionarla con un conjuntode datos ya existentes y georeferenciados(por ej. datos climáticos). La relación entre una razay un medio específico de producción puede ofreceruna base para el desarrollo de un nicho de mercado,como los ejemplos que incluyen el pollo Bressefrancés y las razas de vacuno Abondance yTarentaise del norte de los Alpes. Estos nichos demercado representan oportunidades muyimportantes que permiten mantener a las razastradicionales.

Key words: Adaptation, Production EnvironmentDescriptors (PEDs), Georeferencing, Surveys.

Introduction

Livestock animal genetic resources (AnGR) havebeen domesticated throughout the world to meetlocal or regional needs. Animals have been selectedby farmers for their particular characteristics orcultural value whilst they were also adaptinggenetically to local conditions, diseases, availablefeeds, climate, predators and many other persistentvariables imposed by the local environment.Improved understanding of the adaptation oflivestock breeds to their production environments isimportant for many decisions in the field of AnGRmanagement ranging from genetic improvement toconservation. However, adaptation is complex anddifficult to measure. One approach to this problemis to characterize adaptation indirectly bydescribing the production environments in which abreed has been kept over time, and to which it hasprobably become adapted. Comprehensive andcomparable descriptions of the productionenvironments in which animals are kept are also

vital to make meaningful evaluations ofperformance data and to enable comparativeanalysis of the performance of different breeds.

Data Requirements

To address these requirements and in accordancewith the Global Plan of Action for Animal GeneticResources (FAO, 2007a), it has been proposed that arecognized set of “production environmentdescriptors” (PEDs) should be established and usedthroughout the world as a common framework fordescribing breeds’ production environments. It isintended that such a framework be used as the basisfor the inclusion of more detailed productionenvironment data within FAO’s Domestic AnimalDiversity Information System (DAD-IS at:http://www.fao.org/dad-is/). A meeting held inArmidale, Australia in 1998 made a first attempt todevise a PEDS framework, and developed aworksheet or questionnaire for the purposes ofcollecting PEDs data (FAO, 1998). At a follow-upmeeting held in Caprarola, Italy in 2008 theprevious work was reviewed and further developed(FAO, 2008). According to the framework devised atthe latter meeting, a breed’s productionenvironment is divided into two main domains, themanagement environment and the naturalenvironment. These domains are further brokendown into a hierarchy of criteria (see Figure 1).Measures were defined to describe each criterion.

Many developing countries have very littlecapacity to collect and analyse productionenvironment variables. However, most of themeasures required for the natural environmentdomain are now available on global high resolutionmaps with the exception of the distribution ofdiseases and parasites. If breed distributions weregeoreferenced it would be possible to overlay themwith these mapped data sets, which could allow farmore comprehensive description and analysis of thebreeds’ production environments. Georeferencing ofbreed distributions should therefore be given highpriority.

Data Collection

Surveys will be organized differently depending onthe institutional background. In developedcountries, where commercial and conservationfarms keep registers of individual animals and theirpedigrees, structured surveys can be used to collect

Page 18: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

9

Animal Genetic Resources Information, No. 44, 2009

Scherf & Tixier-Boichard

information on production systems and theenvironment. The procedure should take advantageof current data collection systems and additionalcosts should be quite limited.

In countries where such data are not regularlyrecorded, specific surveys need to be set up. Fortraditional communities in pastoral and farmingproduction systems, participatory surveys andstructured interviews can be used to generate dataon breeding objectives, breed and trait preferencesand production system constraints. In the context oftraditional breeds, these descriptions give insightsinto the multitude of functions and services thatbreeds provide for their keepers. Statisticalsampling procedures can be applied to studylocalities, farms and individual animals once thesampling framework is defined.

In situations where limited documentedinformation on breed identification andcharacteristics is available, extensive exploratorysurveys may be necessary. However, exploratory

surveys have limitations; the facts generated arehighly subject to the biases of questionnairerespondents. Thus, steps need to be taken toground-truth and cross-check findings usingcomplementary procedures such as key-informantinterviews, focus-group discussions andreporting-back sessions with respondentcommunities. Consequently, these surveys becomedemanding in terms of time, skilled personnel andfinancial resources. This has been observed, forexample, in livestock breed surveys in Zimbabweand Ethiopia. (FAO, 2007b).

Use of Production EnvironmentDescriptions for AnGRManagement - an Example

Due to their adaptation to specific environments,local breeds may have considerable value for niche

Figure 1. Production environment descriptors for characterization of animal genetic resources.

Production Environment Descriptors

Management environment Natural environment

Disease, parasite & disease complexes

Socio-economic characteristics

Management intervention Climate Terrain features

Livestock production

system type

Level of confinement

Climate modifiers

Disease & parasite control

Reproduction strategies

Feed & water availability

Market orientation

Market targeted

Main uses and roles

Gender aspects

Diseases

Ecto- parasites

Endo- parasites

Other known threats

including: feed + water

toxins, predators and other harmful

animals

Temperature

Relative humidity

Precipitation

Wind conditions

Radiation

Day length

Elevation

Slope

Soil pH

Surface conditions

Tree cover

Page 19: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

10Production environment recording

production. Verrier et al. (2005) provide twoexamples where nice markets have beensuccessfully established by connecting naturalconstraints with specific features of local breeds.The creation of niche markets is supported inFrance by a certificate, the Appellation d’OrigineContrôlée (AOC = controlled term of origin). TheBresse AOC chicken is raised only in the Bressegeographical area as defined by law to promoteproduct quality throughout the production process.For the AOC, a geographical district has to bedefined and characterized by specific features of thenatural conditions and production system, whichcannot be found in another geographical area.Another example provided is AOC cheeseproduction from Abondance and Tarentaise cattlebreeds on high-altitude pastures of the northernAlps. These two breeds show some adaptation andfunctional traits of interest for the mountain farmingsystem and the use of high-altitude pastures.

The efficiency of these systems and theirdynamics do not depend only on the traits of thebreeds but also on the organization of farmers andproducers. A clear genetic strategy is needed,including on-farm performance recording and anemphasis on adaptation and functional traits in theselection goal. In harsh environments, such asmountain regions, particular attention should begiven to adaptation to the local environment. Theability of local breeds to produce in such conditions,due to their rusticity and their productivity inrelation to the environment, should be fullyevaluated.

Niche products are appealing because they maycombine, at a local level, dynamic breedconservation and economic profitability. Nicheproducts are generally more expensive thanstandard products, and their success will dependon the buying power of consumers. Thus, nicheproducts appear to present a very good opportunityto preserve local breeds in a favourable economiccontext such as may be found in developed

countries. Niche products may not be so easy todevelop in developing countries. Cultural practicesare also key factors in the successful development ofniche products.

List of References

FAO/WAAP. 2008. Production EnvironmentDescriptors for Animal Genetic Resources, Report ofthe FAO/WAAP Expert Meeting, held in Caprarola,Italy, 6–8 May 2008. Pilling, D., Rischkowsky, B.,Scherf, B. (Eds), Rome, Italy.

FAO. 2007a Global Plan of Action for AnimalGenetic Resources and the Interlaken Declaration.Rome. (available at www.fao.org/docrep/010/a1404e/a1404e00.htm).

FAO 2007b Report of the Scientific Forum onAnimal Genetic Resources held during theInternational Technical Conference on AnimalGenetic Resources for Food and Agriculture,Interlaken, Switzerland, 3 September 2007(available at www.fao.org/ag/againfo/programmes/en/genetics/documents/Interlaken/ScienceForum_report.pdf).

Verrier, E., Tixier-Boichard, M., Bernigaud,R. & Naves, M. 2005. Conservation and value oflocal livestock breeds: usefulness of niche productsand/or adaptation to specific environments.Animal Genetic Resources Information Bulletin, 36,21–32 (available at http://lprdad.fao.org/cgi-bin/getblob.cgi?sid=-1,50006076)

FAO. 1998 Production EnvironmentDescriptors for Farm Animal Genetic Resources.Report of a Working Group, held in Armidale,Australia, 19–21 January 1998. Rome. (Available at:http://dad.fao.org/cgi-bin/getblob.cgi?sid=-1,50006251).

Page 20: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

11

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 11-31

Summary

This paper describes and analyses the process ofimplementing participatory community-basedmanagement (CBM) towards sustainablemanagement of goat genetic resources in two ruralcommunities in Southern Benin from November2005 to February 2007. The process started with theselection of the communities. This was followed bya participatory situation analysis, identification ofproblems and of possible solutions, and theprovision of relevant information and training tointerested farmers. It was facilitated by amultidisciplinary research team composed of aspecialist in livestock production systems, asocio-economist and an agronomist. The interactionbetween the research team and the farmers aimed todevelop and implement community led strategiestowards better management and conservation of thelocal resources of goat. The approach adopted tofacilitate the creation of representative, accountableand legal local institutions and the efforts made inensuring their empowerment are described. It hasbeen shown that once local people recognise thebenefits of such community-based activities and areoffered the relevant information and technicalsupport, they can organize themselves effectivelyand take appropriate actions to better manage andconserve their local resources. The interactivenature of this approach allows its rapid adjustmentto different local conditions and thus its replicationelsewhere.

Résumé

Cette étude décrit et analyse le processusd’élaboration et de mise en œuvre de mécanismes

Community-based management of farm animal geneticresources in practice: framework for focal goats in two

rural communities in Southern Benin

L.H. Dossa1, C. Wollny2, M. Gauly1 & I. Gbégo3

1Georg-August University of Goettingen, Institute of Animal Breeding and Genetics,Albrecht-Thaer-Weg 3, 37075 Goettingen, Germany

2University of Applied Sciences Bingen, Faculty of Life Sciences and Engineering,Berlinstrasse 109, 55411 Bingen, Germany

3Institut National des Recherches Agricoles du Bénin, INRAB, CRAS Niaouli,01 BP: 884, Cotonou, République du Bénin

pour une gestion à base communautaire desressources génétiques caprines dans deuxcommunautés rurales au sud du Bénin. La premièreétape de cette recherche-action initiée en Novembre2005 par une équipe pluridisciplinaire composéed’un spécialiste des systèmes de productionsanimales, d’un socio-économiste et d’un agronomeest la sélection des communautés. Elle a été suiviepar un diagnostic participatif des conditionsactuelles d’utilisation des ressources caprineslocales, par l’identification des contraintes et dessolutions possibles, par des échangesd’informations pertinentes entre communautésrurales et chercheurs et par l’organisation deséances de sensibilisation et de formation àl’intention des éleveurs. Les résultats ont montréque lorsque les communautés locales sont informéesdu danger que représente la perte de la diversitégénétique animale pour leur bien-être social,culturel et économique, et qu’elles bénéficient d’unappui technique adéquat, elles peuvent s’organiserde manière efficace et développer des stratégiesappropriées pour mieux gérer et conserver leursressources zoogénétiques locales.

Resumen

Este estudio describe y analiza el proceso deelaboración y puesta en marcha de mecanismospara una gestión con base comunitaria de losrecursos zoogenéticos caprinos en doscomunidades rurales en el sur de Benín. La primeraetapa de esta acción-investigación inició ennoviembre 2005 con la selección de lascomunidades por parte de un equipopluridisciplinario compuesto pour un especialistaen sistemas de producción animal, un

Page 21: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

12Community-based management of local goats in Benin

socioeconómico y un agrónomo. A esta etapa siguióun diagnóstico participativo sobre las condicionesactuales de utilización de los recursos locales encaprinos, una identificación de las limitaciones y delas posibles soluciones utilizando los intercambiosde informaciones pertinentes entre las comunidadesrurales y los investigadores y la formación deganaderos. Los resultandos han mostrado quecuando las comunidades locales están informadasdel peligro que representa la pérdida de diversidadgenética animal para el bienestar social, cultural yeconómico, y si se les proporciona apoyo técnicoadecuado, pueden organizarse de forma eficaz ydesarrollar estrategias apropiadas para una mejorgestión y conservación de sus recursos zoogenéticoslocales.

Key words: Community-based management, Goat,Improvement program, Participatory research,Open-nucleus breeding scheme.

Introduction

The increasing recognition that conservation ofnatural resources is unlikely to be sustainable overthe long term unless the local communities whoselives depend upon these resources are activelyinvolved and their needs considered (Campbell andVainio-Mattila, 2003; Mascia et al., 2003; Chan et al.,2007) has resulted in the development of a newconservation paradigm of ‘community-basednatural resource management’ (CBNRM). CBNRMasserts the principle of management of naturalresources by, for, and with local communities(Western and Wright, 1994) and recognizes thatlocal people have sophisticated knowledge of localecological and social conditions that can beeffectively used to manage natural resources (Berkeset al., 2000).

The concept of community-based management offarm animal genetic resources (CBMFAnGR) buildson principles of CBNRM. It refers to a system ofFAnGR and ecosystem management in which thelivestock keepers organize themselves and play acentral role in identifying their FAnGR and inimplementing all activities related its conservationand sustainable use (Rege, 2001). Effectiveparticipation of the communities and theirempowerment are determinants for the success of aCBNRM program (Little, 1994; Ghimire andPimbert, 1997; Berkes, 2004) and appropriate legaland self-reliant local institutions are necessary forits sustainability (Ostrom, 1990; Brett, 2003). The

same is true of any livestock genetic improvementprogram (Kahi et al., 2005; Kosgey et al., 2006). It isalso argued that ‘Open Nucleus BreedingSchemes’ (ONBS) could be an appropriate strategyfor genetic improvement and conservation of animalgenetic resources under smallholder productionsystems (Kiwuwa, 1992; Mueller et al., 2002; Olivieret al., 2002). The thrusts of the action researchdescribed in this paper are to:• Empower, organize and enhance the capacity of

local communities to sustainably use andmanage their small ruminants.

• Create a legal and financial framework thatsupports community-based initiatives.

Materials and Methods

The methodology applied in this study is aniterative approach adapted from Sultana andThompson (2003). It includes 4 major steps(Figure 1) and a lot of small steps within each majorstep.

Selection of communities

For the purpose of this study, the definition ofcommunity has been restricted to that of a village.Two communes, Come and Toffo (Figure 2) wereselected because of the relatively high proportion ofpoverty in their populations. According to WFP(1998), about 24% of the population in Come and26% in Toffo live below the poverty threshold. Comeis located in the fishery area about 60 kilometerswest of Cotonou, the economic capital of Benin,whereas Toffo is located about 80 kilometers northwest of Cotonou. An initial assessment was carriedout in November 2005 to select in each commune, arepresentative village out of four pre-selected.Village leaders were first contacted by arepresentative of the local agricultural extensionservice in Come and by a research and developmentagent of the National Agricultural ResearchInstitute in Toffo.

Following an initial expression of interest by thevillage leaders, a meeting with local resourcepersons was arranged in each village. Theseresource persons were identified and informedtogether by the research team and the localauthorities. The following topics were discussedduring the meeting: the species of livestock kept inthe community, their importance, priority species

Page 22: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

13

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

for eventual research action and the existence of anyprevious community based initiatives.Subsequently, the village of Ouedeme-Pedah inCome and the village of Gbede in Toffo wereselected based on following criteria:• Relative importance of small ruminants.• Accessibility in all seasons.• Pristineness: locations where no previous

long-term research projects had been conductedand that were not connected to national researchinstitutions.

• Interest of village leaders in participation.The field work team consisted of a specialist in

livestock production systems, a socio-economistand an agronomist. This team was reinforced ineach research location by a livestock technician and

a private veterinarian. In Gbede, the technician wasa research assistant from the National AgriculturalResearch Institute, whereas the technician inOuedeme-Pedah was a livestock extension officer.Together with the veterinarians, they provided theinstitutional support and acted as facilitators.

Initial village meeting andsocio-economic studies

In each village selected, local leaders were asked toarrange for a village meeting where the researchteam provided the participants with all informationrelated to the project, its objectives and benefits. The

Selection of Communities

Initial Contact and Prior Informant Consent

Situation Analysis

Stakeholder Analysis & Household Census

Accessing Relevant Data & Local Knowledge

Participatory Action Planning

Community Dialogue, Knowledge Sharing

Problems Census & Prioritization &

Possible Solutions

Development of Management Plans,

Institutions and Indicators for Monitoring

Review, Implementation & Revision of

Management Plans

Participatory Monitoring & Evaluation of

Outcomes

Figure 1. Methodological approach.

Page 23: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

14Community-based management of local goats in Benin

Figure 2. Research locations in southern Benin.

‘Prior Informed Consent’ (PIC) was obtained from thecommunities and was followed by the situationanalysis which encompassed severalsocio-economic studies. It started with aparticipatory village social and resource mappingand seasonal calendar. Transect walks were donewith community members to consider thegeographical boundaries of the communities, theirnatural resources and related issues. One of themain concerns of the research project was to ensurethat in each village, the socio-economic conditionsand the concerns of the most vulnerable peoplekeeping livestock were understood and taken intoaccount during the development of the CBMframework. Therefore, three key informants wereidentified in each village based on their level ofparticipation during the resource mapping and ontheir knowledge of the village for a participatorywealth rank exercise. A list of household headsliving in the village was obtained from the chief ofthe village and was updated together with the keyinformants. Each key informant was interviewedseparately. He was first asked about his own

perception of wealth and poverty. Then he wasasked to sort cards containing the name of the headof households into pile representing the wealthstatus of each household according to the methoddescribed by Grandin (1988). More detailed surveysof a random sample households stratified by wealthclasses was done to find out more about theirsources of income and the contribution of differentlivestock species to their livelihoods. Focus groupdiscussions and in depth interviews in randomlyselected households were carried out to understandthe ownership patterns of small ruminants, torecord owners’ local technical knowledge, theirperceptions of constraints and their traitspreferences.

Participatory planning

Following the socio-economic studies, feedbackmeetings were held in each village in December2005 to share information, to discuss and validate

Page 24: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

15

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

the findings of the socio-economic studies and tomobilize communities towards CBM actionplanning. An interim planning team was electedand was responsible for the timing andorganization of the next planning meetings. Duringsubsequent village meetings and workshops,participants discussed, ranked and decided on keyproblems, determined causes and effects andproposed possible solutions. In each village, theinterim planning team was assisted by a trainedcommunity development facilitator who wascharged with the responsibilities of facilitating andsupporting group development processes to reachthe maturity and performance stages. This wasachieved initially through supporting thefacilitation of meetings and group dynamics,training and support in leadership skills, recordkeeping, and training in other areas of groupdevelopment as well as providing specific technicalsupport and linking groups with service providers.Various participatory tools such as brainstorming,ranking, problem and solution games, processdiagrams, matrices and visualization techniques(for a review see Waters-Bayer and Bayer, 1994;Catley, 1999) were used.

Review, implementation and revision ofmanagement plan

This phase was overlapping with the participatoryplanning phase and involved regular facilitatedfeedback meetings and interactive learningsessions. In an iterative way (Figure 3),implemented actions were discussed, revised andthe overall management plan readjustedaccordingly.

Results and Discussion

Community mobilization and exchangeof knowledge

Initial investigations during baseline surveysindicated that the communities in Gbede andOuedeme-Pedah were suspicious about outsiders,government and NGO led development initiatives.This implies that a few local leaders would prevailin most community decisions. Therefore, at the firstvillage meeting, the research team was successful inavoiding the risk of raising financial expectationsby discussing short-term and long term benefits ofthe research project. It has been observed that somecommunity members, mainly local ‘elites’ lostinterest in participating in the research activitieswhen the communities were told they would not begetting any handout of money but only facilitationand training.

Through the different steps of the mobilizationphase, the research team was successful ingradually convincing the participants that theresearch project was for their own benefit. Thedifferent participatory rural appraisal techniquesused in this process were helpful in entering thecommunities, in getting to know the people and thenatural resources (including farm animalresources), in establishing relationships with thecommunities, in collecting and sharing information,in building mutual trust and in improving theunderstanding of the different sources of livelihood.First and foremost the participatory village resourcemapping exercises (Figures 4 and 5) revealed thatpeople have a valuable knowledge of the naturalresources, including domestic animal resources andforage plants available in their environment.

Figure 3. Management plan implementation loop.

Page 25: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

16Community-based management of local goats in Benin

Figure 4. Sketch map village of Ouedeme-Pedah as drawn by community members.

Figure 5. Sketch map village of Gbede as drawn by community members.

Page 26: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

17

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Table 1. Indicators of wealth in village Ouedeme-Pedah.

Wealth classes Criteria Rich Medium Poor House and type of roof

Large houses with concrete walls; sheet-metal or tile-roofing; cemented floor

Houses in banco/clay walls; sheet-metal or tile-roofing; cemented or mud floor

Houses in banco/clay walls; straw roofing and mud floor

Number of fishing gears owned

4 and more 2-3 1

Transport means 4 and more dugout canoes; motorcycle and bicycle

2 dugout canoes, motorcycle or bicycle

1 dugout canoe

Agricultural land holdings

5 ha and more 1-3 ha < 1ha; landless; sharecropping

Livestock owned Large number of pig, goats, chicken, grass cutter

Pig, goats and chicken Few goats and chicken

Labour employment Employ labour Employ labour but at lesser extent than the better-offs

Household members are casual workers and husband migrates during raining season to find non-fishing work

Education of children

Children attend school regularly

Children attend school irregularly

Interruption schooling of children

Financial status Can borrow to other households

Can take a loan Cannot take a loan

Other Receive high social and political consideration

Use rarely basic medical services

Face food shortages; do not use basic medical services

Rare natural vegetation encountered inOuedeme-Pedah are baobab trees (Adansoniadigitata), iroko trees (Chlorophora excelsa) and bushesof mangroves (Avicennia germinans L.) in the mosthumid areas whereas planted vegetation includedneem trees (Azadirachta indica), eucalyptus(Eucalyptus camaldulensis), acacia (Cacia africana) andcoconut trees (Cocos nucifera). In Gbede, planted teaktrees (Oldfieldia africana) and oil palms (Elaeisguineensis) predominate. The Pedah people are thedominant ethnic group in Ouedeme-Pedah and theylive primarily on small-scale fishing andsubsistence agriculture. The Aizo people dominatein Gbede. Agriculture is their major economicactivity. The main food crops grown in both villagesare maize, cassava and beans. Similar beliefs andreligious practices were observed among bothcommunities.

Key informants in both villages dividedhouseholds in three wealth classes: rich, medium

and poor households. Out of a total of47 households ranked in Ouedeme-Pedah, 45%were ranked poor, 34% medium and 21% rich.Similar figures (46%, 35% and 19% respectively)were obtained in Gbede for a total of 66 households.Table 1 shows the characteristics of each wealthgroup as described by informants inOuedeme-Pedah. Irrespective of the village andirrespective of the wealth group, chickens followedby goats and sheep were the most kept importantlivestock species. In Ouedeme-Pedah, pigs were alsokept by some households. However, despite thepredominance of chickens over goats, the latterspecies was selected in the two communities aspriority species for the purpose of the intendedCBM research action.

The village goat surveys generated interestinginformation about breed perception, traitpreferences and production constraints (Dossa et al.,2007). Apart from the introduced goat types from

Page 27: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

18Community-based management of local goats in Benin

Tab

le 2

. Out

com

es o

f the

con

solid

ated

ana

lysi

s of

goa

t pro

duct

ion

prob

lem

s in

Gbe

de a

nd O

uede

me-

Ped

ah.

Con

stra

int

Cau

se

Eff

ect

Solu

tion

L

evel

of

app

licat

ion

Lac

k of

ap

pro

pria

te

hou

sing

•L

ack

of k

now

led

ge o

n im

prov

ed h

ousi

ng

•H

igh

loss

es a

nd m

orta

lity

rate

s d

ue

to:

-L

ack

of p

rote

ctio

n of

ani

mal

s ag

ains

t bad

w

eath

er c

ondi

tion

s an

d c

onta

giou

s d

isea

ses

-M

issi

ng to

iden

tify

and

to tr

eat s

ick

anim

als

-C

onsu

mpt

ion

of p

oiso

nou

s p

lant

s an

d

dir

ty w

ater

by

wan

der

ing

anim

als

- R

oad

acc

iden

t -

The

ft

- D

estr

ucti

on o

f cro

ps

•Te

ther

ing

dur

ing

crop

ping

sea

sons

lead

ing

to m

alnu

trit

ion

•Fa

rmer

trai

ning

in im

prov

ed g

oat h

ousi

ng

•C

onst

ruct

ion

of im

pro

ved

goa

t hou

ses

Bot

h in

div

idua

l an

dco

mm

unit

y

Dis

ease

ou

tbre

aks

•H

igh

cost

s of

vet

erin

ary

serv

ices

on

ind

ivid

ual

bas

is

•D

iffi

cult

y to

sto

ck u

p on

ve

teri

nary

dru

gs fo

r ro

utin

e tr

eatm

ents

Lac

k of

reg

ular

vac

cina

tion

ag

ains

t epi

dem

ic d

isea

ses

Lac

k of

reg

ular

con

trol

of

inte

rnal

and

ext

erna

l pa

rasi

tes

•L

ack

of a

ppro

pri

ate

hou

sing

=>c

lose

con

tact

w

ith

infe

cted

free

roa

min

g go

ats

Poor

hyg

iene

Poor

nu

trit

ion

•H

igh

mor

talit

y ra

tes

•Sm

all h

erd

siz

es w

ith

born

-in

herd

bu

cks,

ve

ry fe

w v

illag

e bu

cks

Hig

h ri

sk o

f inb

reed

ing

and

del

ays

in

conc

epti

on

•K

ids

grow

slo

wly

Ver

y fe

w g

oats

to s

ell y

ear-

roun

d

•R

educ

ed p

rofi

tabi

lity

•Fa

rmer

’s tr

aini

ng in

imp

rove

d m

anag

emen

t pra

ctic

es

•A

dopt

ion

of im

prov

ed h

ousi

ng fo

r an

imal

s •

Ado

ptio

n of

Imp

rove

d h

ealt

h th

roug

h

-T

rain

ing

on b

asic

ani

mal

hea

lthca

re a

nd h

ygie

ne

-E

stab

lishm

ent o

f a D

rug-

box

at v

illag

e le

vel

-O

rgan

izat

ion

by th

e vi

llage

com

mit

tee

of r

egu

lar

and

col

lect

ive

vacc

inat

ion

agai

nst P

PR

, -

Org

aniz

atio

n by

the

villa

ge c

omm

itte

e of

reg

ula

r an

d c

olle

ctiv

e co

ntro

l of i

nter

nal p

aras

ites

-

Stri

ct r

egu

lati

on o

f the

intr

oduc

tion

of i

mpo

rted

an

imal

s in

to th

e vi

llage

Cas

trat

ion

of u

nwan

ted

and

poo

r qu

alit

y m

ale

goat

s •

Ado

ptio

n of

impr

oved

nut

ritio

n

•1 P

urc

hase

and

rot

atio

n of

a v

illag

e bu

ck a

mon

g pa

rtic

ipat

ing

herd

s •

1 Pu

rcha

se b

y th

e vi

llage

com

mit

tee

and

use

of

Bur

dizz

o ca

stra

tor

to c

astr

ate

unw

ante

d o

r/an

d p

oor

qual

ity

mal

e go

ats

Bot

h in

div

idua

l an

dco

mm

unit

y

Feed

sh

orta

ge

•Se

ason

al fl

uct

uati

on in

feed

av

aila

bilit

y

•L

ack

know

led

ge o

n ra

tion

al

uses

of a

vaila

ble

feed

re

sour

ces

•Po

or o

r u

nbal

ance

d n

utri

tion

Wea

k an

imal

s op

en to

infe

ctio

ns fr

om

bact

eria

or/

and

par

asit

es

• S

low

kid

gro

wth

and

bad

bod

y co

ndit

ion

•Fa

rmer

trai

ning

in

-Im

pro

ved

nut

riti

on

-Im

pro

ved

cut a

nd c

arri

ed fe

edin

g sy

stem

-

Rat

iona

l use

of c

rop

resi

due

s an

d ag

ro-b

y-pr

oduc

ts

Com

mu

nity

1 Men

tion

ed in

Gbe

de

only

.

Page 28: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

19

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Tabl

e 3.

Out

com

es o

f the

con

solid

ated

sol

utio

n an

alys

is in

Gbe

de a

nd O

uede

me-

Peda

h.

Vill

age

Solu

tion

/Act

ion

Purp

ose

Alt

erna

tive

Polit

ical

/ so

cial

impa

ct

Tec

hnic

al/

econ

omic

asp

ect

Ad

opti

on o

f im

pro

ved

hou

sing

Ena

ble

bett

er m

anag

emen

t of i

ndiv

idua

l he

rd•

Red

uce

mor

talit

ies

due

to c

onta

giou

s ag

ents

and

to n

on d

isea

ses

rela

ted

fa

ctor

s •

Red

uce

mor

bid

ity r

ates

due

to s

arco

ptic

m

ange

Red

uce

conf

licts

bet

wee

n fa

rmer

s in

here

nt to

the

free

-roa

min

g sy

stem

Non

e In

div

idu

al p

artic

ipan

t fa

rmer

s as

wel

l as

com

mun

ity w

ill b

enef

it

Nee

d tr

aini

ng

and

d

emon

stra

tion

from

res

ourc

e pe

rson

s

Stra

tegi

c u

se o

f ant

helm

inti

cs a

nd

wilt

ing

of c

ut a

nd c

arri

ed fo

rage

bef

ore

feed

ing

•E

limin

atio

n of

the

inte

rnal

par

asite

s bu

rden

Incr

ease

feed

con

vers

ion

by th

e an

imal

s

Non

e In

div

idu

al p

artic

ipan

t fa

rmer

s as

wel

l as

com

mun

ity w

ill b

enef

it

Nee

d te

chni

cal

assi

stan

ce fr

om

spec

ializ

ed s

taff

Org

aniz

atio

n of

ann

ual c

olle

ctiv

e va

ccin

atio

n pr

ogra

m a

gain

st P

PR

Red

uce

mor

talit

ies

due

to P

PR

Ind

ivid

ual

acti

on

agai

nst

PPR

Ind

ivid

ual p

arti

cipa

nt a

s w

ell a

s co

mm

unity

will

be

nefi

t: in

crea

se a

bilit

y of

pa

rtic

ipan

ts to

wor

k to

geth

er a

nd e

nhan

ce

soci

al c

ohes

ion

Nee

d te

chni

cal

assi

stan

ce fr

om

spec

ializ

ed s

taff

Ad

opti

on o

f im

pro

ved

feed

ing

•R

educ

e m

alnu

trit

ion,

abo

rtio

n an

d pr

e-w

eani

ng m

orta

litie

s ra

tes

Non

e

Ind

ivid

ual

par

ticip

ant

will

ben

efit

Nee

d tr

aini

ng

and

d

emon

stra

tion

from

res

ourc

e pe

rson

s St

rict

reg

ula

tion

of i

ntro

du

ctio

n of

im

port

ed a

nim

als

into

the

villa

ge

•C

onse

rvat

ion

of lo

cal g

oat t

hrou

gh

avoi

dan

ce o

f ind

iscr

imin

ate

cros

sbre

edin

g •

Red

ucti

on o

f ris

ks o

f int

rod

ucti

on o

f im

port

ed d

isea

ses

and

infe

ctio

us a

gent

s

Non

e In

div

idua

l par

tici

pant

as

wel

l as

com

mun

ity w

ill

bene

fit:

incr

ease

abi

lity

of

farm

ers

to w

ork

toge

ther

an

d e

nhan

ce s

ocia

l co

hesi

on

Nee

d a

dvi

ces

from

res

ourc

e pe

rson

s

Both

G

bed

e an

d

Ou

edem

e-Pe

dah

Cas

trat

ion

of u

nwan

ted

/ po

or q

ual

ity

mal

e •

Red

uce

risk

of i

nbre

edin

g an

d m

ake

bett

er u

se o

f the

bes

t per

form

ing

villa

ge

buck

s

Ind

ivid

ual

cont

rol

of m

atin

g

Ind

ivid

ual p

arti

cipa

nt a

s w

ell a

s co

mm

unity

will

be

nefi

t

Nee

d te

chni

cal

assi

stan

ce a

nd

trai

ning

from

sp

ecia

lized

sta

ff

(To

be c

onti

nued

…..)

Page 29: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

20Community-based management of local goats in Benin

(... c

ontin

ued)

.

Vill

age

Solu

tion

/Act

ion

Purp

ose

Alte

rnat

ive

Polit

ical

/ so

cial

impa

ct

Tec

hnic

al/

econ

omic

asp

ect

•T

rain

ing

of tw

o (0

2) fa

rmer

s ap

poin

ted

by

the

com

mun

ity

as lo

cal c

astr

ator

in th

e us

e of

th

e B

urd

izzo

cas

trat

or

•C

omm

itm

ent o

f par

tici

pant

s to

sha

re th

e ex

pend

iture

for

the

purc

hase

of a

Bur

dizz

o ca

stra

tor

and

two

(2)

com

mun

al b

ucks

of l

ocal

br

eed

for

bree

ding

pur

pose

s •

Rot

atio

n of

the

com

mun

al

buck

s am

ong

part

icip

atin

g he

rds.

Aft

er a

yea

r of

ser

vice

, th

e co

mm

una

l buc

ks w

ill b

e so

ld a

nd r

enew

ed

•R

educ

e ri

sk o

f in

bree

ding

and

mak

e be

tter

use

of t

he b

est

perf

orm

ing

villa

ge b

ucks

•In

div

idua

l con

trol

of

rep

rodu

ctio

n •

Surg

ical

rem

oval

of

test

icle

s (t

rad

ition

ally

us

ed c

astr

atio

n m

etho

d)

•In

div

idua

l pa

rtic

ipan

t as

wel

l as

com

mun

ity

will

be

nefi

t

•N

eed

tech

nica

l as

sist

ance

and

tr

aini

ng fr

om

spec

ializ

ed s

taff

Gbe

de

•T

rain

ing

of tw

o (0

2) fa

rmer

s ap

poin

ted

by

the

com

mun

ity

as V

illag

e A

nim

al H

ealt

h W

orke

rs a

nd e

stab

lishm

ent

of a

vill

age

base

d d

rug

box

•T

rain

ed fa

rmer

s pr

ovid

e ge

nera

l ad

vice

on

heal

th

and

hus

band

ry a

nd b

asic

an

imal

hea

lth

serv

ices

to

othe

r fa

rmer

s in

the

sam

e vi

llage

•In

div

idua

l con

tact

w

ith th

e Pr

ivat

e ve

t whi

ch a

re fa

r aw

ay fr

om th

e vi

llage

and

not

ea

sily

rea

chab

le

•In

div

idua

l pa

rtic

ipan

t as

wel

l as

com

mun

ity

will

be

nefi

t: in

crea

se

abili

ty o

f far

mer

s to

wor

k to

geth

er

and

enh

ance

so

cial

coh

esio

n

•N

eed

tech

nica

l as

sist

ance

from

sp

ecia

lized

and

re

sour

ce

pers

ons/

Nee

d fi

nanc

ial

supp

ort f

rom

m

icro

-cre

dit

inst

ituti

ons

or

NG

Os

Oue

dem

e-Pe

dah

Est

ablis

hmen

t of a

vill

age

base

d dr

ug a

nd fe

edst

uff

stor

e su

pplie

d by

a p

riva

te

vete

rina

rian

but

col

lect

ivel

y m

anag

ed b

y th

e co

mm

uni

ty

•C

lose

and

per

man

ent

cont

act w

ith

the

vete

rina

ry s

ervi

ces

•R

educ

tion

of t

rans

port

co

sts

•In

div

idua

l con

tact

w

ith th

e Pr

ivat

e ve

teri

nary

se

rvic

es w

hich

are

lo

cate

d at

abo

ut

20 k

m fa

r aw

ay

from

the

villa

ge

and

not

eas

ily

reac

habl

e

•In

div

idua

l pa

rtic

ipan

t as

wel

l as

com

mun

ity

will

be

nefi

t: in

crea

se

abili

ty o

f far

mer

s to

wor

k to

geth

er

and

enh

ance

so

cial

coh

esio

n

•N

eed

cont

inu

ous

mon

itor

ing

of

the

priv

ate

vete

rina

rian

Page 30: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

21

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Table 4. Indicators and participatory monitoring arrangements agreed through CBM workshops in Gbede and Ouedeme-Pedah.

Village Indicator/output Type of monitoring Responsibility Both • Adoption by participants of

improved management practices including regular vaccination against PPR and anthelmintic treatment

• Decrease in disease incidence and mortality rate in participating herds

• Increase growth rate of animals in participating herds

• Decrease rate of abortion in participating herds

• Increase in number of marketable animals in participating herds

• Increase in overall herd productivity in participating herds

• Adoption by participants in the Community-based management program of a participatory recording system

• Adoption of the Burdizzo castrator

• Castration of undesired/low performing males intervene 3-4 months of age

• Regular meeting and training sessions on different aspects of small ruminant husbandry practices and on recording system throughout a year: Application of the “Farmer Field School” approach

• Village committees with the assistance of the specialized staff and resource persons

Gbede only

• Effective rotation of the communal purchased bucks among participant herds

• Only farmers who confine their animals and adopt improved management practices can receive the buck. The buck can stay in a herd for a maximum of 30 days and should then pass to another herd. No specific performance recording was planned.

• The village committee should ensure the effectiveness of the rotation system. After a year of service, the communal bucks will be sold and new one bought

Page 31: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

22Community-based management of local goats in Benin

northern Benin and from neighboring Saheliancountries, owners of goats in both villages clearlydistinguished two varieties of goat native tosouthern Benin: the markedly dwarf and the shortlegged but non-dwarf. Although farmers perceivedthe markedly dwarf goat as more prolific and moreresistant to disease than the short legged butnon-dwarf, they considered that its growth isslower and it fetched relative lower prices on themarket. Group discussions with elders in bothvillages revealed that the markedly dwarf goat wasthe most common goat variety encountered somedecades ago. However, it has been progressivelyreplaced by the non-dwarf goat and currentlyrepresented less than 2% of the breeding femalegoats counted in both villages. Communities alsohave a good knowledge of the seasonal occurrenceof the major goat health problems and somevaluable ethno-veterinary medicine practices. Anumber of locally available fodder resources areconsidered by farmers to have anthelminticproperties. The most promising plants includeFagara zanthoxyloidès, Morinda lucida, Moringaoleifera, Newbouldia leavis and Spondias mombin.

Planning with communities

During consecutive village meetings andworkshops, the key problems, their causes andeffects, the possible solutions and remedial actionsand sets of criteria for assessing these actions weredeveloped by each community. The results werevery similar in the two villages (Tables 2, 3 and 4).In each village, the interim planning team workedout the timing, resources needed and the persons orinstitution(s) which would be responsible forensuring implementation of each action. Theinterim planning team presented the first draft ofthe management plan to the wider communitythrough village meetings. During this process theplan was discussed, additional issues were raisedand the revisions took place. In the two villages,alongside CBM development activities, short terminitiatives to improve productivity such asconstruction of improved goat housing, vaccinationagainst Pests of Small Ruminants (PPR) and theadoption of other animal health control measureswere taken up. These collective activities were donewith the technical support of the research team andwere aimed at motivating people to implementlong-term and rational initiatives for bettermanagement of the goat resources.

Creation of local institutionstowards CBM

Structure and legal framework

The intensive and long-term facilitation processwas extremely helpful in preventing some local orvillage elites to dominate the decision-making andin giving voices to marginalised members of thecommunities, especially women. In each village, aCBM committee was elected to replace the interimplanning team. In most cases, members of theinterim planning team were appointed to the CBMcommittee which were made up of sevendemocratically-elected members in Gbede and oftwelve in Ouedeme-Pedah, including a Chair,Vice-Chair, Secretary, Treasurer and Vice Treasurer.They are responsible for the planning, theimplementing, the co-ordination and monitoring ofthe collective activities which have been agreed bythe community at general meetings. The electedcommittees must maintain bank accounts andfinancial records, report on performance to thecommunity, organize and manage communitymeetings.

Once the management plan was formally agreed,the research project team maintained regularcontacts with the elected CBM committees andprovided the technical support agreed to under theplan. By then in each village, the CBM committeehad started to draft self-imposed rules andregulations. The final self-imposed rules and codesof conduct were validated during a villageworkshop. As an important rule in bothcommunities, the introduction of animals of anynon-local genotype for breeding purposes isbanned. In addition, the introduction of anybreeding animal in the village must be subject toauthorisation by the CBM executive committee. Thisauthorization will be granted only when the animalis declared by the local veterinary officer to be clearof any infectious disease. Mechanisms were laiddown for the enforcement of these rules.Membership was open to any villager who wascommitted to the objectives of the CBM group andits rules and regulations.

Institutional formalization

Institutionalization of a community-basedorganization (CBO) towards management and/orconservation of natural resources includes itscreation, but also its legalization with reference both

Page 32: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

23

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

to the local and national level (World Bank, 1999).In Benin, to be legally recognized, a CBO must gothrough a process to involve relevant agencieswhich are under legislation charged to administerthe management of local communities. These are theMinistry of Agriculture Livestock and Fisheries(MAEP) and the Ministry of Decentralisation andLocal Communities (MDCL). Upon reachingagreement with the community on the rules andregulations, the formalization process was begun bysending the CBM documents to the municipalitiesof Come and Toffo, which are decentralizedinstitutions representative of the MDCL at locallevel. The two CBM groups soon receivednotification of their legalisation.

Financial framework

During the participatory phase, the research teamconsistently emphasized local initiatives and self-reliance. In response, the communities mobilizedtheir own funding through cost-sharing toimplement the first developed communitymanagement improvement initiatives such as theinstallation of a small animal feed store inOuedeme-Pedah, and the purchase of a Burdizzocastrator and of two bucks for breeding purposes inGbede. In addition, in both villages the CBM groupshave established initial registration fees andmonthly subscriptions that all members can afford.Each CBM group has opened an account at a localcredit and saving institution.

Experiences have shown that the dependence ofCBOs on external donor funding has often led tolack of sustainability (Platteau and Abraham, 2002)while for its long term viability, a CBO needs tohave a secure and sustainable funding base fromthe beginning. It has also been argued that in poorcommunities, local contributions are usually notsufficient (Swantz, 1997; Kleemeier, 2000). Tocomplement the membership fees, the need togenerate monetary resources within bothcommunities through income generating activitiesthat will add value to the communities’ coreactivities has been acknowledged. It has beenrecognized that the process in whichcommunity-based organizations engage tostimulate or maintain business activity is generallya cost-effective and community-empoweringprocess which can yield tangible benefits forparticipating communities (Binns and Nel, 1999).However, it has been argued that somecommunities, for instance the poor, often do not

have the financial resources to initiate thesesactivities and that any newly developed localinstitution concerned with the conservation ofnatural resources requires some external financialinputs at least in the short term to gain internallegitimacy and acceptance at both village andregional levels (World Bank, 1999). In addition, it iswidely agreed that time is required for newlydeveloped institutions to be tested, reviewed andadapted by their members before internal legitimacycan be achieved. Therefore, although incomeaccruing from better management of goat constitutesan undeniable incentive to maintain participationin the CBM groups, each CBM group also receivedfrom the research project acommunity-empowerment fund of 200 000 FCFA(1 euro = 655.957 FCFA).

Participation of women and poorer people

The participatory approach used was also verysuccessful in involving women in the whole processfrom the outset and in ensuring gender equity.Women have actively attended all the meetings andhave participated in all planning anddecision-making forums. The confidence andcompetence they have gained through their activeparticipation in the planning and decision-makingprocess have empowered these women to take agreater role within their community. They were wellrepresented in both CBM groups as a whole, and inthe CBM executive committees as shown in figure 6.

In Gbede, it is worth noting that in the electedCBM executive committee, the Treasurer, ViceTreasurer and auditors were women. In orderwords, they were responsible for the management ofthe community financial resources. Thecommunities’ decision to elect women to thesepositions was probably based upon their belief thatthe women would be more transparent, prudent,reliable and honest in handling the communitymoney. Research has found that femalerepresentation and effective participation in apeasant committee enhances the committee’sperformance (Molians, 1998).

The participation of poorer people was alsoeffective in both CBM groups as illustrated infigure 7, and has proved successful in impeding thebetter-off community members from dominating thedecision-making process.

Page 33: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

24Community-based management of local goats in Benin

Figure 6. Representation of female people in CBM groups and in executive committees.

Figure 7. Participation of different wealth classes in CBM groups.

Training and capacity building

Two general training and demonstration sessionswere initiated and organized in each communityclose to the beginning of the CBM process. Theobjective was to improve goat farmers’ managementskills as identified by farmers themselves at theearly stages of the participatory planning process.

Each training session lasted a full day. Althoughthese sessions covered all general aspects of goatkeeping, emphasis was put on improved housing,feeding and disease control. The training sessionswere facilitated by the research team, but the leadtrainer was a successful farmer identified bycommunity members themselves. The number of

participants ranged from 17 to 25 in Gbede andfrom 23 to 37 in Ouedeme-Pedah. This‘farmer-expert’ training approach was inspired bythe well-known Livestock Farmer Field School(Minjauw, 2001). Although there has been yet noformal survey to measure the adoption byparticipants of the improved managementtechniques discussed during these sessions, agrowing interest has been observed amongcommunity members. For example, actions weretaken and 19 participant herds of goats in Gbedeand 40 in Ouedeme-Pedah were successfullyvaccinated against PPR and treated against internaland external parasites. For both disease preventivemeasures, a nil coverage rate was reported for the

Page 34: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

25

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Table 5. Chronology of events in planning and implementing CBM actions.

Date Event 07 – 09 November 2005 First formal contact with selected communities and PIC Situation analysis

� Wealth ranking with key informant � Household census (socio-economic studies) � Participatory village resource and social mapping

10 – 28 November 2005

� Focus group discussions Participatory planning for CBM actions

� Village meetings to validate PRA results and to agree on the major goat problems

December 2005

� Election of the interim planning committee � Elaboration of the by-laws rules and regulations by

the interim planning committee � Meetings to validate village by-laws rules and

regulations

January – September 2006

� Election of village CBM committee � CBM committee members received training in team-

building, goal setting, program planning, community problem-solving, conflict resolution and finance

November 2006

� Finalization and validation by community members of CBM code of conduct document

December 2006 – February 2007 � Communities discussed with research team the feasibility, concepts, aims, benefits, legal and genetic aspects of a potential community-based genetic improvement program

January 2007 � Village CBM documents finalized and sent to the decentralized representation of Ministry of decentralization and local communities

Implementation of plans and monitoring December 2005 � Facilitated “Farmer’s expert” training workshops in

improved goat housing and in improved goat nutrition

March 2006 � Vaccination against Pest of small ruminant and treatment against internal parasites and mange

� Purchase of a Burdizzo castrator and castration training of two community members in Gbede

� Purchase of two (02) communal bucks in Gbede

April 2006

� In commitment with a private veterinarian a small shop of veterinary products and animal feed was established in Ouedeme-Pedah

From May 2006 – ongoing � Individual follow-up of CBM participant herds and recording of performance in each village

� Two representatives of each community received training in community animal health services

January 2007

� Each CBM group received a development fund of 200.000 FCFA

February 2007 � Vaccination against Pest of small ruminant and treatment against internal parasites and mange

Page 35: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

26Community-based management of local goats in Benin

previous year by the veterinarians in bothcommunities. Likewise, increased adoption ofimproved housing and use of a Burdizzo castratorhas been observed in both communities. Theassumption is that continuous increased adoptioncould be achieved through further Livestock FarmerField School sessions. In Gbede, two communitymembers were designed by the community to assistthe veterinarian during operations of castration inorder to learn and to be able to perform the sameoperations later within the community.Furthermore, in response to the need to reinforce thecommunity leadership skills and to promoteinterdependent leadership practices, supplementaladvisory services and training in meeting-relatedactivities such as team building, goal setting,program planning and community problem solvingin conflict resolution and finance were provided toeach CBM committee. The five day training programwas designed by instructors from a local NGO whohave expertise in leadership development, groupdynamics, conflict management, problem solving,communication, managing change and communitydevelopment. In addition, two people (a womanand a man) were appointed in each community bymembers to receive further training in animalhealth. The six day training in community animalhealth services was provided in both communitiesby a training team composed of a chief veterinarianand a technician, and will be repeated every threemonths.

Monitoring of implementation of plannedactivities

Table 5 shows the chronology of events in planningand implementing CBM actions. Implementationwas facilitated through regular meetings ofcommunity members and planned interactivelearning sessions. During the planning phase,community members identified some indicators formonitoring the outcomes of the CBM process.However, because of the lack of a well-establishedrecording system in both communities, no formalmonitoring of herd could take place. Therefore, atthe outset of May 2006, a one-year participatoryfollow-up of individual herds of participants in theCBM program was implemented in bothcommunities. Its main objective was to facilitate theestablishment of a participatory recording system.For this purpose an enumerator was recruited andtrained for each community. Animals in each herdwere identified using a collar. Collars werepreviously used by farmers just to define

ownership. For recording purposes, each animalwas given an identification number which wasprinted on a piece of wood with hot iron. The pieceof wood was then added to the collar and attachedto the neck of the animal. Wood is a locallyavailable material and does not create any cost tothe farmer.

Therefore, it is expected that this method ofidentification will be easily adopted by farmers andwill facilitate the establishment of a suitablerecording system. Each community was providedwith two scales. The pursued objective was tofamiliarize individual farmers with some basicrecording tasks such as weighing a new born kidand animals before sale. In addition, an enumeratorwas recruited in each community and trained inrecording. He is based in the village and visits eachherd every two-week. He records from each CBMparticipant, the events that have occurred in theherd since his last visit and weights the animals. Healso provides farmers with advice on managementissues.

Towards a community-based geneticimprovement program

In both communities, various factors have beenidentified that constrain the development ofeffective genetic improvement programs. Thesefactors include the small sizes of the herd and thelack of proper management practices (recording,feeding, housing and disease control). During theplanning process, farmers in both communitieshave developed initiatives to overcome theseconstraints and to achieve increases in productivityin the short term while creating favorableconditions for genetic improvement. One of theseconditions is the increased number of participatingherds. As stressed by Olivier et al. (2002), when afarmer has one or two animals as occurs now inboth communities, knowing the performance of anindividual animal becomes relevant only whenrelated to the performance of all other animals in thevillage. Similarly, Van der Werf (2000) argues thatin larger populations, consisting of a larger group offarmers, there is more opportunity to exploit theexisting variation among animals, thus creatingmore potential for genetic improvement.

Further participatory planning meetings wereheld with both communities. During these meetings,the concepts, aims and benefits and the legal andgenetic aspects of each genetic improvement schemeas well as their feasibility were discussed withparticipants. In both communities, the principles of

Page 36: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

27

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Figure 8. Short-legged but not dwarf goat, Southern Benin.

Figure 9. Dwarf goat, Southern Benin.

Page 37: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

28Community-based management of local goats in Benin

open nucleus breeding system (ONBS) has receivedwide acceptance. Each participant farmer hasagreed to contribute the top performing females ofhis herd to the initial breeding herd.

The one-year screening of individualparticipants’ herds has started in both communitiesaims to identify the best 50 females and 2-4 males.Height at withers, dam’s litter size at birth,individual weight at birth and at six months of agewere identified as initial selection criteria. However,these potential donors will not be housed in acentral station but will be maintained in theirrespective herds of origin and a temporary contractwill be signed between the CBM program and theindividual farmer. The selected top 50 females willbe mated with the top 2 males and the bestperforming offspring purchased by the CBMprogram to create the village nucleus. This nucleuswill be located on land provided by the communityand will be managed by the CBM executivecommittee with the support of a livestock technicianacting as a nucleus manager. He will be responsiblefor performance recording and will be paid with thecommunity funds. As agreed by participants in bothcommunities, only male animals born in the villagenucleus should be used in the participating herdswhereas transfer of females will occur in bothdirections between the nucleus and theparticipating herds. This two-way gene transfer willallow genetic improvements made in the mainpopulation to be incorporated into the nucleus andvice-versa. Research by Mueller and James (1983)suggests that when 25 to 50% of the nucleus parentsare selected in the base population (participatingherds), the rate of increase of inbreeding in thenucleus is minimized and longer-term gains aremaximized. In Gbede, farmers suggested replacingthe bucks and the poorly performing females in thenucleus herd annually. Mating of relatives will beminimized by avoiding son-dam, daughter-sire andfull-sib mating.

Generally, morphological traits including heightat withers have higher heritability rate than fitnesstraits (Falconer and Mackay, 1996). Odubote (1996)obtained heritability estimates of 0.35 and 0.32 forlitter size in West African Dwarf goats (Figure 8and 9) from sire and sire-dam groups respectively.Since West African goats are already prolific(Wilson, 1991), selection for litter size would likelylead to higher incidence of multiple births.Likewise, Bosso et al. (2007) reported heritabilityestimates of 0.5, 0.32 for weight at birth and atweaning respectively. Starting from the results ofthese previous studies, a great response to selectionbased on these community-suggested traits can be

expected if farmers adopt appropriate managementtechniques (i.e. improved feeding, disease control,etc.).

Broek van den and Gbégo (1994) recorded afertility rate of 1.3 and a prolificacy rate of 1.8 invillage goats herds kept in balanced nutritionalconditions in Southern Benin. However theyreported a relatively high yearling kid mortality rateof 27% due to unidentified epidemic disease. Withimproved disease control, a yearling survival rate of85% can be an achievable objective in the villagenucleus herd and would allow each doe to produce2 kids per year (1.3* 1.8 *0.85). Annually, there willbe a total of 100 yearling animals in the nucleusherd (50 males and 50 females). The top 2 males(4%) should be retained in the nucleus, the next10 - 15 (20 to 30%) best males made available asbreeding males in participant herds and theremaining 66-74% culled. The best 25% of thefemale animals could be retained annually in thenucleus for breeding purposes, and the 75%remaining culled.

The importance of the adoption of improvedmanagement practices by farmers for the success ofthe program can not be overemphasized. Furtherselection criteria could be identified and integratedlater into the improvement program. The financialimplications of such program have been discussedwith farmers. The need for technical and financialassistance to create and operate the nucleus at leastat the implementation phase of the program hasbeen stressed by the farmers. However, the financialsustainability of the program will depend on thereadiness of farmers to pay for the improved bucksthey will receive from the breed improvementprogram.

Further relevant institutional, management andfinancial issues need to be discussed with thecommunities and a full proposal developed beforethe establishment of the outlined program.

Conclusion

The process outlined in this paper was effective inmobilizing in a short duration of time, collectiveinterest and resources towards better managementof local goat resources in both research villages.Central to the success of the ongoingCommunity-based management process are:• The communities have recognized that their goat

resources which contribute to diversification oftheir sources of income and sustain theirlivelihoods are vulnerable to mismanagement.

Page 38: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

29

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

• The communities have perceived the tangibleand immediate benefits from the ongoingresearch activities.

• The participatory research methodology used inthis study has proved successful in turning theprocess into local capacity building andempowerment exercises: by giving thecommunity a forum for the exchange ofknowledge and experiences, and for analyzingtheir problems and finding solutions. Byproviding them with relevant information andtraining and by helping them in framing rulesand regulations, the research program hasenabled local people to discover and enhancetheir own potential in developing strategies andinstitutions towards better management of theirgoat resources.In both communities, there have been

preliminary discussions about possibilities forimplementation of a community-based geneticimprovement program. Farmers have shown stronginterest in establishing an open nucleus breedingprogram with a central nucleus which wouldprovide participant herds with local bucks of highgenetic potential. However, to ensure the success ofthe implementation of such a genetic program,further discussions and institutional innovationsare required. Also, with the adoption by farmers ofimproved general management practices being ofparamount importance, further investigations areplanned to scientifically validate the localknowledge of farmers on fodder resources and onethno-veterinary practices through systematicon-farm experiments and to plan for participatorycost-effective technologies (improved feeding andcontrol of diseases).

After more than twelve months of intensiveinteraction with the two communities, it can beargued that given some time for consolidation, andcontinued institutional and technical support, thetwo newly created CBM groups are highly likely tobecome self-reliant, socially and economicallyviable and to generate widely replicable results.

Acknowledgments

The authors would like to thank the farmers inGbede and Ouedeme-Pedah who contributed theirvaluable time to attend the groups’ discussionswithout which this work would not have beenpossible. Thanks to the German Catholic AcademicExchange Service (KAAD) and the InternationalLivestock Research Institute (ILRI) through theRegional Project untitled ”Improving the

Livelihoods of Poor Livestock Keepers in Africathrough Community-Based Management of Animalgenetic Resources” for supporting the workfinancially.

List of Acronyms

• CBM FAnGR: Community-Based Management ofFarm Animal Genetic Resources.

• CBM: Community-Based Management.• CBNRM: Community-Based of Natural

Resources Management.• CBO: Community-Based Organization.• FAnGR: Farm Animal Genetic Resources.• FCFA: Francs de la Communauté Financière

Africaine.• MAEP: Ministère de l’Agriculture, de l’Elevage et

de la Pêche.• MDLC: Ministère de la Décentralisation et des

Communautés Locales.• NGO: Non Governmental Organization.• ONBS: Open Nucleus Breeding Scheme.• PIC: Prior Informed Consent.• PPR: Pest of Small Ruminants.

List of References

Berkes, F. 2004. Rethinkingcommunity-based conservation. ConservationBiology 18, 621-630.

Berkes, F., J. Colding, & C. Folke. 2000.Rediscovery of traditional ecological knowledge asadaptive management. Ecological Applications 10,1251–1262.

Binns, T. & E. Nel. 1999. Beyond thedevelopment impasse: the role of local economicdevelopment and community self-reliance in ruralSouth Africa. Journal of Modern African Studies 37,289-408.

Bosso, N.A., M.F. Cisse,E.H. Waaj van der, A. Fall & J.A.M. Arendonk van.2007. Genetic and phenotypic parameters of bodyweight in West African Dwarf goat and Djallonkésheep. Small Ruminant Research 67, 271–278.

Brett, E.A. 2003. Participation andaccountability in development management. TheJournal of Development Studies, 40, 1-29.

Page 39: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

30Community-based management of local goats in Benin

Broek van den, A. & T.I. Gbégo. 1994.Sustainability of small ruminant production on theAdja Plateau (South Benin). Netherland Journal ofAgricultural Science 42, 69-76.

Campbell, L.M. & A.Vainio-Mattila. 2003.Participatory development and community-basedconservation: Opportunities missed for lessonslearned? Human Ecology 3, 417-437.

Catley, A.1999. Methods on the move: areview of veterinary uses of participatoryapproaches and methods focusing on experiencesin dryland Africa. International Institute forEnvironment and Development (IIED), London.

Chan, K.M.A., R. Pringle, J. Ranganathan,C.L. Boggs, Y.L. Chan, P.R. Ehrlich, P.K. Haff,N.E. Heller, K. Al-Khafaji & D.P. Macmynowski.2007. When agendas collide: human welfare andbiological conservation. Conservation Biology 21,59-68.

Dossa, L.H., C. Wollny & M. Gauly. 2007.Smallholders’ perceptions of goat farming insouthern Benin and opportunities for improvement.Tropical Animal Health and Production 39, 49-57.

Falconer, D.S. & T.F.C. Mackay. 1996.Introduction to quantitative genetics, 4th edition.Longman Group Ltd, New York.

Ghimire, K.B. & M.P. Pimbert (Eds). 1997.Social Change and Conservation. Earthscan,London.

Grandin, B.E. 1988. Wealth ranking insmallholder communities: a field manual.Intermediate Technology Publications, London,England.

Kahi, A.K., T.O. Rewe & I.S. Kosgey. 2005.Sustainable community-based organizations for thegenetic improvement of livestock in developingcountries. Outlook on Agriculture 34, 261-270.

Kiwuwa, G.H. 1992. Breeding strategies forsmall ruminant productivity in Africa. In: Rey, B.,S.H.B.Lebbie & L.Reynolds (Eds), Small ruminantresearch and development in Africa. Proceedings ofthe first biennial conference of the African smallruminant research network, Nairobi, Kenya,10-14 December 1990.

Kleemeier, E. 2000. The Impact ofparticipation on sustainability: an analysis of theMalawi rural piped scheme program. WorldDevelopment 28, 929-944.

Kosgey, I.S., R.L. Baker, H.M. J. Udo &J.A.M Arendonk van. 2006. Successes and failuresof small ruminant breeding programmes in thetropics: a review. Small Ruminant Research, 61,13-28

Little, P. 1994. The link between localparticipation and improved conservation: a reviewof issues and experiences. In: Western, D. &M.A. Wright (Eds). Natural connections:perspectives in community-based conservation,Island Press, Washington DC, 347-372.

Mascia, M.B., J.P. Brosius, T.A Dobson,B.C. Forbes, L. Horowitz, M.A. McKean &N.J. Turner. 2003. Conservation and the socialsciences. Conservation Biology 17, 649-650.

Minjauw, B. 2001. Training of trainersmanual for livestock farmer field schools. Based ona participatory workshop held on the 17-29September 2001, Mabanga Ftc, Bungoma, Kenya,FAO –DFID-ILRI.

Molians, J.R. 1998. The impact of inequality,gender, external assistance and social capital onlocal level collective action. World Development 26,413-431.

Mueller, J.P. & J.W.James. 1983. Effects ofreduced variance due to selection in open nucleusbreeding systems. Aust. J. Agric. Res.34, 53-62.

Mueller, J.P., E.R. Flores & G.A. Gutierrez.2002. Experiences with a large scale sheep geneticimprovement project in the Peruvian Highlands.Paper presented at the 7th World Congress inApplied Genetics to Livestock Production,Montpellier, France, 19-23 August 2002.

Odubote, K. 1996. Genetic parameters forlitter size at birth and kidding interval in the WestAfrican Dwarf goats. Small Ruminant Research 20,261-265.

Olivier, J.J., S. Moyo, H.H. Montaldo,W. Thorpe, A. Valle Zarate &, K.R. Trivedi. 2002.Integrating genetic improvement into livestockdevelopment in medium- to low-input productionsystems. Paper presented at the 7th World Congresson Genetics Applied to Livestock Production,Montpellier, France, 19-23 August 2002.

Ostrom, E. 1990. Governing the commons:the evolution of institutions for collective action.Cambridge University Press, Cambridge.

Page 40: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

31

Animal Genetic Resources Information, No. 44, 2009

Dossa et al.

Plateau, J-P. & A. Abraham. 2002.Participatory development in the presence ofendogenous community imperfections. The Journalof Development Studies 39, 104-136.

Rege, J.E.O. 2001. Defining livestock breedsin the context of community-based management offarm animal genetic resources. In: FAO (Ed.),Proceedings of a workshop on community-basedmanagement of animal genetic resources: a tool forrural development and food security. Mbabane,Swaziland, 7–11 May 2001.

Sultana, P. & P. Thompson. 2003. Methods ofconsensus building for community based fisheriesmanagement in Bangladesh and the Mekong Delta.Working Paper no. 30, Collective Action andProperty Rights (CAPRi).

Swantz, M.L. 1997. Community andvillage-based provision of key social services: a casestudy of Tanzania, </www.wider.unu.edu/publications/publications.htm>. Cited 11 Nov 2006.

Waters-Bayer, A. & W. Bayer. 1994.Planning with pastoralists: PRA and more - areview of methods focused on Africa. DeutscheGesellschaft für Technische Zusammenarbeit (GTZ)Division 422 Working Paper, Goettingen, Germany.

Werf van der, J. 2000. Livestockstraight-breeding system structures for thesustainable intensification of extensive grazingsystems. In: Galal S., Boyazoglu J., Hammond K.(Eds), Proceedings of a workshop on DevelopingBreeding Strategies for Low Input AnimalProduction Environments, Bella, Italy,22-25 September 1999. ICAR Technical Series no. 3,105-177.

Western, D. & M.A. Wright. 1994. Thebackground to community-based conservation.In: Western, D. & M.A. Wright. (Eds) Naturalconnections: perspectives in community-basedconservation. Island Press, Washington DC, 1-12.

Wilson, R.T. 1991. Small ruminantproduction and the small ruminant genetic resourcein Tropical Africa. FAO Animal Production andHealth Paper 88, Rome, Italy.

World Bank. 1999. Report from InternationalWorkshop on Community-Based Natural ResourceManagement (CBNRM), Washington D.C., UnitedStates, 10-14 May 1998. <www.worldbank.org/wbi/conatrem/>. Cited 06 November 2006.

WFP. 1998. Country strategy outline-Benin.<www.wfp.org/eb/docs/1998/wfp000199~1.pdf>. Cited02 Nov 2005.

Page 41: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

33

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 33-43

Summary

There are mainly three locally developed meat typegoat breeds in South Africa namely the SouthAfrican Boer goat, the Savanna and the KalahariRed. In order to maintain the characteristics of thesebreeds and to ensure that their unique traits are notlost through continuous selection andcross-breeding, it has become important to revisitcurrent breed standards and introduce geneticcharacterization to obtain genetic diversityparameters. Both the Boer goat and Savanna breedshave established breeders associations while abreeders club was founded for the Kalahari Redgoats. These associations have set breed standardsand the breeds’ morphometric traits have recentlybeen described. The differences in morphometrictraits among the breeds are fairly insignificant.Preliminary data on genetic diversity reportheterozygosity values above 50% for each of thethree breeds and they can be distinguished asseparate breeds based on genotyping results witheighteen ISAG recommended microsatellite markers.There is however a need for a geneticcharacterization of both meat type and indigenousgoats to ensure sufficient diversity within the breedsfor long term conservation of the unique geneticresource.

Resumé

Il y a en gros trois races de chèvres à viandedéveloppées en Afrique du Sud, à savoir la chèvreBoer sud-africaine, la Savanna et la Kalahari Rouge.Afin de conserver les caractéristiques de ces races etde faire en sorte que leurs traits uniques ne seperdent pas au cours des sélections et croisementscontinus, il est devenu nécessaire de revoir lesnormes des races actuelles et d’introduire descaractéristiques génétiques pour obtenir desparamètres de diversité génétique. La race de chèvreBoer et la Savanna ont des associations d’éleveurs

South African developed meat type goats: A forgottenanimal genetic resource?

A. Pieters1, E. van Marle-Köster1, C.Visser1, & A. Kotze2

1Department of Animal & Wildlife Sciences, University of Pretoria, Pretoria 0002, South Africa2National Zoological Gardens, Pretoria 0002, South Africa

établies, tandis qu’un club d’éleveurs a été créé pourles Kalahari Rouge. Ces associations ont desnormes raciales bien définies et les traitsmorpho-métriques des races ont été décritsrécemment. Les différences dans les traitsmorpho-métriques des races sont négligeables. Lesdonnées préliminaires sur la diversité génétiquerévèlent des valeurs hétérozygotes de plus de 50%pour chacune des trois races et elles peuvent êtredistinguées comme des races séparées en se basantsur les résultats génotypiques avec dix-huitmarqueurs microsatellites recommandés par l’ISAG.Cependant, il faut faire une caractérisationgénétique des deux types de viande et des chèvresindigènes pour garantir une diversité suffisantedans les races afin de conserver à long terme cetteunique ressource génétique.

Resumen

Existen mayormente tres razas de cabras de carneen Sud Africa, la cabra Boer sudafricana, laSavanna y la Kalahari Roja. Con el fin de conservarlas características de estas razas y conseguir quesus rasgos únicos no se pierdan a lo largo deselecciones y cruces continuos, se ha hechonecesario revisar las normas de las razas actuales eintroducir características genéticas para obtenerparámetros de diversidad genética. Las razas decabra Boer y Savanna poseen asociaciones deganaderos, mientras que un club de ganaderos hasido creado para la Kalahari Roja. Estasasociaciones tienen normas bien definidas para lasrazas y los rasgos morfométricos han sido descritosrecientemente. Las diferencias en los rasgosmorfométricos entre las razas no son importantes.Los datos preliminares sobre la diversidad genéticarevelan valores de heterocigosis de más del 50%para cada una de las tres razas y puedendiferenciarse como razas separadas en base a losresultados genotípicos con dieciocho marcadoresmicrosatelitares recomendados por ISAG. Sin

Page 42: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

34South African meat type goats

embargo, hay que hacer una caracterizacióngenética de dos tipos de carne y de cabras indígenaspara garantizar una diversidad suficiente entre lasrazas con el fin de conservar a largo plazo esterecurso genético único.

Key words: Meat type, Phenotypic, Geneticcharacteristics, Utilization, Conservation.

Introduction

South Africa has a goat population ofapproximately 6.6 million of which 64% are keptand/or commercially farmed within the rural areas(Coetzee, 1998). The primary goat breeds consist ofAngora for mohair production, three meat type goatbreeds namely the South African Boer goat, theSavanna and the Kalahari Red and a number ofindigenous types that are primarily classifiedaccording to the geographical area in which theyreside. Apart from the Angora goats, these breedsare all believed to originate from indigenous types,which had migrated to Southern Africa by 2500 BC,due to increasing desertification of the southernregions of the Sahara (Maree and Plug, 1993). Thelocal Khoisan shepherds travelled southwards fromNorthern Botswana down to the Orange River andlater followed two additional routes to reach theSouthern and Western Cape. One of the earliestreferences to the presence of goats in the NorthernCape was made by the missionary, J. Burrow, whodescribed the goats kept by the local people as“handsome goats, speckled like the leopard” (Campbell,2003). These goats, also referred to as ‘skilder’ goatsor speckled goats, were most likely the resource,which led to the development of the current meattype goats.

These locally developed breeds have beensubjected to artificial selection for improvedproduction and growth. Although this has led toimproved performance in the breeds, the questionarises if specific genetic characteristics could becompromised by continuous selection forimprovement of growth and meat characteristics.Often these breeds and our indigenous types aremarketed as having special adaptive characteristics;local types often survive tick borne diseases betterthan commercial types (Malan, 2000; Erasmus,2000).

According to some authors, true indigenous goatbreeds in South Africa have been virtuallycross-bred to extinction due to the development ofthe meat type goats such as the Boer goat (Campbell,

1995). Some researchers and farmers believe that thepure ‘unimproved’ indigenous goats possessimportant economic traits (including viability, goodmothering ability, disease resistance and resistanceagainst ticks), which should not be disregarded(Campbell, 1995; Van der Walt, 200, personalcommunication).

Recently a strategy for the conservation andutilization of South African genetic animalresources, including goat genetic resources, hasbeen formulated. This policy aims at facilitatingpoverty alleviation through the strategicmanagement of genetic resources, therebyimproving the livelihoods of farmers and ruralcommunities. The characterization and evaluationof genetic resources is one of the proposed ways inwhich this goal could be attained (NationalDepartment of Agriculture: Genetic resourcemanagement, 2008).

In order to maintain the characteristics of theselocally developed breeds and ensure that theirunique traits are not lost through continuousselection and cross-breeding, it has becomeimportant to revisit current breed standards andintroduce genetic characterization to obtain geneticdiversity parameters.

The objective of this paper was therefore toreview the potential of locally developed meat typegoats as a genetic resource with reference to theirphenotypic and genetic characteristics.

Material and Methods

Phenotypic and genetic characteristics

Goats are well adapted to the drier western regionof South Africa and northern regions where bushencroachment is a problem (Figure 1). It is also inthese areas where the Boer, Kalahari Red andSavanna goats are primarily farmed in commercialsystems for meat production.

Of the three breeds the Boer goat has the longestofficial history with the formulation of breedstandards in 1959 when the South African BoerGoat Association was founded (Campbell, 2003).The breed standards specify a red head and theBoer goat replaced many unimproved local strainsof varying colours with the strict selection for awhite body and red head depicted in figure 2. Boergoats are large, long-legged goats with short, softhair and long ears. These goats have a sturdy headwith a compressed nose and strong horns that havea gradual backward curve. They have fleshy,

Page 43: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

35

Animal Genetic Resources Information, No. 44, 2009

Pieters et al.

well-developed broad briskets, well-sprung ribs,broad backs and muscular legs (Sambraus, 1992)and well fleshed buttocks and thighs. The matureBoer goat buck weighs between 110 and 135 kg anddoes weigh between 90 and 100 kg (Malan, 2000).The Boer goat does are known for their goodmothering ability (Figure 2) and can kid every sevento eight months. They have an exceptional ability toresist and survive diseases such as blue tongue,prussic acid poisoning and, to a lesser extent,enterotoxaemia (Malan, 2000; Erasmus, 2000).

The Kalahari Red (Figure 3) is believed to haveoriginated from two lines, namely a line ofred-headed Boer goat and another of the‘unimproved’ local goats in South Africa (Campbell,2003). The Kalahari Red have a distinct red colour,shown in Figure 3, and are often used incrossbreeding to produce goats with a uniform,solid, red colour. They are fully pigmented and areable to endure heat and intense sunlight, as theirdark coats and long ears provide good heatresistance (http://studbook.co.za). The breed hasexcellent walking ability and good motheringability and they can kid three times in two years.

The white Savanna goat (Figure 4), also knownas the white Boer goat, was developed fromindigenous goats of Southern Africa during the pastfew decades (Campbell, 2003). The breed standards

allow limited red, blue and black hairs(http://ourfarmsite.com/web/goats/goatsavanna/breedstandards.html). The Savanna goat has shortkempy white hair with a black skin, horns, noseand udder, and during the winter the goats developextra fluffy cashmere hair for protection. Theirheads are fairly long and slightly curved with big,oval shaped ears. The forequarter is well muscledand of medium width, with a reasonably long neckfor easy browsing. Does have excellent motheringtraits and about 22% of their offspring are born astwins and triplets, under extensive conditions. TheSavanna and Kalahari Red goats have beenrecognised in South Africa as official breeds since1993 and 1990, respectively.

Morphometric traits

Morphometric data was collected from goats withan average age of 12 months in a recent study in2007. The measurements taken and their fulldescriptions are reported in table 1. Goats weresampled from a number of stud herds in order to berepresentative of the different breeds (samplecollection are indicated in figure 1) and linear traitswere measured for a total of 42 Boer goats,47 Kalahari Reds and 49 Savanna goats. The goats

Figure 1 . Distribution of the meat type goat breeds.

Page 44: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

36South African meat type goats

Figure 2. Typic South African Boer goats with a white body and red head and neck.

Figure 3. Kalahari Red goats with a uniform red coat colour.

Page 45: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

37

Animal Genetic Resources Information, No. 44, 2009

Pieters et al.

Figure 4. Typic flock of white Savanna goats.

Table 1. Description of morphometric measurements.

Measurement1 Description Height (H) Vertical distance to the ground, measured behind the whithers Length (L) From the anterior shoulder point to the posterior extremity of the pin bone Loin width (LW) Measured just in front of the haunches (os coxea) Depth (D) Between Corpus Sterni and the point between the shoulder blades Heart girth (HG) Measured just behind the shoulder Hock length (HL) From the front to back margin Head width (HW) Distance between eyes Head length (HL) Length of head Neck circumference (N) Circumference Tail length (TL) From the tail base to tip Pelvic width (PW), Between pelvis bones Pelvic length (PL) From pelvic bone to os coxea 1A tape measure and measuring-rod were used to obtain various body measurements (in cm).

were also classified according to qualitativecharacteristics including beardedness (absence orpresence of beard), incidence of horns (horned orpolled) and coat colour. A General Linear Model(GLM) procedure of SAS (1992) was applied foranalyses of the different traits measured.

Genetic characterization

A genetic characterization of the local meat typebreeds has been undertaken by the Department ofAnimal and Wildlife Sciences at the University ofPretoria. The blood samples were collected from the

Page 46: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

38South African meat type goats

same areas as described for the phenotypicmeasurements. For the genetic characterizationadditional flocks were included to ensure thatunrelated samples are collected as far as possible.The Boer goats (62) represented three areas, twodifferent flocks from the Northern Cape (31), andtwo experimental populations of Boer goats(31 Eastern Cape and 17 Limpopo provinces) notsubjected to selection. The 60 blood samples for theKalahari Red were collected from six flocks and the55 Savannah samples from two different flocks in

the Northern Cape. Eighteen microsatellite markerswere selected from a panel of markers recommendedby the International Society for Animal Genetics(ISAG) for application in diversity studies. Thesemarkers were selected based on the degree ofpolymorphism and genome coverage (Table 2) andavailable on web at: lprdad.fao.org/cgi-bin/getblob.cgi?sid=4d60c0a342d8413c49accb8c1837ebf5,50005880 and background atwww.isag.org.uk/ISAG/all/ISAG2004_ISAGFAO_AGAGD.pdf ; ftp://ftp.fao.org/

Table 2. Microsatellite marker information applied in this study.

Microsatellite marker

Chromosome number

Fluorescent label 1

Product size range Sequence

F 5’– AGC AAG AAG TGT CCA CTG ACA G-3’ SRCRSP24 Unknown Fam 162 – 174

R 5’ –TCT AGG TCC ATC TGT GTT ATT GC-3’

F 5’ –GGA CTC TAC CAA CTG AGC TAC AAG- 3’ SRCRSP5 21 Tet 171 -183

R 5 –TGA AAT GAA GCT AAA GCA ATG C-3’

F 5’ –TGC GGT CTG GTT CTG ATT TCA C-3’ SRCRSP8 Unknown Tet 210 – 260

R 5’ –CCT GCA TGA GAA AGT CGA TGC TTA G- 3’

F 5’ –GTC CAT TGC CTC AAA TCA ATT C- 3’ MCM527 5 Hex 155 – 173

R 5’ –AAA CCA CTT GAC TAC TCC CCA A- 3’

F 5’ –GAG TAG AGC TAC AAG ATAA AAC TTC- 3’ INRA 23 3 Tet 208 – 214

R 5’ –TAA CTA CAG GGT GTT AGA TGA ACT CA- 3’

F 5’ –TTG TTT AGG CAA GTC CAA AGT C- 3’ BM1329 6 (sheep) Tet 168 – 182

R 5’ – AAC ACC GCA GCT TCA TCC- 3’

F 5’ – AAA TGT GTT TAA GAT TCC ATA CAG TG- 3’ OARFCB20 2 Tet 99 – 125

R 5’ – GGA AAA CCC CCA TAT ATA CCT ATA C- 3’

F 5’ – GGA CTT GCC AGA ACT CTA CAA T- 3’ CRSRD247 14 Fam 236 – 244

R 5’ –CAC TGT GGT TTG TAT TCA GG- 3’

F 5’ – AGC AGA CAT GAT GAC TCA GC- 3’ ILST087 28 Fam 145 – 165

R 5’ –CTG CCT CTT TTC TTG AGA GC- 3’

F 5’ – TGA ACG GGT AAA GAT GTG -3’ SRCRSP23 Unknown Fam 83 – 111

R 5’ –TGT TTT TAA TGG CTG AGT AG- 3’

F 5’ –GGC CTG AAC TCA CAA GTT GAT ATA TCT ATC AC- 3’ OARFCB11 2 Hex 142 – 150

R 5’ –GCA AGC AGG TTC TTT ACC ACT AGC ACC- 3’

F 5’ –TCT ATA CAC ATG TGC TGT GC- 3’ ILST002 Unknown Hex 118 – 127

R 5’ –CTT AGG GGT GAA GTG ACA CG- 3’

F 5’ –AG CAA AAT ATC AGC AAA CCT- 3’ RM004 15 Tet 138 – 146

R 5’ –CCA CCT GGG AAG GCC TTT A- 3’

F 5’ –ATT TGC ACA AGC TAA ATC TAA CC- 3’ INRA63 18 Fam 174 – 190

R 5’ –CCA CCT GGG AAG GCC TTT A- 3’

F 5’ –AGG AAT ATC TGT ATC AAC CTC AGT C- 3’ INRA006 3 Hex 109 – 123

R 5’ –CTG AGC TGG GGT GGG AGC TAT AAA TA- 3’

F 5’ – AAA GGC CAG AGT ATG CAA TTA GGA G- 3’ MAF65 15 Tet 117 – 127

R 5’ – CCA CTC CTC TGA GAA TAT AAC ATG- 3’

F 5’ –GTA TGT ATT TTT CCC ACC CTG C- 3’ BM1258 23 Fam 102 – 106

R 5’ – GAG TCA GAC ATG ACT GAG CCT G(AT)- 3’ 1Dye colour of fluorescent label Fam = Blue; Tet = Green and Hex = Yellow.

Page 47: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

39

Animal Genetic Resources Information, No. 44, 2009

Pieters et al.

docrep/fao/010/a1250e/annexes/Reports%20from%20International%20Organizations/ISAG.pdf.

PCR reactions were carried out in a volume of8.2 l, containing 50 ng target DNA, 3.48 MdNTP’s, 10 mM TrisHCl (pH = 9.0), 1.5 mM MgCl2,1.74 unit Taq Polymerase enzyme (Goldstar) and4.54pmol of each primer (microsatellite marker).Preparation of samples was followed by thermalcycling in a Thermal Controller (Perkin Elmer)using the following program: 12 minutes at 94°Cfollowed by 33 cycles consisting of 45 sec at 94°C,80 sec at 60 °C, 60 sec at 72°C and an extension stepof 60 min at 72°C. GENESCAN-350 TAMRA wasused as internal standard and samples wereanalyzed on an automated DNA-Sequencer(ABI 377). The Genescan version 2.0 and Genotyperfor MacIntosch were used to determine the fragmentsizes in base pairs. Hardy Weinberg Equilibrium,heterozygosity and effective number of alleles werecalculated using POPGENE 3.2 (Yeh et al., 1999)and Microsattellite Toolkit ( Park, 2001). A factorialcorrespondence analysis was performed to

illustrate the relationship among the breeds usingGenetix 4.03 (Belkhir et al., 1996).

Results

Of the goats measured 13% of the Boer goats, 23% ofthe Kalahari Red and 25% of the Savanna goatswere bearded. Seventy five percent of all the Boergoats had white bodies with red heads, while theremaining 25% had either speckled heads or a redspot on the body. The Kalahari Red goats wereprimarily red coated with a white or black spotappearing on the body of 15% of the population.Savanna goats were all white. Morphometricmeasurements analyzed were presented in table 3.

All the microsatellite markers tested were foundto be in Hardy Weinberg Equilibrium, except forsome markers in the Savanna goats.

The effective number of alleles showed littlevariation, from 2.9 in the Boer goat to 3.4 in theKalahari Red goats. Preliminary heterozygosity

Figure 5 Assignment of individuals to the respective populations using a Factorial Correspondence Analyses.

Page 48: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

40South African meat type goats

Table 3. Statistical description of body measurements (cm) recorded for 42 Boer goats , 47 Kalahari Red and 49 Savanna goats.

Body measurements Trait Breed Min. Max.

Least square means1

Standard error (±)

Boer Goat 47.0 67.5 56.5a 0.5 Kalahari Red 49.3 60.2 54.1a 0.5

Height (H)

Savanna 47.8 61.9 55.7a 0.5 Boer Goat 55.0 79.5 68.2ab 0.8 Kalahari Red 60.6 83.2 69.8a 0.8 Length

(L) Savanna 30.0 71.1 64.9b 0.7 Boer Goat 22.2 33.0 26.4ab 0.3 Kalahari Red 23.0 31.8 27.1a 0.3

Depth (D) Savanna 22.4 29.0 24.9b 0.3

Boer Goat 78.0 112.0 90.3ab 1.0 Kalahari Red 65.6 114.0 95.3a 1.0 Heart Girth

(HG) Savanna 72.6 100.2 86.5b 1.0 Boer Goat 16.5 34.0 28.3a 0.5 Kalahari Red 15.2 36.1 27.7a 0.5

Hock Length (HL)

Savanna 18.1 29.1 23.5b 0.5 Boer Goat 4.8 10.5 7.7a 0.2 Kalahari Red 4.8 8.9 6.6b 0.3

Head Width (HW) Savanna 4.2 7.3 5.6c 0.2

Boer Goat 13.0 21.0 17.2a 0.3 Kalahari Red 9.8 21.6 15.7b 0.2

Head Length (HL)

Savanna 13.1 20.0 15.8ab 0.2 Boer Goat 33.2 57.0 48.3a 4.0 Kalahari Red 33.7 58.5 42.5ab 3.8

Neck Circumference

(N) Savanna 30.4 65.4 37.7ab 3.7 Boer Goat 6.0 17.0 12.2ab 0.3 Kalahari Red 10.4 19.2 13.2a 0.3

Tail Length (TL)

Savanna 9.6 19.0 13.3a 0.3 Boer Goat 7.8 21.4 13.8a 0.3 Kalahari Red 9.0 13.5 11.1b 0.3

Pelvic Width (PW)

Savanna 8.4 17.7 11.4b 0.3 Boer Goat 13.5 26.5 19.7a 0.4 Kalahari Red 16.0 24.8 20.5a 0.3 Pelvic Length

(PL) Savanna 16.7 27.4 19.1a 0.3 Boer Goat 14.4 26.0 21.4a 0.3 Kalahari Red 14.0 18.5 19.2b 0.2

Ear Length (EL)

Savanna 16.3 22.7 19.5b 0.2 1Superscripts differ significantly for P <0.001.

Page 49: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

41

Animal Genetic Resources Information, No. 44, 2009

Pieters et al.

Table 4. Number of samples, effective number of alleles and expected and observed heterozygosity for the three breeds.

Breeds Mean n of samples Ne1

Unbiased Hz (SD)

Observed H (SD)

S A Boer goat 31 2.9 0.57 (0.19) 0.54 (0.22) Boer goats EC2 31 3.3 0.65 (0.15) 0.62 (0.20) Boer goat3 17 3.1 0.62 (0.17) 0.66 (0.35) Kalahari-Red 60 3.3 0.68 (0.10) 0.63 (0.13) Savanna 55 3.4 0.69 (0.10) 0.61 (0.08)

1Ne = Effective number of alleles. 2 = Experimental population of Boer goats Eastern cape province. 3 = Experimental population of Boer goats Limpopo province.

values calculated for this study were all above 50%with the lowest value for the SA Boer goat (57%)and a slight difference between the Savanna (68%)and Kalahari Red (69%) (Table 4). Both theexperimental flocks of SA Boer goat had higherheterozygosity values than the commercial flocks ofthe Northern Cape Province.

In figure 5 the results of a FactorialCorrespondence Analysis are shown with theassignment of the individual goats analysed intothree groups.

Discussion

Goats have been largely neglected as an animalgenetic resource in South Africa when compared tocattle and sheep. Despite a number of researchinitiatives undertaken over the past 40 years on goatproduction, there are still aspects that requireattention and a need for effective coordination ofresearch programs to lead to the successfulconservation and utilization of goats. The SouthAfrican Boer goat, Savanna and Kalahari Red goatshave only recently been classified as distinct breeds,while their phenotypic and genetic characterizationare still not well defined.

Both the Boer goat and Savanna breeds haveestablished breeders associations while a breedersclub was founded for the Kalahari Red goats withset breed standards (www.studbook.co.za/telers). Thebreed standards consist of primarily phenotypicdescriptions, colour and culling defects. Attention isalso given to type traits related to functionalefficiency. Except for the colour variation betweenthe three breeds, the breed standards are quitesimilar and the aim is to select for a well adapted,functionally efficient meat type goat breed.

Morphometric measurements recorded for thisstudy (reported in table 3) indicate a larger withinbreed variation (minimum and maximum) thanbetween the breeds. Statistical differences wereobserved between the Savanna and the other twobreeds for depth and length but not (P< 0.001) forheight. The only trait where significant differenceswere observed among all three breeds was for headwidth, where the Boer goat had the broadest headand the Savanna the narrowest. The Boer goat hadthe largest pelvis with and the longest earscompared to the other two breeds (P< 0.001). The differences in morphometric traits among thebreeds are fairly insignificant and highlight theneed for a genetic characterization to be able todistinguish the breeds accurately on a genotypiclevel and to ensure sufficient diversity within thebreeds for long term conservation. Theheterozygosity values estimated for the three breedsare relatively high and correspond with theobservations for local South African breeds byVisser et al. (2004) and values reported in studies ongoats by Martinez et al., 2006; Els et al., 2004; Li et al.,2002, but higher than those reported by Kumar et al,(2005) for Marwari goats. It is important to note thatboth the experimental populations of Boer goats notsubjected to selection for improved performance hada higher genetic variation than the Boer goatssampled from the breeders (Table 4). The samplesize of the goats sampled from the Limpopo flockwas small and more samples need to be tested forfurther analyses. According to the FactorialCorrespondence Analysis (Figure 5) the three breedsassign to three groups. The Kalahari Red goats canbe distinguished as a group, while the SA Boer goatand Savanna tend to overlap. More samples ofindigenous goat types and Angora mohair goats arecurrently being added for further analyses of geneticdiversity and relatedness for a more detailedcharacterization of all South African goats.

Page 50: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

42South African meat type goats

The meat goat breeds are often noted in literatureas having adaptive characteristics in terms of heattolerance and feeding behavior (Erasmus, 2000;Malan, 2000). There is an urgent need to investigatethese traits to ensure conservation of the uniquegenetic resource. Shrestha and Fahmy (2005)reported that nearly 800 farm animal geneticresources have already been lost and about30 percent of the remaining species are associatedwith some degree of risk. The FAO predicts that20 percent of livestock breeds are at risk ofextinction and more than half of these breeds arelikely to be found in developing countries (FAO,2007).

Conclusion

Goat meat production in South Africa is relativelylow compared to beef and mutton, but it plays animportant role in African cultural activities and isthe preferred meat in certain communities (Webb etal., 2005). In addition to the local production, bothSA Boer goat and Kalahari Red have been exportedto Europe and the USA. It is important that breedstandards for the locally developed breeds berevised and genetic analyses included to ensurethat superior genetics will be conserved. Adaptivephenotypic characteristics of both the meat typebreeds and indigenous types require furtherinvestigation for the long term conservation of goatsas a unique animal genetic resource in South Africa.

List References

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N.& Bonhomme F. 1996–2002. GENETIX 4.04, logicielsous Windows TM pour la génétique despopulations. Laboratoire Génome, Populations,Interactions, CNRS UMR 5000, Université deMontpellier II, Montpellier (France).

Campbell, Q. 1995. Indigenous goats. In: TheIndigenous Sheep and Goat Breeds of South Africa.Eds. Campbell, Q., Dreyer printers and publishers,Bloemfontein, pp. 35-44.

Campbell, Q.P. 2003. The origin anddescription of southern Africa’s indigenous goats.South African Journal of Animal Science, 4, 18-22.

Coetzee, R.J. 1998. Socio-economic aspects ofsustainable goat production. In: Proceedings of theWorkshop on Research and Training Strategies for

Goat Production Systems in South Africa, King’sLodge Hotel, Hogsback, Eastern Cape, South Africa,Ed. by Webb, E.C., Cronje, P.B., pp. 14-16.

Donkin, E.F., Ramsey, K.A. &Van Marle-Köster, E. 2004. Unpublished.Department of Animal & Wildlife Sciences,University of Pretoria, South Africa.

Els, J.F., Kotze, A. & Swart, H. 2004. Geneticdiversity of indigenous goats in Namibia usingmicrosatellite markers: preliminary results. SouthAfrican Journal Animal Science, 34, (Supplement 2)65-67.

Erasmus, J.A. 2000. Adaptation to variousenvironments and resistance to disease of theImproved Boergoat. Small Ruminant Research, 36,179-187.

FAO. 2007. State of the World’s AnimalGenetic Resources for Foord and Agriculture. Rome2007, <ftp://ftp.fao.org/docrep/fao/010/a1250e/a1250e.pdf>.

Kumar, D., Dixit, S.P., Sharma, R.,Pandey, A.K., Sirohi, G., Patel, A.K.,Aggarwal, R.A.K., Verma, N.K., Gour, D.S. &Ahlawat, S.P.S. 2005. Population structure, geneticvariation and management of Marwari goats. SmallRuminant Research, 59, 41-48.

Li, M.H., Zhao, S.H. Bian, C., Wang, H.S.,Wei, H., Liu, B., Yu, M., Fan, B., Chen, S.L.,Zhu, M.J., Xiong, T.A. & Li, K. 2002. Geneticrelationships among twelve Chinese indigenousgoat populations based on microsatellite analysis.Genetic and Sell Evolution. 34, 729-744.

Malan, S.W. 2000. The improved Boer goat.Small Ruminant Research, 36, 165-170.

Maree, C. & Plug, I. 1993. Origin of SouthernAfrican Livestock and their potential role in theindustry. In Livestock Production Systems. Casey &Maree (Eds). Agri Development Foundation,Pretoria, South Africa. ISBN 0-620-17126.

Martinez, M.M., Acosta, J., Vega-Pa, J.L. &Delgado, J.V. 2006. Analysis of the genetic structureof the canary goat populations using microsatellite.Livestock Science 102, 140-145.

Park, S.D.E. 2001. Trypanotolerance in WestAfrican cattle and the population genetic effects ofSelection. Phd thesis University of Dublin.

Page 51: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

43

Animal Genetic Resources Information, No. 44, 2009

Pieters et al.

Pieters, A. 2007. Genetic characterization ofcommercial goat populations in South Africa. MSc(Agric) thesis. University of Pretoria, South Africa.

Sambraus, H.H. 1992. Goats. In: A ColourAtlas of Livestock Breeds. Eds. Sambraus, H.H.Wolfe Publishing, Germany. 137-156.

Shrestha, J.N.B. & Fahmy, M.H. 2005.Breeding goats for meat production: a review 1.Genetic resources, management and breedevaluation. Small Rumin. Res., 58, 93-106.

Visser, C., Hefer, C.A., van Marle-Köster, E.& Kotze, A. 2004. Genetic variation of threecommercial and three indigenous goat populationsin South Africa. S. Afr. J. Anim. Sci., 34(supplement 1), 24-27.

Webb, E.C., Casey, N.H. & Langa, L. 2005.Goat meat quality. Small Rum. Res., 60: 153-166.

Yeh, F.C., Yang, Rong-cai, & Boyle, T. 1999.POPGENE VERSION 3.2. Centre for InternationalForestry research. University of Alberta.

Page 52: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

45

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 45-55

Genetic diversity and zebu genes introgression in cattle populationalong the coastal region of the Bight of Benin

O. D. Koudandé1, G. Dossou-Gbété1, F. Mujibi2, H. Kibogo2, D. Mburu2,G.A. Mensah1, O. Hanotte2 & J.A.M. van Arendonk3

1Institut National des Recherches Agricoles du Bénin, 01 BP 884, Cotonou, Benin2International Livestock Research Institute, (ILRI) P. O. Box 30709, Nairobi, Kenya

3Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University,P.O. Box 338, 6700 AH Wageningen, The Netherlands

Summary

Genetic diversity and Zebu genetic introgressionhave been assessed in five subpopulations of cattlealong the coastal region of Togo, Benin and Nigeriausing 15 autosomal and one Y- specificmicrosatellite markers. Mean observedheterozygosity (Ho) ranges from 0.55 to 0.61 and themean number of alleles (MNA) from 5.47 to 6.47.Genetic differentiation indexes (Fst), were significantbetween the five subpopulations (P< 0.01). Somepossible population diagnostic alleles are identifiedwith allele 254 at locus ILSTS033 and allele 182 atlocus ILSTS005 found only in the population fromTogo with frequencies of 5.41% and 12.82%respectively. Allele 226 of locus ILSTS103 is fixed inthe Togolese population (100%) and almost fixed(98.75%) in the Benin-Valley population. Ychromosome analysis reveals male Zebuintrogression in all five populations with afrequency of indicine Y chromosome ranging from37.5% in Benin-Valley and Benin Plateau East to100% for Benin Plateau West. Admixture analysisusing the programme STRUCTURE (k = 2) confirmsphenotypic observations suggesting different levelof taurine background and therefore Zebuintrogression amongst the populations. Withinpopulations, variations in levels of Zebu admixturebetween herds were also detected. Whereas thevalley population from Benin shows low level ofZebu introgression, it is the population from BeninPlateau East which is the purest.

Résumé

La diversité génétique et l’introgression de gènes dezébu dans la population de bovins le long de la côtedu golfe de Guinée allant du Togo au Nigeria ontété évaluées à partir de 15 marqueurs microsatellites

autosomes et un marqueur spécifique duchromosome Y. La moyenne des hétérozygotes Hovarie de 0,55 à 0,61 et le nombre moyen d’allèles(NMA) de 5,47 à 6,47. Les indices de différenciationgénétique (Fst) sont différents entre les cinq souspopulations (P<0,01). Des allèles spécifiques depopulation sont identifiés aux loci ILSTS033(allèle 254) et ILSTS005 (allèle 182) dans la souspopulation du Togo avec des fréquences respectivesde 5,41 et 12,82%. L’allèle 226 du locus ILSTS103 esttotalement (100%) fixé dans la sous populationtogolaise et presque (98,75%) dans la souspopulation de la vallée au Bénin. L’évaluation dumarqueur spécifique du chromosome Y révèlel’introgression de gènes de zébu dans les cinq souspopulations allant de 37,5% dans la vallée du Béninet sur le Plateau Est à 100% sur le Plateau Ouest.L’analyse de mélange utilisant le programmeSTRUCTURE (k = 2) confirme les observationsphénotypiques concluant à l’introgression de gènesde zébu au sein des populations. Des variations demélange sont observées entre troupeaux au seind’une même sous population. Alors que lesanimaux dans la vallée au Bénin présentent unniveau faible d’introgression de gènes de zébu, c’estla sous population du Plateau Est qui paraît être laplus pure.

Resumen

La diversidad genética y la introgresión de genes dezebú en la población de bovinos a lo largo de lacosta del golfo de Guinea que va desde Togo hastaNigeria han sido evaluados a partir de15 marcadores microsatelitares autosomos y unmarcador específico del cromosoma Y. La media deheterocigosis Ho varía de 0,55 a 0,61 y el númeromedio de alelos (NMA) de 5,47 a 6,47. Los índicesde diferenciación genética (Fst) son diferentes entre

Page 53: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

46Diversity and zebu genes introgression

las cinco sub-poblaciones (P<0,01). Han sidoidentificados alelos específicos de poblaciones enlos loci ILSTS033 (alelo 254) e ILSTS005 (alelo 182)en la sub-población del Togo con frecuenciasrespectivas de 5,41 y 12,82%. El alelo 226 del locusILSTS103 está totalmente fijado (100%) en lasub-población togolesa y casi (98,75%) en lasub-población del valle del Benín. La evaluación delmarcador específico del cromosoma Y revela laintrogresión de genes de zebú en las cincosub-poblaciones que van de 37,5% en el valle delBenín y en la Meseta Este, hasta 100% en la MesetaOeste. El análisis de mezcla utilizando el programaSTRUCTURE (k=2) confirma las observacionesfenotípicas que indican la introgresión de genes dezebú en el interior de las poblaciones. Variacionesde mezclas han sido observadas entre rebaños alinterior de una misma población. Mientras que losanimales del valle del Benín presentan un nivel deintrogresión de genes de zebú bajo, la sub-poblaciónde la Meseta Este parece ser la más pura.

Key words: Cattle, Microsatellites, Genetic diversity,Zebu genes introgression.

Introduction

West African taurine cattle (B. taurus) breeds areunder threat of extinction due to uncontrolledbreeding practices by farmers aiming to enhance thesize and the productivity of their animals. However,it is recognised that animals of these breeds are welladapted to their local environments and remainproductive in areas where Zebu or crossbreeds areoften unable to survive (Agyemang et al. 1991; Uza,1997). The phenotypic traits of these animals are theresult of hundreds of years of natural selection inrelation to the local environments under permanenttsetse, ticks and helminth challenge. It is clear thatuncontrolled crossbreeding with exotic breedsposes a threat to the adaptive traits of this uniqueanimal genetic resource. This uncontrolledcrossbreeding is the result of poor agriculturalpolicies with no long term breeding goals, eachfarmer developing his own objective with emphasison short-term results.

In the early eighties, the Food and AgricultureOrganisation of the United Nations started alertingpublic opinion on the subject of animal geneticresources conservation and management (FAO,1981). At the Earth Summit in 1992 in Rio deJaneiro, 157 countries signed the United Nationsconvention on biological diversity andsubsequently FAO (1992) launched a special

program for the global management of farm animalgenetic resources. The aim of this program is tomaintain in each species a maximum geneticdiversity of the gene pool to allow for futureunforeseen needs in the development of sustainableanimal production systems. In addition theprogram aims at prompt actions to preserve animalbreeds at risk of extinction.

Studies in the last decade have shown thatAfrican cattle were most likely domesticated withinthe African continent, separately from the othercentres of domestication in the Fertile Crescent andin the Indian sub-continent, from the wild Africanauroch B. primigenius (Bradley et al., 1996). Theirseparate origin indicates that they represent aunique set of genetic characteristics. Today, theremaining pure African taurine cattle are onlyfound within the West African taurine cattle livingin tsetse-infected areas. These populations, giventheir origins and their adaptation to localenvironmental conditions (e.g. disease resistance),represent a unique genetic resource.

Introgression with Zebu cattle in West Africantaurine cattle populations, however, is common(MacHugh et al., 1997; Hanotte et al., 2000) and isdiluting progressively the African taurine geneticbackground of these breeds. Ultimately, thisintrogression will result in the loss of the uniquegenetic adaptation of these breeds. Currently, theextent and pattern of Zebu introgression into theindigenous taurine populations is well described byHanotte et al. (2002). This study, however, did notinclude the Lagune breed. The current paper istherefore a complementary study to that of Hanotteet al. (2002), targeting the Lagune breed in the Bightof Benin. Results of this study can be used toidentify suitable pure West African taurinepopulations for their inclusion in breedingprograms that aim at conserving and utilising theseunique indigenous genetic resources. These resultscould also be the starting point for theimplementation of a sustainable breedingprogramme for livestock production in that region.

Material and Methods

Sampling

Blood samples were collected from different cattlesubpopulations in Benin, Nigeria and Togo. Fortyanimals, of which eight were males, were sampledfor each identified subpopulation. Threesubpopulations have been sampled in Benin, whichare Benin Plateau West (BPW), Benin Valley (BV)

Page 54: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

47

Animal Genetic Resources Information, No. 44, 2009

Koudandé et al.

chromosome, were used for genotyping. They wereTGLA126, TGLA122, ILSTS033, ILSTS013, ILSTS008,ILSTS005, ILSTS006, ILSTS036, ILSTS028, ILSTS023,ILSTS103, ETH152, BM2113, BM1824, AGLA293 andINRA124. Polymerase Chain Reaction (PCR) foramplification of microsatellite loci were performedas described in Hirano et al. (1996) and Kemp et al.(1995).

Genotyping and gel analysis were performedusing automatic DNA sequencer ABI 377 andassociated analysis software GenescanTM

(version 3.1) and GenotyperTM version 2.0).

Data analysis

Marker allele frequencies have been analysed usingthe Microsatellite toolkit program (Park, 2001). Thegenetic diversity of each population was evaluatedby computing the mean number of alleles per locus(MNA), the observed heterozygosity (Hobs), and theexpected heterozygosity (Hexp) using themicrosatellite toolkit (Park, 2001) as well asGENEPOP, version 3.3 (Raymond and Rousset,1995). Subpopulations have been checked forHWE using the exact probability test withGENEPOP. The level of genetic differentiationamong populations was examined using F-statistics(Weir and Cockerham, 1984). Genetic distancesbetween populations DA (Nei et al., 1983) werecalculated and used to construct a phylogenetic tree

Figure 1.Benin map showing the sampled populations locations.

and Benin Plateau East (BPE). Two neighbouringregions of the target area in Benin have beenconsidered (Figure 1) in Nigeria (NG) and Togo(TG) resulting in a maximum of 200 sampled cattle.

Appropriate materials such as Wattman filterpaper, evacuated blood collection tubes (5 ml) andEppendorf tubes for stocking buffy coats were usedfor handling samples. Blood samples were collectedfrom each animal in two evacuated blood collectiontubes containing 3.2% EDTA and the buffy coat(white cells) was taken after spinning the tubes at2400 rpm at ambient temperature. Collected buffycoats were added with 8M urea solution and kept atambient temperature. To be on the safe side, bloodsamples were also collected on Wattman paper anddried at 40°C in oven, then stored at ambienttemperature. Sampling included as many animalsfrom different herds as possible to avoid directrelationship between sampled individuals. In otherterms, one male and four females were sampled perherd and a total of eight herds were visited for eachidentified subpopulation. All samples wereconveyed to the laboratory of genetics at ILRIcampus in Nairobi (Kenya) for processing.

Laboratory procedures

DNA was extracted from the buffy coats withstandard procedures as described by Sambrook et al.(1999). Sixteen markers, of which one was on the Y

81012

TOGO BENIN NIGERIA

Page 55: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

48Diversity and zebu genes introgression

with the neighbour joining algorithm (Saitou andNei, 1987). The level of Zebu introgression wasestimated with the programme STRUCTURE usingthe ADMIX 1.0 software (Bertorelle and Excoffier,1998). Correlations between phenotype andpopulations structure results were performed usingMicrosoft Excel.

Results

Genetic variation

From the five subpopulations under study here,130 alleles were found for all 15 autosomal markerloci that have been genotyped over the 200 sampledanimals (Table 1). The total number of allelesdetected per locus ranged from 4 to 16 resulting in amean number of alleles (MNA) per locus of 8.67.The number of alleles summed over the 15 loci persubpopulation ranged from 82 in BPE to 97 inTG (Table 1) giving a MNA per locus for eachsubpopulation varying from 5.47 to 6.47 (Table 2).These variations are not strong enough (P>0.05) todifferentiate current subpopulations. However,allele 254 of the locus ILSTS_033 and allele 182 ofILSTS_005 are found solely in TG with a frequencyof 5.41% and 12.82% respectively. Alleles 171 and175 of ILSTS_023 are equally distributed (50%)

within TG and BV subpopulations. Further, allele226 of locus ILSTS_103 is fixed in TG (100%)whereas it is almost (98.75%) fixed in BV.

The expected heterozygosity computed over the15 loci for each of the five subpopulations rangedfrom 0.593 (BV) to 0.673 (BPW) whereas theobserved heterozygosity varied from 0.55 in BPE to0.61 in BPW (Table 2).

None of the subpopulations deviated fromHWE through all loci at 5 p. cent level. Out of the15 loci under study, only loci ILSTS006 (P<0.006),ILSTS023 (P<0.005) and ILSTS103 (P<0.05) deviatedconsistently from HWE for all five subpopulations(Table 3). Except those three loci, TG deviated(P<0.05) from equilibrium at two loci (BM1824,BM2113), BPW at four loci (TGLA126, ILSTS033,ILSTS008, BM2113), BV at two loci (ILSTS008,ILSTS033), BPE at three loci (ILSTS033, ILSTS036,BM2113), and NG at two loci (ILSTS013, ILSTS036).

Genetic distances and breedrelationships

Table 4 summarizes genetic distances and genedifferentiation indices between all pairs ofsubpopulations. The largest genetic distance(0.1183) was obtained between TG and BPE,whereas the smallest (0.0666) was obtained between

Table 1. Total number of alleles per locus and per subpopulation.

Benin Locus Togo BPW BV BPE Nigeria Total TGLA126 7 7 6 6 6 7 TGLA122 8 8 9 7 8 11 ILSTS033 7 5 4 7 6 9 ILSTS013 4 4 4 4 4 4 ILSTS008 4 5 4 3 3 5 ILSTS005 5 4 3 4 3 5 ILSTS006 8 5 8 5 5 9 ILSTS036 12 8 9 8 9 16 ILSTS028 6 8 6 6 7 10 ILSTS023 2 5 2 4 5 6 ILSTS103 1 5 2 4 5 7 ETH152 6 5 7 5 5 8 BM2113 12 10 7 6 9 12 BM1824 6 4 4 4 4 6 AGLA293 9 8 12 9 8 15 Total 97 91 87 82 87 130

Page 56: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

49

Animal Genetic Resources Information, No. 44, 2009

Koudandé et al.

Table 2. Comparison of genetic variability of five populations of cattle along the coastal region of Togo, Benin and Nigeria.

Populations 1MNA (±SE) 2Hobs (±SE) 3Hexp (±SE) Togo 6.47 (±3.14) 0.5905 (±0.0202) 0.6410 (±0.0539) Benin Plateau West 6.07 (±1.91) 0.6083 (±0.0200) 0.6725 (±0.0322) Benin Valley 5.80 (±2.88) 0.5604 (±0.0204) 0.5930 (±0.0503) Benin Plateau East 5.47 (±1.73) 0.5504 (±0.0204) 0.6194 (±0.0296) Nigeria 5.80 (±2.01) 0.5603 (±0.0203) 0.6338 (±0.0383)

1 Mean number of alleles per locus. 2 Observed heterozygosity. 3 Expected heterozygosity.

Table 3. Hardy-Weinberg exact probability test by population.

Benin Locus Togo BPW BV BPE Nigeria TGLA126 0.1266 (0.0094) 0.0324 (0.0058) 0.9689 (0.0032) 0.3372 (0.0138) 0.1626 (0.0086) TGLA122 0.0918 (0.0143) 0.1416 (0.0109) 0.5619 (0.0241) 0.3201 (0.0204) 0.2617 (0.0191) ILSTS033 0.0122 (0.0035) 0.0000 (0.0000) 0.0302 (0.0026) 0.0018 (0.0009) 0.2594 (0.0157) ILSTS013 0.3394 (0.0082) 0.2777 (0.0082) 0.9153 (0.0024) 0.5509 (0.0065) 0.0219 (0.0018) ILSTS008 0.3769 (0.0107) 0.0052 (0.0014) 0.0024 (0.0007) 0.0842 (0.0049) 0.8024 (0.0036) ILSTS005 0.1651 (0.0080) 0.0052 (0.0071) 0.3149 (0.0082) 0.7353 (0.0076) 0.6628 (0.0049) ILSTS006 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0057 (0.0018) 0.0000 (0.0000) ILSTS036 0.0797 (0.0167) 0.1021 (0.0100) 0.1006 (0.0160) 0.0294 (0.0053) 0.0001 (0.0001) ILSTS028 0.0805 (0.0088) 0.1186 (0.0129) 0.2908 (0.0173) 0.2782 (0.0152) 0.3055 (0.0202) ILSTS023 0.0000 (0.0000) 0.0001 (0.0001) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) ILSTS103 - 0.0003 (0.0003) - 0.0000 (0.0000) 0.0183 (0.0035) ETH152 0.0672 (0.0065) 0.4927 (0.0091) 0.3976 (0.0174) 0.9354 (0.0049) 0.3382 (0.0115) BM2113 0.0396 (0.0076) 0.0110 (0.0028) 0.2903 (0.0158) 0.0089 (0.0016) 0.3507 (0.0163) BM1824 0.0414 (0.0064) 0.9355 (0.0020) 1.0000 (0.0000) 0.8824 (0.0045) 0.0616 (0.0055) AGLA293 0.5448 (0.0222) 0.6256 (0.0170) 0.2169 (0.0274) 0.0676 (0.0097) 0.0907 (0.0103)

NG and BPW. This result is in contrast to whatwould be expected given the geographic location ofthese subpopulations (Figure 1). The smallestcoefficient of differentiation was obtained betweenTG and BPW, and the highest was between TG andBPE which is in agreement with the largest geneticdistance obtained. The F-statistics results showedthat the five populations were significantly differentfrom each other (P=0.0001). Estimates of FST for eachlocus and for each population pair are summarizedin Table 5.

The neighbour-joining tree based on geneticdistance DA is represented in figure 2. It shows theexisting relationships among the fivesubpopulations according to studied loci. As it

would be expected, BV and BPE are closesubpopulations as shown in this figure.

Population structure (admixture)

Genetic admixture analysis shows that all fivesubpopulations are introgressed with Zebu genesbut to different degrees (Figure 3), whereassubpopulations from TG and BPW harbour highlevels of introgression at 0.753 and0.651, respectively. BPE is the least introgressedwith introgression coefficients equal to 0.188. BVand NG have intermediate coefficient, 0.309 and0.390, respectively. On individual basis, the level of

Page 57: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

50Diversity and zebu genes introgression

Table 4. Genetic distance between five cattle subpopulations along the coastal region of Togo, Benin and Nigeria calculated using DA (Nei et al., 1983) below diagonal and Weir and Cockerham (1984) FST above the diagonal.

Togo Benin Plateau

West Benin Valley Benin Plateau

East Nigeria Togo - 0.0205 0.0341 0.0564 0.0493 Benin Plateau West

0.0795 - 0.0349 0.0310 0.0258

Benin Valley 0.0866 0.0917 - 0.0335 0.0463 Benin Plateau East

0.1183 0.0740 0.0809 - 0.0377

Nigeria 0.1103 0.0666 0.0914 0.0688 -

Figure 2. Neighbor joining dendogram showing the genetic relationshipamong the five sampled subpopulations along the coastal region fromTogo to Nigeria.

Benin Plateau East

Nigeria Togo Benin Valley

Benin Plateau West

Figure 3. Admixture analysis showing zebu introgression in sampled subpopulations.

Page 58: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

51

Animal Genetic Resources Information, No. 44, 2009

Koudandé et al.

Tab

le 5

. Est

imat

e of

FST

for

each

of t

he 1

5 lo

ci a

nd fo

r ea

ch p

opul

atio

n pa

ir.

Loc

i T

G/

BV

T

G/

BP

E

TG

/N

G

TG

/B

PW

B

V/

BP

E

BV

/N

G

BV

/B

PW

B

PE

/N

G

BP

E/

BP

W

NG

/B

PW

T

GL

A12

6 0.

0407

0.

0369

0.

0170

0.

0060

0.

0006

0.

0006

0.

0375

0.

0538

0.

0346

0.

0118

T

GL

A12

2 0.

0303

0.

1558

0.

0162

0.

0340

0.

0498

0.

0256

0.

0099

0.

1476

0.

0879

0.

0096

IL

STS0

33

0.03

02

0.05

83

0.07

03

0.02

08

-0.0

015

0.02

68

0.02

13

0.06

59

0.07

57

0.01

90

ILST

S013

0.

0049

0.

0095

0.

0432

-0

.005

5 -0

.000

7 0.

0009

0.

0316

0.

0280

0.

0346

0.

0847

IL

STS0

08

0.00

61

0.05

61

0.03

33

-0.0

032

0.00

53

-0.0

101

0.00

24

-0.0

023

0.06

07

0.02

56

ILST

S005

0.

0627

0.

0315

0.

0523

0.

0442

-0

.004

3 -0

.012

0 0.

0072

-0

.007

6 -0

.003

3 0.

0080

IL

STS0

06

0.00

07

0.00

79

0.09

23

-0.0

032

0.03

63

0.09

24

0.00

56

0.10

66

-0.0

056

0.11

63

ILST

S036

-0

.005

2 0.

0009

0.

0036

0.

0006

-0

.004

7 0.

0050

0.

0053

-0

.000

4 -0

.001

2 -0

.004

1 IL

STS0

28

0.03

63

0.04

78

0.01

32

0.01

49

-0.0

120

-0.0

032

0.00

65

0.00

86

0.00

62

0.01

46

ILST

S023

0.

0000

0.

1077

0.

1950

0.

1281

0.

1081

0.

1955

0.

1285

0.

0183

-0

.005

0 0.

0041

IL

STS1

03

0.00

00

0.20

46

0.17

27

0.16

06

0.18

13

0.14

65

0.13

91

-0.0

009

-0.0

101

0.00

20

ET

H15

2 0.

0193

0.

0695

0.

0320

-0

.011

9 0.

0339

0.

0156

0.

0125

-0

.001

2 0.

0617

0.

0248

B

M21

13

0.07

13

0.03

17

0.01

07

0.00

32

0.04

19

0.06

09

0.03

83

0.02

34

0.03

33

0.01

06

BM

1824

0.

0846

0.

0485

0.

0714

-0

.003

7 0.

0309

-0

.011

3 0.

0562

0.

0181

0.

0478

0.

0494

A

GL

A29

3 0.

0765

0.

0618

0.

0026

0.

0022

0.

0777

0.

0644

0.

0688

0.

0523

0.

0397

0.

0162

A

ll lo

ci

0.03

41

0.05

64

0.04

93

0.02

05

0.03

35

0.04

63

0.03

49

0.03

77

0.03

10

0.02

58

TG

=T

ogo;

BPW

=B

enin

Pla

teau

Wes

t; B

V=

Ben

in V

alle

y; B

PE=B

enin

Pla

teau

Eas

t; N

G=

Nig

eria

.

Page 59: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

52Diversity and zebu genes introgression

Figure 4. Typical Lagune cattle from Benin Plateau East (height is 81 cm; girth circumference is 112 cm).

Zebu introgression varies from 0.028 in TG to0.967 in BPE.

Analysis of the Y chromosome reveals maleZebu introgression in males of all fivesubpopulations with a frequency of indicineY chromosome ranging from 37.5% in BV andBPE to 100% for BPW. TG and NG have respectively87.5 and 62.5%. The correlation coefficient betweenthe admixture results and those of the Ychromosome analysis is 0.93.

Discussion

With the upgrade breeding performed by livestockproducers along the coastal regions of the threecountries involved in this study, the observedvariation between populations was expected.Indeed, looking for taller animals, mainly for marketpurposes, Borgou breed and Zebu have beenintroduced in diverse herds (Figure 5) resulting inthe higher MNA for these populations. This is thecase in TG and BPW (Table 2). This result issupported by the admixture analysis which givesthe higher proportion of Zebu genes to

subpopulations TG and BPW. In contrast, thesubpopulation BPE has the least genetic variationin terms of MNA associated with a lowheterozygosity. The low genetic variation in thissubpopulation could be explained by the higherlevel of inbreeding in this subpopulation. Thisexplanation is supported by the managementsystem of these animals. Farmers used to keep theiranimals under their own habitat during night, thenthey are tethered to trees and moved from time totime to access forage. Bulls are owned by few peoplethat hire them to non-owners for breeding. Thismeans that breeding is under control, so as toensure these animals are kept as pure as possiblefor their use in certain ritual ceremonies and as adowry. Subpopulations TG and BV, however, havein common some alleles, that is allele 171 and175 from ILSTS023 at 50%, allele 226 of locusILSTS103 at the rate of 100% for the former and98.75% for the latter. This result is surprising giventhat they are separated by subpopulationBPW which has lower frequency for these alleles(results not shown).

Genetic distances between pairs ofsubpopulations, coefficients of differentiation and

Page 60: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

53

Animal Genetic Resources Information, No. 44, 2009

Koudandé et al.

Figure 5. Zebu breeds that have been introduced in herds in the coastal regions.

Page 61: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

54Diversity and zebu genes introgression

FST confirm that the five subpopulations aredifferent, although some results showed patternsthat were not expected. We would expect the largestgenetic distance to be between TG and BPE on oneside and between NG and BPW on the other. Thelatter showed the least distance which is in contrastto what would be expected given the geographiclocation of these subpopulations (Figure 1).According to the admixture analysis, TG andNG showing the highest introgression of Zebugenes would be closer - that is not the case incurrent results. This could be explained by differentsources of gene pools that have been used toperform the introgression. The existingrelationships among subpopulations through theneighbour-joining tree clearly show that BV andBPE are close subpopulations as one could predictfrom figure 1.

Concurrently to blood sampling, height at witherand girth circumference were measured to relate thephenotype with genotype. There is quite anagreement between the results of the admixturemodel analysis and the phenotype of animals(correlation coefficient equals to 0.59), that is thehigher the percent of Zebu genes, the higher is theheight at wither. The availability of data on controlanimals (pure Zebu and pure Lagune) would havebetter strengthened current results.

The hypothesis that animals in the valley wouldbe less introgressed by Zebu is true, but thepopulation of Benin Plateau East is even purer thanthe one targeted in our study.

Conservation futures

The major objective of this study was to determinethe level of Zebu introgression within cattlepopulations along the coastal regions of the Bight ofBenin. This region is known to originally be thecradle of the Lagune cattle breed (Figure 4), animalsof small size with a wither height varying from 90 to100 cm and a heart girth from 130 to 137 cm. As thisstudy has demonstrated, there is a high tendencyfor Zebu or other breeds to be introgressed in thisbreed. Some herds and to some extent at least twopopulations, have been shown to be less pollutedwith Zebu blood. Throughout this study we placedan emphasis on naming cattle populations insteadof breeds given the extent of crossbreeding, andcurrent results support this point of view.

The hypothesis of the current study was toencounter cattle with low level of Zebuintrogression that could be used for geneticresources conservation and it was expected to meet

those animals in BV. Results of this study haveshown that the purest taurine cattle were insteadlocated in BPE. If such a conservation programmewas to be undertaken, we would advise on the useof animals from BPE.

The status of BPE animals is the result of thebreeding system in force in this area and for whichobjectives are clearly defined at the farmers’ level.Therefore a sustainable way of handling the marketfor these animals remains to be identified. Indeed,there should be a strong marketing study that couldidentify market problems and define likelysolutions. There should also be a sensitisationprogramme to make stakeholders be aware ofdifferent changes that might intervene. A contestand show program with good prizes could be a wayof attracting farmers in that region to recognise theeffort they are deploying on this breed. Anybreeding programme, whatever is its goal, shouldintegrate the indigenous knowledge and use ofthese animals. Throughout these actions, studies ofthe biochemical as well as the culinary quality ofmeat and milk produced from these animals shouldbe undertaken to support the promotion of thisbreed.

Acknowledgements

The authors are grateful to WOTRO who havesponsored this post-doc project. They are thankfulto Dr Sonhaye Séïbou Adow, Director of thelivestock department in TOGO and his staff, toProf. Olusanya Olutogun, Drs Olatunji T.F. andAbdur R. Adbullah from Nigeria who have beenvery helpful in the sampling phase.

List of References

Agyemang, K., R.H. Dwinger, A.S. Grieve &M.L. Bah. 1991. Milk production characteristics andproductivity of N’Dama cattle kept under villagemanagement in the Gambia. J. Dairy Sci. 74,1599-1608.

Bradley, D.G., D.E. MacHugh,P. Cunningham & R.T. Loftus. 1996. Mitochondrialdiversity and the origins of African and Europeancattle. Proc. Natl. Acad. Sci USA 93, 5131-5135.

Bertorelle, G. & L. Excoffier. 1998. Inferringadmixture proportions from molecular data. Mol.Biol. Evol. 15, 1298 –1311.

Page 62: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

55

Animal Genetic Resources Information, No. 44, 2009

Koudandé et al.

FAO. 1981. Animal genetic resourcesconservation and management. Proceedings of theFAO/UNEP technical consultation. FAO AnimalProduction and Health paper 24. FAO, Rome,pp. 388.

FAO. 1992. The management of globalanimal genetic resources. FAO Animal Productionand Health paper 104. FAO, Rome, pp. 309.

Hanotte, O., C.L. Tawah, D.G. Bradley,M. Okomo, Y. Verjee, J. Ochieng & J.E.O. Rege.2000. Geographic distribution and frequency of ataurine Bos taurus and an indicine Bos indicusY specific allele amongst sub-Saharan African cattlebreeds. Molecular Ecology 9, 387-396.

Hanotte, O., D.G. Bradley, J.W. Ochieng,Y. Verjee, E.W. Hill & J.E.O. Rege. 2002. Africanpastoralism: genetic imprints of origins andmigrations. Science 296, 336-339.

Hirano, T., S. Nakane, K. Mizoshita,H. Yamakuchi, M. Inoue-Murajama, T. Watanabe,W. Barendse & Y. Sugimoto. 1996.Characterization of 42 highly polymorphic bovinemicrosatellite markers. Anim. Genet. 27, 365-368.

Kemp, S.J., O. Hishida, J. Wambugu,A. Rink, M.L. Longeri, R.Z. Ma, Y. Da, H.A. Lewin,W. Barendse & A.J. Teale. 1995. A panel ofpolymorphic bovine, ovine and caprinemicrosatellite markers. Anim. Genet. 26, 299-306.

MacHugh, D.E., M.D. Shriver, R.T. Loftus,P. Cunningham & D.G. Bradley. 1997.Micorsatellite DNA variation and the evolution,

domestication and phylogeography of taurine andzebu (Bos taurus and Bos indicus). Genetics 146,1071-1086.

Nei, M., F. Tajima & Y. Tateno. 1983.Accuracy of estimated phylogenetic trees frommolecular data. J. Mol. Evolution 19, 153-170.

Park, S.D.E. (Ed.). 2001. Trypanotolerance inWest African cattle taurine and the populationgenetic effects of selection. PhD thesis, University ofDublin, Ireland.

Raymond, M. & F. Rousset. 1995. GENEPOP(version 1.2): population genetics software for exacttests and ecumenicism. J. Heredity 86, 248-249.

Saitou, N. & M. Nei. 1987. Theneighbor-joining method: a new method forreconstructing phylogenetic trees. MolecularBiology and Evolution 4, 406-425.

Sambrook, J., E.F. Fritsch & T. Maniatis.1989. Molecular Cloning: A Laboratory manual.2nd edition, Cold Spring Harbor Laboratory Press,New York.

Uza, D.V. 1997. The productivity of Muturucattle (Bos brachyceros) under ranching conditions inthe Southern Guinea Savanna of Benue state,Nigeria. Outlook on Agriculture 26, 19-23.

Weir, B.S. & C.C. Cockerham. 1984.Estimating F-statistics for the analysis of populationstructure. Evolution 38, 1358-1370.

Page 63: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

57

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 57-66

Evaluación de la variabilidad y potencial genético depoblaciones de bovinos criollos colombianos

R. Martínez1, J. Gallego2, G. Onofre3, J. Pérez4 & R. Vasquez1

1C.I. Tibaitatá, C.I. Tibaitatá, Km way to Mosquera, Cundinamarca.Animal genetic and Biotechnology Group, Corpoica, Colombia

2E.E. El Nus, San Roque, Antioquia,Animal genetic and Biotechnology Group, Corpoica, Colombia

3C.I. La Libertad, Villavicencio, Meta, Animal genetic and Biotechnology GroupCorpoica, Colombia

4C.I. Turipaná, Monteria, Cordoba, Animal genetic and Biotechnology Group,Corpoica, Colombia

Resumen

El presente trabajo presenta un análisis de lavariabilidad y el potencial genético de laspoblaciones de bovinos criollos utilizados en unPrograma Nacional de Fomento, desarrollado pororganimos gubernamentales (Ministerio deAgricultura y Desarrollo Rural, InstitutoColombiano Agropecuario y Corpoica). Se hizo elanálisis de la información productiva depoblaciones de las razas Romosinuano, Costeñocon Cuernos, Sanmartinero y Blanco Orejinegro,mediante el uso de la metodología BLUP, secalcularon los valores genéticos directos para pesoal nacimiento, destete, 16 meses y ganancia de pesoal destete y se realizó el análisis de la distribuciónde los animales por sus valores genéticos. Seencontró que en cada una de las razas existe unaalta proporción de animales con valores genéticospositivos, siempre superior al 50%, lo cual indicauna amplia variabilidad genética y posibilidad deselección de individuos mejoradores, queasegurarán el progreso genético en el programa defomento que será desarrollado.

Summary

This work is an analysis of the variability andgenetic potential of Colombian Creole cattlepopulations used in a national promotion programdeveloped by the governmental organisations of theMinistry of Agricultural and Rural Development,the Colombian Agricultural Institute and theColombian Corporation for Agricultural Research(CORPOICA). The analysis of productiveinformation was made for populations of

Romosinuano, Costeño con Cuernos, Sanmartineroand Blanco Orejinegro breeds, through use ofBLUP methodologies, and was calculated using thedirect additive genetic values for birth, weaning and16 month weight and daily weight gain to weaning.This resulted in an analysis of animal distributionsby their genetic values. It was found that each breedhad a high proportion of animals with positivegenetic values, always greater than 50%, whichindicates a high genetic variability and geneticselection potential for improved animals. Thesefactors assure the potential for genetic improvementin the promotion program that will be developed.

Résumé

Ce travail présente une analyse de la variabilité ydu potentiel génétique des populations de bovinscréoles utilisés dans un Programme National deVulgarisation mis en place par des organismesgouvernementaux (Ministère de l’Agriculture etDéveloppement Rural, Institut AgronomiqueColombien et Corpoica). On a réalisé une analyse del’information productive des populations des racesRomosinuano, Costeño con Cuernos, Sanmartineroet Blanco Orejinegro, à l’aide de la méthodologieBLUP. On a calculé les valeurs génétiques directespour le poids à la naissance, au sevrage, à 16 mois,et pour le gain de poids au sevrage. Une analyse dela distribution des animaux selon leurs valeursgénétiques a été réalisée. On a trouvé que danschacune des races il existe une proportion élevéed’animaux avec des valeurs génétiques positives,toujours supérieur à 50%, ce qui indique une largevariabilité génétique et la possibilité de sélection desindividus améliorateurs, qui garantiront le progres

Page 64: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

58Variabilidad de bovinos criollos colombianos

génétique dans le programme de vulgarisation quisera mené à terme

Key words: Creole cattle, Genetic evaluation, Geneticvariability.

Introducción

Uno de los factores que influye sobre la bajaeficiencia que presentan los sistemas tradicionalesde producción bovina, en el trópico bajo colombianoes el uso inadecuado del recurso genético animal,ya que se ha utilizado razas foráneas y suscruzamientos de manera indiscriminada sinninguna evaluación y se ha dejado de utilizar elganado criollo sin que existan razones técnicas yeconómicas que indiquen que los animales foráneossean superiores.

Los trabajos que se conocen de crucesCriollo-Cebú han reportado niveles de heterosis del6 al 12% para peso al destete y del 13 al 25% parapeso a los 18 meses (Martinez y González, 2000;Martínez y Chavez, 2001; Martinez, 1999; Martinezet al., 1994; Hernandez, 1998). Es de anotar quetodos los cruzamientos se hicieron sin un criterioestricto de selección en los paternales (ni en la razaCriolla, ni en el Cebú). Hoy disponemos deherramientas que nos permiten mejorar la fiabilidadde los resultados esperados como son lasevaluaciones genéticas; con base en ellas podemosseleccionar machos y hembras Criollos y (en loposible) machos y hembras Cebú para un usointensivo en cruzamiento industrial o comercial.

La conservación de los recursos genéticosanimales carece de sentido si no se hace unautilización comercial de ellos en los diversosagroecosistemas nacionales. La palabraconservación implica preservación y utilizaciónracional y hasta ahora los recursos de Bancos deGermoplasma Animal sólo soportan lapreservación propiamente dicha.

La responsabilidad confiada a CORPOICA porparte del Ministerio de Agricultura en Convenio conel Instituto Colombiano Agropecuario, ha permitidoel mantenimiento de los Bancos de Germoplasmain situ con estrategias de apareamiento circularcíclico, fortaleciendo de manera simultánea unsistema de Bancos de Germoplasma in vitro(Martinez et al., 2005). Las condiciones actuales delos Bancos de acuerdo con su tamaño, lascircunstancias financieras que implican el manejode ellos y la necesidad de hacer la promoción deestas razas, hacen imperativo aumentar el tamañode las poblaciones y procurar el mejoramiento

genético de las mismas. Por esto se estádesarrollando el Programa Nacional de Fomento deBovinos Criollos, como un esfuerzo de El Ministeriode Agricultura y Desarrollo Rural, el InstitutoColombiano Agropecuario (ICA) y Corpoica, que sehan planteado como objetivo, promover lautilización de bovinos de las razas criollasadaptadas al ambiente colombiano, que permitapromover por parte de los ganaderos la cria de estasrazas, y tener una información útil paraimplementar un plan de mejoramiento ganadero.

Para conseguir un mejoramiento genéticosostenido, es necesario implementar estrategias deselección de las poblaciones, que consiste en laidentificación de los individuos (machosy/o hembras) que mejor comportamientoproductivo presentan, de acuerdo a los objetivos delproductor y de esta forma se aumenta la frecuenciade genes favorables en la expresión de determinadocarácter. Pero normalmente no tenemos informaciónespecífica sobre los genes que los candidatos aselección poseen, sino que tenemos informaciónfenotípica del individuo o de sus parientes (Telo L.,2002; 2004).

Este trabajo, tuvo como objetivo la utilización demetodologías de modelos mixtos para realizar laevaluación genética de cada una de las poblacionesde bovinos criollos de las razas Romosinuano(ROMO), Costeño con cuernos (CCC), Ubicadas enel C.I. Turipaná (Cereté Cordoba), la razaSanmartinero (SM), ubicada en el C.I. La Libertad(Villavicencio, Meta), y la raza Blanco Orejinegro(BON), ubicada en la Estación Experimental El Nus(San Roque, Antioquia), que fueron seleccionadaspara un programa de fomento y multiplicación debovinos criollos en Colombia.

Materiales y Métodos

La información productiva fue obtenida de losnúcleos de animales de las razas Criollas que semantiene como Banco de Germoplasma. Cada unade las bases de datos comprende la informacióngenerada desde el año 1980 hasta el año 2004. Seanalizaron los registros para características de pesode nacimiento (PNac), peso ajustado a los 270 días(Pdtte), peso a los 480 días (P16m) y ganancia depeso desde el nacimiento hasta el destete (GP).

Se empleo el Procedimiento de ModelosGenerales Lineales (GLM) del paquete estadísticoSAS (Statistical Analysis System), para el calculo delas medidas de tendencia central y variación dedatos fenotípicos, el modelo incluyó efectos de año

Page 65: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

59

Animal Genetic Resources Information, No. 44, 2009

Rodrigo Martínez et al.

donde:2dh = Heredabilidad aditiva directa,

2aσ = Varianza genética aditiva directa,

2fσ = Varianza fenotípica total.

Para el caso de los componentes genéticos detipo materno la heredabilidad se estimó mediante lasiguiente fórmula:

222fmmh σσ=

donde2mh =Heredabilidad de los componentes genéticos

maternos,2mσ =Varianza genética materna,

2fσ = Varianza fenotípica total.

También se calculó el valor de exactitud de cadaestimación como

λiiAP Cr −= 12

donde: 22ae σσλ = y Cii representa un mismo

elemento en la matriz C-1, como ha sido descrito porMisztal y Wiggans (1988) y Meyer (1989). Sepresenta la media de los valores de exactitud paratoda la población.

Mediante el Programa Derivative Free RestrictedMaximum Likelihood (DFREML) (Smith y Grazer,1986) se estimaron componentes de varianza decada una de las características y a partir de estos secalcularon los parámetros genéticos. Loscomponentes de varianza genéticos aditivosdirectos y maternos para los diferentes pesosevaluados fueron también analizados mediante elpaquete sistematizado Multi Trait Derivative FreeRestricted Maximun Likelihood (MTDFREML)(Boldman et al.,1991; 1993), usando como valores deinicio los obtenidos en DFREML, esto permitióestimar valores genéticos (VG) directos y maternos(no presentados). Con los valores genéticosindividuales se calcularon los valores promedioanuales y se hizo un grafico de la distribución delos valores individuales para peso al nacimiento,destete, ganancia al destete y peso a los 16 meses yse determinó la proporción de individuos convalores genéticos mayores de cero y menores decero, como un indicativo de la tendencias, para locual se utilizaron procedimientos de regresiónlineal.

(1980-2004), sexo y número de parto (1-10). Elmodelo utilizado se describe así:

Yijk = µ + αi + βj + λk + eijk

Donde:µ = promedio general de la variable;αi = Efecto de año de nacimiento del animal;βj = Efecto de sexo del animal;λk = Efecto de número de parto en que nace elanimal;eijk = error experimental.

Para el análisis genético se utilizó el modelo, que sedescribe a continuación:

Y=Xβ+Za+Zm+Zp+e

Utilizando las ecuaciones del modelo mixto (EMM)(Henderson, 1975; 1988), donde Y es un vector deobservaciones, β es un vector de soluciones paraefectos fijos (año de nacimiento, sexo, número departo) y X es la matriz de incidencia de los efectosfijos y Z es la matriz de incidencia de los efectosaleatorios; a es el vector de soluciones para valoresgenéticos, m es el vector de soluciones para efectomaterno y p es el vector de soluciones para efectosde ambiente permanente, e corresponde a losvalores residuales.

La estructura de (co)varianza de los efectosaleatorios para las características evaluadas fue:

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

2

2

2

2

000

000

00

00

en

pepe

mam

ama

V

σσ

σσσσ

I

I

AA

AA

e

pe

m

a

En este caso A es el numerador de la matriz deparentesco, 2

aσ es la varianza aditiva genética

directa, 2mσ es la varianza aditiva genética materna,

amσ es la covarianza genética aditiva

directa-materna, 2peσ es la varianza de ambiente

materno permanente, 2eσ es la varianza residual, e

Ipe e In son las matrices identidad con orden igual alnumero de madres y registros respectivamente. Loscálculos de heredabilidad aditiva directa, fueronhallados mediante componentes de varianza apartir del modelo animal por medio de la siguientefórmula:

222fadh σσ=

Page 66: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

60Variabilidad de bovinos criollos colombianos

Resultados y Discusión

Mediante el uso de la metodología del modelosnimal empleando el procedimiento BLUP, serealizó la predicción de los valores genéticosindividuales en cada población y con estainformación se graficó la distribución de estosvalores para los animales de cada una de las razasy que fueron en parte utilizados para ser entregadosen el Programa Nacional de Fomento de los Bovinoscriollos; esta información da una idea de lavariabilidad genética de las características y delpotencial genético de la población dada la

Tabla 2. Parámetros genéticos en la raza BO N (Gallego et al., 2006), RO M O (M artinez y Pérez, 2006), y CCC (M artínez y H erazo, 2006).

Parám etros genéticos

Peso al nacim iento

Peso al destete ajustado a 240 días

Peso ajustado a los 480 días

Raza BO N 2dh 0,38±0,017 0,18±0,022 0,095±0,025 2mh 0,03±0,015 0,05±0,025 0,032±0,022 2th 0,41±0,050 0,24±0,056 0,128±0,050

P2 0,06±0,031 0,04±0,02 0,062±0,045 e2 0,51±0,022 0,70±0,08 0,080±0,032

Raza RO M O 2dh 0,25±0,001 0,34±0,063 0,330±0,066 2mh 0,06±0,003 0,19±0,054 0,100±0,046

ram -0,37±0,002 -0,34±0,133 -0,050±0,021 2th 0,28 0,435 0,380

P2 0,03±0,002 0,09±0,031 0,069±0,028 e2 0,71±0,003 0,47±0,045 0,570±0,05

Raza CCC 2dh 0,17±0,001 0,21±0,074 0,172±0,001 2mh 0,01±0,003 0,05±0,038 0,040±0,001 2th 0,17 0,235 0,192

ram -0,89±0,003 -0,13±0,037 -0,380±0,0001 P2 0,04±0,0001 0,04±0,029 0,001±0,0001 e2 0,81±0,0003 0,72±0,059 0,818±0,0001

proporción de individuos con valores genéticospositivos.

En la tabla 1 se muestra el comportamientoproductivo de las hembras y machos que fueronseleccionados para ser entregados en el programade fomento. Las razas Romosinuano y Costeño concuernos (CCC) presentan los mayores pesos alnacimiento; en cuanto al peso al destete, los valoresde los machos Sanmartinero son inferiores a los delas demás razas y muy similares a los pesosregistrados para las hembras, igual comportamientose nota para peso al destete. En general estosvalores son similares a los reportados para estas

Tabla 1. Comportamiento productivo de hembras de cada una de las razas criollas utilizadas en programas de fomento.

Razas criollas PNac Pdtte GP P16m utilizadas Hembras Machos Hembras Machos Hembras Machos Hembras Machos BON 25,5±3,7 28,13±3,43 164,70±61,8 202,78±25,60 517,98±218,7 542,32±240,8 204,54±87,60 240,17±27,86 SM 27,0±2,9 26,74±3,32 165,32±60,2 166,92±50,90 550,23±305,2 520,84±250,6 ROMO 28,7±6,1 31,55±3,84 175,95±74,9 187,11±63,83 563,78±231,8 581,23±214,1 226,20±80,60 236,47± 95,10 CCC 28,352±4,6 30,40±3,56 164,13±36,2 200,80±56,60 548,25±110,6 650,25±188,5 205,52±27,12 239,00±108,3

Page 67: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

61

Animal Genetic Resources Information, No. 44, 2009

Rodrigo Martínez et al.

razas (Martínez, 2001; Treviño, 2001; Pérez yMoreno, 1999).

En cuanto a los parámetros genéticos, variosautores han reportado valores de heredabilidaddirecta, materna, total y efecto de ambientepermanente y efecto residual. Gallego et al., (2006)reportaron en la raza BON, para la característicapeso al nacimiento, un valor para la heredabilidaddirecta de 0,38±0,017 y la materna 0,03±0,015, esteúltimo considerado bajo, posiblemente debido albajo efecto del genotipo de la vaca sobre el peso delternero. Se obtuvo un valor medio alto de para laheredabilidad total (0,41±0,050). La heredabilidadtotal para el peso al destete fue de 0,24±0,056. Seestimó un valor de 0,18±0,022 para la heredabilidaddirecta y 0,0599±0,025 para la materna, lo queindica que el 24% de varianza fenotípica o total, seatribuye al efecto de genes de acción aditiva, 5% alos efectos genéticos maternos y el 70% restante alas variaciones genéticas no aditivas y al ambiente.Para la característica peso ajustado a los 480 días seestimaron valores bajos con heredabilidad total de0,128±0,05, directa de 0,095±0,0250 y materna de0,0329±0,022.

Para la característica peso al nacimiento seencontró en la población Romosinuano, Martínez yPérez (2006) han reportado valores de

heredabilidad directa de 0,25±0,001, heredabilidadmaterna de 0,06±0,03 y heredabilidad total de 0,28,valores considerados bajos, excepto para laheredabilidad total para la cual se reporta unaheredabilidad media. Para la característica PD enterneros Romosinuano se obtuvo un valor deheredabilidad directa de 0,34±0,06, heredabilidadmaterna de 0,19±0,054 y heredabilidad total de 0,43.Para la heredabilidad materna el valor reportado esconsiderado bajo, lo que demuestra el poco efectoque ejercen los genes maternos sobre el PD enterneros Romosinuano, contrario a esto laheredabilidad directa y total para esta característicade crecimiento son medias mostrándonos el efectomoderado ejercido por los genes del propio animalsobre la característica en mención, La heredabilidadtotal estimada para el P16m en ternerosRomosinuano fue de 0,38, se encontró unaheredabilidad directa de 0,33±0,06 y unaheredabilidad materna de 0,10±0,04, inferior a laregistrada para PD, esto refleja las variaciones en elpotencial de producción de leche de las vacas(Plasse et al., 2002). La mayoría de trabajos donderegistran caracteres posdestete se realizansolamente hasta el año de edad y por esto sondifíciles las comparaciones, a causa de que en eltrópico, el periodo de estrés posdestete se extiende

Figura 1. Población de hembras de la raza Blanco Orejinegro perteneciente al Banco de Germoplasmasituado en la E.E. El Nus de CORPOICA ubicada en el municipio de San Roque, Antioquia.

Page 68: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

62Variabilidad de bovinos criollos colombianos

Figura 2. Vaca de la raza Sanmartinero perteneciente al Banco de Germoplasma situado en el C.I. La Libertadde CORPOICA ubicado en el municipio de Villavicencio, Meta.

hasta el año de edad. Por eso generalmente seconsidera que el pesaje a 18 meses es masapropiado para el estudio de diferencias genéticas ycomo criterio de selección. (Plasse et al., 2002)

La raza CCC presentó el menor valor deheredabilidad para peso al nacimiento ( 2

th =0,17),consistente con los resultados de las demás razas,con valores de correlación negativa entre efectosdirectos y maternos. Para el peso al destete, tambienpresentó menores valores, comparado con lasdemás razas ( 2

th =0,23) y con un valor deheredabilidad materna baja y similar a laencontrada en la raza BON. Similarmente, en elcarácter de peso a los 16 meses, tambien presentóvalores intermedios ( 2

th =0,19), superior a loencontrado en la raza BON, pero inferior a loencontrado en la raza ROMO, con un bajo efectomaterno, similar a lo encontrado para las otrasrazas.

En cuanto al efecto de ambiente permanente encada una de las razas y en general para todas lascaracteristicas, fue bajo y varió entre 0,0012 y 0,069,ambos en el carácter peso a los 16 meses y en las

razas CCC y ROMO respectivamente. Esto indicaque puede ser eliminado este efecto del modelo deanálisis sin afectar de manera importante laestructura y resultados de análisis de lainformación.

En la tabla 3 se muestran los valores genéticosdirectos promedio para cada una de las poblacionesde las razas criollas que se utilizaron en elprograma de fomento. Es de resaltar que en estecaso sólo se computa el promedio con los valores delos animales que se utilizaron para el programa defomento. Se puede apreciar que solamente seencuentran valores negativos para peso alnacimiento en BON y SM, y para peso al destete,solamente se registra promedios de valoresgenéticos negativos para hembras y machos de laraza Sanmartinero y hembras de la razaRomosinuano. Para las demás características, setienen promedios de valores genéticos positivos entodas las razas. Esto indica una buena calidadgenética de las poblaciones, para las característicasde peso al destete, ganancia de peso del nacimientoal destete y para el peso a los 16 meses.

En las siguientes figuras se muestra ladistribución de los valores genéticos individualesen la población, organizados por sexo, por debajo

Page 69: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

63

Animal Genetic Resources Information, No. 44, 2009

Rodrigo Martínez et al.

del cero (0,0) se encuentran una superficie queindica la proporción (número de animales conrespecto al total de animales) que presentan valoresnegativos y por encima de cero, la superficie indicala proporción de animales con valores genéticospositivos.

Raza Blanco Orejinegro

Como se puede apreciar para la raza BlancoOrejinegro (Figura 1) el 51% de las hembras tienenvalores genéticos negativos para peso alNacimiento, (Hembras 72/141), mientras que el

restante 49% (69/141) presentan valores genéticospositivos, similar a lo encontado para los machos[49% negativos (51/104) y 51% de animalespositivos (53/104)]

Para el peso al destete en la raza BON, ya setiene una mayor proporción de individuos convalores genéticos positivos tanto en hembras [21%negativos (30/141) y 79% positivos 111/141] comoen machos [21% negativos (22/104) y 79% positivos(82/104)] indicando que en general los animalespresentan buenas posibilidades de selección paraesta variable. Similar comportamiento puede serobservado para el carácter ganancia de peso, dondeen las hembras se presentan 79% de individuos con

Figura 3. Toro de la raza Romosinuano perteneciente al Banco de Germoplasma situado en el C.I. Turipanáde CORPOICA ubicado en el municipio de Cereté Cordoba.

Tabla 3. Valores genéticos promedio (V.G.P.) y exactitud promedio ( 2APr ) para caracteres de crecimiento en hembras de

cada una de las razas criollas utilizadas en programas de Fomento.

PNac. Pdtte. GP P16m Raza Hembras Machos 2

APr Hembras Machos 2APr Hembras Machos 2

APr Hembras Machos 2APr

BON -0,270 0,110 0,67 4,000 6,878 0,56 15,030 23,894 0,52 1,580 4,716 0,49 SM -0,324 -0,251 0,52 -8,000 -4,540 0,50 17,000 12,063 0,49 ROMO 0,152 0,354 0,55 -1,202 1,962 0,52 3,737 6,779 0,51 0,076 0,084 0,49 CCC 0,014 0,019 0,48 0,996 2,911 0,57 4,951 12,122 0,57 1,510 2,544 0,49

Page 70: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

64Variabilidad de bovinos criollos colombianos

Figura 4. Toro de la raza Costeño con Cuernos perteneciente al Banco de Germoplasma situado en el C.I.Turipaná de CORPOICA ubicado en el municipio de Cereté Cordoba.

valores genéticos positivos (111/141) [21% deindividuos negativos (30/141)] y 83% de losmachos con valores genéticos positivos (86/104)[17% de individuos machos, con valores negativos(18/104)]

Para el peso a los 16 meses de edad se encontróque el 69% de las hembras entregadas con fines defomento tuvieron valores genéticos positivos(97/141) y tan sólo un 31% presentaron valoresnegativos (44/141), similar a lo encontrado en losmachos donde el 79% (82/104) de los machosseleccionados para fomento tuvieron valoresgenéticos superiores al promedio de la población ysólo un 21% presentaron valores inferiores(22/104). Para esta raza es muy evidente la altaproporción de individuos mejorantes tanto enmachos como en hembras, lo que indica que lapoblación seleccionada para el plan de fomentotiene una buena base genética para selección, quepermitirá asegurar el progreso genético al aplicarestrategias de mejoramiento genético.

Raza Sanmartinero

En el caso de la raza Sanmartinero (Figura 2), por elpeso al nacimiento, se encontró - para las hembras -

un 71% de animales con valor genético negativo(150/209) y solamente un 29% de individuospositivos (59/209) y para los machos, 72% deindividuos con valores negativos (114/158) y 28%)positivos (44 /158). Similar comportamiento sepudo apreciar para el carácter peso al destete,donde para el 74% de las hembras (155/209) seestimaron valores genéticos negativos y sólo el 26%(54/209) positivos y en los machos, el 65% deindividuos con valores genéticos negativos(104/158) y un 35% positivos (54 /158)

Por el contrario, la característica peso al destete,en esta población presentó un predominio deanimales con valores genéticos positivos tanto enmachos como en hembras (56% positivos (115/209)y 44% negativos (94/209) y en machos 59% deanimales positivos (92 /158) y sólo 41% deanimales negativos (66/158). Esto indica para estaraza, que este carácter puede constituirse en objetivode selección, dado que muestra amplia variabilidadfenotípica y genética y que la población presentavalores genéticos promedio superiores a cero,garantizando el progreso genético que se puedeobtener seleccionando por este carácter.

Page 71: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

65

Animal Genetic Resources Information, No. 44, 2009

Rodrigo Martínez et al.

Raza Romosinuano

En la raza Romosinuano (Figura 3), se encontróproporciones levemente superiores de animales convalores genéticos superiores para peso alnacimiento, ya que el 55% de las hembras (73/135)presentaron valores genéticos positivos, mientrasque el 45% presentaron valores negativos (62/135),y en los machos el 58% (44 /76) presentaron valorespositivos y sólo el 42% (32/76) negativos. Similarcomportamiento se apreció para el peso al destete,donde el 55% de las hembras (73/135) y el 60% delos machos (45 /76) presentaron valores genéticospositivos y para el carácter ganancia de peso aldestete, donde el 57% de las hembras (76/135) y el58% de los machos (44/76) presentaron valoresgenéticos positivos.

Para el Peso a los 16 meses, también sepresentaron proporciones levemente superiores deanimales con valores genéticos positivos, pues el59% de las hembras (79/135) y el 57% de losmachos (43 /76) presentaron valores genéticospositivos. Para esta raza, se encuentra una ampliavariabilidad genética y valores genéticos enpromedio positivos, lo que indica la mayorposibilidad de seleccionar individuos mejorantes enla población.

Raza Costeño con cuernos

En la raza Costeño (Figura 4) solamente el carácterpeso al nacimiento presentó similares proporcionesde animales con valores genéticos positivos ynegativos en Hembras [47% (67/140) negativos y53%(73/140) positivos] y machos [51% (36/70)negativos y 49%(34/70) positivos], para el peso aldestete, se encontró una mayor proporción deindividuos con valores genéticos positivos enhembras [45%(63/140) negativos y 55%(77/140)positivos], pero superior proporción en machos convalores genéticos positivos [38% (27/70) negativosy 62%(43/70) positivos], similar a lo encontradopara la ganancia de peso al destete, donde el 58%de las hembras (80/140) presentaron valoresgenéticos positivos (42% (60/140) con valoresgenéticos negativos) y en los machos el 62 % de losindividuos (43/70) presentaron valores genéticospositivos. Pero el carácter peso a los 16 mesespresentó una diferencia considerable, con una altaproporción de individuos con valores genéticospositivos, en este caso el 70% de las hembras(97/140) y 73% de los machos (51/70), presentaronvalores genéticos positivos y complementariamente

el 30% (43/140) de las hembras y el 27% (19/70) delos machos presentaron valores genéticosnegativos.

En esta población, se puede decir que alrealizarse una selección de parentales, para lascaracterísticas de crecimiento, hay una altaproporción de individuos que pueden serutilizados como animales mejorantes, dada lamayor proporción de individuos con valoresgenéticos positivos para la mayoría de caracteres.Esto también es un indicio de la ampliavariabilidad genética que presenta esta raza paralas variables de crecimiento, al igual que en el restode las razas criollas analizadas. Con estaspoblaciones fue iniciado un Programa Nacional deFomento de Bovinos criollos (Anzola et al., 2005) endiferentes regiones del territorio Colombiano, elcual tiene como objetivo promover la utilización debovinos de las razas criollas, que actualmente seencuentran en amenaza de extinción y además sebusca obtener información útil para implementarun plan de mejoramiento genético con miras aincementar su capacidad productiva, y para esto setiene como punto de partida poblaciones consuficiente variabilidad genética para los procesosde selección.

Conclusiones

De acuerdo a los resultados obtenidos, se puedeconcluir que cada una de las razas evaluadaspresenta proporciones variables de animales convalores genéticos positivos y negativos variandoentre razas. La mayor proporción de individuoscon valores genéticos positivos para lascaracterísticas de crecimiento fue la raza BON yCCC, lo que indicaría mayor potencial paraselección. Además se encontraron similaresproporciones de individuos con valores positivos ynegativos entre machos y hembras, indicando unaalta variabilidad genética sin diferencias entresexos. Por otra parte, el carácter peso a los 16 mesespresentó en general en todas las razas una altaproporción de animales con valores genéticospositivos, indicando que este puede ser el caráctercon mayor potencial para tener en cuenta al iniciarun programa de mejoramiento genético. El uso deeste tipo de metodologías para la evaluación de laspoblaciones locales puede ser de gran utilidad parael desarrollo y la gestión genética tanto en términosde conservación como para mejoramiento, pues enel primer caso da un indicio del estado de

Page 72: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

66Variabilidad de bovinos criollos colombianos

conservación al evaluar las tendencias en losvalores de consanguinidad y parámetros genéticos,que deben mantenerse estables en el tiempo. En elcaso de mejoramiento, la determinación de losvalores genéticos permite aplicar procesos deselección más precisos y con resultados máspredecibles. Este trabajo es un ejemplo de suaplicación en poblaciones experimentales y enprogramas de fomento y multiplicación de cuatrorazas locales en Colombia.

Referencias

Anzola H., Martínez R.A., Ossa G. & Neira J.2005. Desarrollo en Colombia ce un programanacional de fomento de bovinos criollos. RevistaICA informa, Vol. 32 No. 2: 48-53.

Henderson C.R. 1988, Progress in StatisticalMethods applied to quantitative genetics since1976. Ch 8. In; Weir B.S., Eisen E.J., Goodman M.M.,and Namkoong G. (Eds) Proc. 2nd. Internal . Conf.On Quantitative Genetics. Sinauer Sunderland,Mass USA.

Hernández B.G. 1998. Estrategia Genéticapara Ganado Tropical de doble propósito. BoletínTécnico. Corpoica, pp. 44.

Gallego J.L., Martínez R.S. & Moreno F.L.2006. Caracterización fenotípica, genética ydeterminación de los índices de consanguinidad dela raza criolla blanco Orejinegro en la estaciónexperimental el Nus, 1979 – 2004. Revista Corpoica,in press.

Martínez C.G., Frahm R.R. & Buchanan D.S.1994. Caracterización de la raza criolla BlancoOrejinegro (BON) IV. Heterosis del crecimientopredestete de BON, Cebu y sus cruces con Charolaisy Santa Gertrudis. Rev. ICA. (Col). 29:2; 135-150.

Martínez C.G., & Chaves M.G. 2001.Ganado Criollo Sanmartinero, Alternativa genéticasustentable para la producción bovina en laOrinoquía. Villavicencio, pp. 45.

Martínez C.G. & González H.F. 2000. ElGanado Criollo Sanmartinero (SM) y su potencialproductivo. Animal Genetic Resource Information.FAO-UNEP, 28:7-18.

Martínez R.A., Avila O., Pérez J., Gallego J.& Onofre H. 2005. Estructura y función del Bancode Germoplasma in Vitro en Colombia. Archivos deZootecnia. 54: 545-550.

Martínez, R.A, Pérez J.E & Herazo T. 2006.Estimation of genetic parameters and variancecomponents for growth traits in Costeño con cuernoscattle in Colombian humid tropic, 8th WorldCongress on Animal Genetic of LivestockProduction.

Martínez, R.A & Pérez J.E. 2007. Parámetrosy tendencias genéticas para características decrecimiento en el ganado criollo colombianoromosinuano, Revista Corpoica, in press.

Meyer K. 1989. Approximate accuracy ofgenetic evaluation under an individual animalmodel. Livest. Prod. Sci. 221: 87.

Misztal, I. & Wiggans G.R.1988.Aproximation of prediction error variances inlarge scale animal models. J. Dairy Sci. 72: 1557.

Pérez, J & Moreno F. Caracterización de laraza bovina criolla Romosinuano en CORPOICAC.I. Turipaná, 1999, <www.turipana.org.co/bovino.htm>.

Plasse, D., O. Verde, J. Arango,L. Camaripano, H. Fossi, R. Romero, C. Rodríguez,& J.L. Rumbos. 2002. (Co)variance components,genetic parameters and annual trends for calfweights in a Brahman herd kept on floodablesavanna Genetics and Molecular Research 1 (4):282-297.

Telo G.L., Pereira M.C., Carolino N. 2004,Modelos mistos em melhoramento Animal, ArquitosVeterinarios, Cyted, Portugal, pp. 275.

Telo G.L. 2002. Melhoramento GenéticoAnimal. Escolar Editora, Lisboa Portugal, pp. 301.

Triviño M.H. 2001. La raza Romosinuano,En: Los animales domésticos criollos y colombianosen la producción pecuaria nacional. Grupo deBioseguridad y Recursos Genéticos., InstitutoColombiano Agropecuario ICA, pp. 29-32.

Page 73: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

67

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 67-76

Summary

In previous studies, significant differences inMycobacterium bovis infection prevalence wasreported between two Chadian cattle breeds. Thosefindings and the established differentiation due tophenotypic characteristics suggest that the twobreeds (Arab and Mbororo) are genetically different.To evaluate the genetic structure and the differencesbetween these breeds, the genetic diversity withinand between breeds was evaluated based on a totalof 205 multilocus genotypes (21 microsatellite loci).

All of the loci under investigation werepolymorphic and the number of alleles ranged from4 to14 within the two populations. The analysis ofpopulation fixation resulted in a FST value of 0.006.Further the population assignment of the individualgenotypes and the exact test of populationdifferentiation did not support the hypothesis thatthe samples drawn from the two populations aregenetically different. Population admixture andsample collection are discussed as possible reasonsfor the rejection of the hypothesis. Finally,recommendations for sample collection in extensivesystems are given.

Resumé

Dans des études précédentes on avait observé desdifférences significatives dans les infections parMycobacterium bovis chez les races bovines deChadian. Ces observations et la différence due auxcaractéristiques phénotipiques suggèrent que lesdeux races (Arabe et Mbororo) sont génétiquementdifférentes. Pour évaluer la structure génétique et lesdifférences entre ces races on a évalué la diversitégénétique dans et entre races sur un total de

Molecular characterization of two common Chadian cattle breeds

C. Flury1,5, B.N.R. Ngandolo2, B. Müller3, J. Zinsstag3 & H.N. Kadarmideen4

1Institue of Animal Science, Swiss Federal Institute of Technology (ETH),Universitätsstrasse 65, 8092 Zürich, Switzerland

2 Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha, P.O. Box 433, N’Djaména, Chad3 Swiss Tropical Institute, P.O. Box, 4002 Basel, Switzerland

4CSIRO Livestock Industries, JM Rendel Laboratory, P.O. Box 5545, Rockhampton, QLD 4702, Australia5Present address of the corresponding author: Swiss College of Agriculture (SHL),

Länggasse 85, 3052 Zollikofen, Switzerland

205 génotypes multiloci (21 loci microsatélites).Tous les loci étudiés étaient polymorphiques et lenombre d’allèles allaient de 4 à 14 dans lespopulations. L’analyse de la fixation de lapopulation a donné un Fst de valeur 0,006. Aprèsl’asségnation des génotypes individuels à lapopulation et le test exact de différence de lapopulation, l’hypothèse des échantillons sortis dedeux populations génétiquement différentes n’étaitpas correcte. Le mélange des populations et la saisiedes échantillons sont étudiés comme possible causedu rejet de l’hypothèse. Pour finir, on présente unesérie de recomandations pour la saisie deséchantillons dans des systèmes extensifs.

Resumen

En estudios anteriores se observaron diferenciassignificativas en infecciones prevalentemente porMycobacterium bovis en dos razas bovinas deChadian. Estos hallazgos y la diferenciaciónestablecida debida a las características fenotípicassugieren que las dos razas (Arabe y Mbororo) songenéticamente distintas. Para evaluar la estructuragenética y las diferencias entre estas razas, seevaluaron la diversidad genética dentro y entrerazas en un total de 205 genotipos multiloci (21 locimicrosatélites). Todos los loci estudiados eranpolimórficos y el número de alelos iba de 4 a14 dentro de las dos poblaciones. El análisis defijación de la población resultó en Fst con valor0,006. Tras la asignación de genotipos individualesa la población y el test exacto de diferenciación de lapoblación quedó eliminada la hipótesis de que lasmuestras sacadas de las dos poblaciones erangenéticamente diferentes. La mezcla de poblacionesy la recogida de muestras se discuten como posibles

Page 74: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

68Characterisation of two Chadian cattle breeds

motivos que hicieron rechazar la hipótesis. Por fin,se presentan una serie de recomendaciones para larecogida de muestras en sistemas extensivos.

Key words: Cattle breeds, Africa, Molecularcharacterization, Genetic diversity, Genotyping, Clusteranalysis, Populations.

Introduction

Mycobacterium bovis (M. bovis) is the causative agentof bovine tuberculosis (BTB). Bovine tuberculosis isa zoonotic disease and one question of interest is itsimportance in the human tuberculosis epidemic,fostered by HIV/AIDS in different parts of Africa(Ayele et al., 2004; Cosivi et al., 1998). Suchinvestigations are extensive, as the tuberculosisepidemic and spread depend on a variety of factorssuch as complex interactions between differentMycobacterium tuberculosis complex strains,non-tuberculus Mycobacteria, susceptibility of hostcattle breeds, the public health status and otherenvironmental factors. To further investigate thosecomplexities a large project is currently running incooperation with Laboratoire de RecherchesVétérinaires et Zootechniques de Farcha,N’Djaména, Chad; Sokoine University ofAgriculture, Morogoro, Tanzania; LaboratoireCentral Vétérinaire, Bamako, Mali; Ecole Inter-Etatsdes Sciences et de Médecine Vétérinaires, Dakar,Senegal; the Swiss Tropical Institute (STI), Basel,Switzerland and the Swiss Federal Institute ofTechnology (ETH), Zürich, Switzerland.

In a previous study, differences between hostcattle breeds regarding the prevalence of infectionswith M. bovis were reported (Hilty, 2006). In Chadas well as in Cameroon (Hilty, 2006), a higherprevalence in the Mbororo breed was found incomparison with the Arab breed, and thehypothesis was that the distinct prevalence mightbe due to a differential susceptibility in the twobreeds. Further research on the susceptibility ofdifferent host breeds and the genetic diversitybetween these breeds are goals of the overall project.So far, the genetic characterizations of the samplescollected at the slaughterhouses in Chad have beencompleted and are the subject of the presentedstudy.

As compared to Europe, characterisation ofanimal genetic resources (AnGR) in Africa receivesless attention. In the country report of Chad (FAO,2007b), no molecular characterization of Chadiancattle breeds was reported. However, adequatecharacterization of AnGR is a prerequisite for

successful management programmes and forinformed decision making in national livestockdevelopment (FAO, 2007a). Even if the two breedsMbororo and Arab are not at risk of extinction(derived from FAO, 2007c) the data collected at theslaughterhouses in Chad is expected to be worthy ofdetailed analysis of the molecular aspects of each.The aim of this study was the molecularcharacterization of the two breeds including theassessment of genetic diversity within and betweenpopulations. Such a characterization is not only ofinterest regarding the differences in BTB prevalencein the two breeds but also in respect to thedescription of indigenous African cattle breeds andAfrican cattle husbandry systems.

Material and Methods

Breeds

The genotyped animals belong to the two breedsMbororo and Arab. All of them were kept in a longdistance transhumant system by pastoralists,thereby passing the border between Chad and theCentral African Republic and spending the dryseason in the Central African Republic. Thetranshumant system is the main cattle productionsystem in Chad. Seventy five percent of the nationalherds are kept by pastoralists and almost 50% ofChadian export revenues are generated within thissystem (FAO, 2007b).

The Mbororo cattle, also known as Red Fulani,belong to the subgroup Fulani of the West AfricanZebu cattle. In Chad a population size of300 000 heads was reported in year 1992 (FAO,2007c). This breed has long, lyre-shaped horns anda thoracic, sometimes intermediate hump ( FAO,2007c) (Figure 1). The lactation yield is poor with2 kg of milk per day at the peak of lactation (FAO,2007b). The carcass dressing out is low (40% - 42%),but FAO (2007b) reported the good quality of thebreed’s hides for leather production. The breed isrobust and adapted to different climates, i.e. thebreed is kept in dry as well as humid regions ofChad (FAO, 2007b).

The Arab Zebu (or Shewa) has a well developeddewlap and short horns (Zibrowski, 1997). Coatcolour is red – maroon in the sahel-zone andpredominantly white in the south-east and west(FAO, 2007b). Figure 2 shows some Arab animalsfrom Chad before slaughter. Milk yield per lactationvaries from a minimum of 454 kg to a maximum of1 814 kg in a lactation length varying from 240 to396 days (DAGRIS, 2007). Other than the entirely

Page 75: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

69

Animal Genetic Resources Information, No. 44, 2009

Flury et al.

Figure 2. Arab cattle at the slaughterhouse in Chad (photo Ngandolo B.N.R.).

Figure 1. Mbororo cattle at the slaughterhouse in Chad (photo Ngandolo B.N.R.).

Page 76: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

70Characterisation of two Chadian cattle breeds

desert regions, the breed is kept in all other regionsof Chad. It is estimated, that 75% to 90% of Chadiancattle belong to this breed (FAO, 2007b). Apopulation size of 4 902 000 heads was reported inyear 1992 (FAO, 2007c).

Genotyping

Blood samples were taken from animals beforeslaughter at three different abattoirs in SouthernChad. Additionally, information about the breed,age, sex, transhumance system, borders crossed,residence during the dry season and the location ofthe slaughter house of each animal was recorded.The age structure and gender of the sampledanimals are shown in table 1.

Blood was allowed to clot, transported on ice tothe Laboratoire de Recherches Vétérinaires etZootechniques in Farcha and stored at -80°C untilfurther processing. DNA was extracted using theQIAamp® DNA Blood Mini Kit (QIAGEN, Cat. No.51106) from clotted blood corresponding to238 individual animals. Handling was carried outaccording to the Blood and Body Fluid SpinProtocol (derived from Qiagen, 2007). DNA wastransported to Europe where genotyping wasconducted by Van Haeringen Laboratories,Wageningen, Netherlands. All microsatellites werechosen from the FAO-list (FAO, 2004).

A remarkable degradation of the DNA wasobserved over time. This problem caused a highfraction of missing genotypes, especially for themost recent genotyped multiplexes. Markers forindividuals with missing information for seven andmore markers were omitted from further analysis.Finally, 205 genotypes (131 Arab and 74 Mbororo)for 21 microsatellites were included for statisticalanalysis.

Statistical analysis

For the statistical investigations the packagesARLEQUIN 3.01 (Excoffier et al., 2005),STRUCTURE 2.1 (Pritchard et al., 2000) and FSTAT2.9.3.2 (Goudet, 1995) were applied. Deviation fromHardy-Weinberg- Equilibrium (HWE) was tested foreach locus in each population using ARLEQUIN(number of steps in MCMC =100 000). Thesignificance level was set to P-value <0.001.

FAO- markers are assumed to be polymorphic,selectively neutral and to segregate independentlyfrom other loci (FAO, 2004). In ARLEQUIN alikelihood ratio test of linkage disequilibrium isimplemented for genotypic data with unknowngametic phase. This test was conducted on the datasetting the number of permutations to 10 000 andthe significance level to 0.05.

The number of alleles per locus, the averagenumber of alleles per breed, the observed andexpected heterozygosity per locus and breed werecalculated as indicators for the genetic variabilitywithin the two breeds. The relevant results werepart of the testing on HWE with ARLEQUIN.Further breed specific alleles (i.e. private alleles)were counted.

FSTAT (Goudet, 1995) was used for theassessment of Wrights fixation indices and therespective standard errors. Further, thecomputations given in ARLEQUIN to conductpopulation comparisons and populationdifferentiation were conducted. Additionallygenotype assignment was derived with thispackage.

Clustering analysis was conducted withSTRUCTURE 2.1 (Pritchard et al., 2000). The lengthof burning period for the MCMC was set to10 000 with 10 0000 replications after burning. Thenumber of clusters was varied from 2 to 5.

Table 1. Age structure and average age of the sampled individuals (grouped by sex and breed).

Number of animals per age class (years) Sampled individuals Sex No.

Age (mean) 1 2 3 4 5 6 7 8 9 10 11

Male 34 4.206 6 4 6 2 6 3 3 2 2 0 0 Arab

Female 97 6.701 2 1 3 6 6 20 26 21 9 1 2 Male 38 3.079 2 18 7 4 4 0 2 1 0 0 0

Mbororo Female 36 5.611 1 5 3 2 2 6 9 7 1 0 0

Page 77: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

71

Animal Genetic Resources Information, No. 44, 2009

Flury et al.

Tabl

e 2.

Num

ber

of g

enot

ypes

(N

), nu

mbe

r of

alle

les,

frac

tion

of m

issi

ng g

enot

ypes

obs

erve

d he

tero

zygo

sity

, exp

ecte

d he

tero

zygo

sity

and

P-v

alue

for

HW

E-t

estin

g fo

r th

e A

rab

sam

ple

and

the

Mbo

roro

sam

ple,

res

pect

ivel

y.

A

rab

(131

) M

boro

ro (7

4)

Mar

ker

No.

A

llele

s M

issi

ng

(%)

Obs

_het

Ex

p_he

t P

-val

ue

No.

A

llele

s M

issi

ng

(%)

Obs

_het

Ex

p_he

t P

-val

ue

BM18

18

129

9 1.

5 0.

814

0.81

3 0.

894

69

9 6.

8 0.

783

0.84

4 0.

238

BM18

24

131

7 0.

0 0.

672

0.74

6 0.

003

74

4 0.

0 0.

703

0.74

3 0.

910

BM21

13

131

8 0.

0 0.

771

0.82

7 0.

809

74

9 0.

0 0.

824

0.82

2 0.

734

CSR

M60

13

1 10

0.

0 0.

595

0.56

8 0.

677

74

8 0.

0 0.

541

0.61

0 0.

202

CSS

M66

13

1 11

0.

0 0.

771

0.83

2 0.

322

74

9 0.

0 0.

757

0.83

8 0.

006

ETH

10

129

8 1.

5 0.

798

0.76

9 0.

382

74

8 0.

0 0.

797

0.80

3 0.

237

ETH

225

129

9 1.

5 0.

605

0.63

5 0.

725

74

8 0.

0 0.

689

0.71

4 0.

341

ETH

3 13

1 8

0.0

0.61

8 0.

600

0.50

4 74

7

0.0

0.51

4 0.

553

0.84

2 H

AU

T27

11

3 7

13.7

0.

664

0.74

4 0.

374

66

7 10

.8

0.72

7 0.

746

0.79

7 IL

STS0

06

126

10

3.8

0.65

1 0.

687

0.63

1 70

10

5.

4 0.

786

0.75

0 0.

654

INR

A23

13

0 12

0.

8 0.

708

0.74

5 0.

526

74

10

0.0

0.59

5 0.

665

0.28

1 SP

S115

13

1 7

0.0

0.49

6 0.

497

0.81

0 74

7

0.0

0.33

8 0.

348

0.76

6 TG

LA12

2 12

6 14

3.

8 0.

683

0.71

6 0.

154

72

11

2.7

0.72

2 0.

704

0.68

6 TG

LA12

6 13

1 8

0.0

0.78

6 0.

755

0.75

6 74

8

0.0

0.71

6 0.

756

0.05

5 TG

LA22

7 13

1 10

0.

0 0.

618

0.62

1 0.

287

74

11

0.0

0.50

0 0.

572

0.22

3 TG

LA53

1 93

16

29

.0

0.76

3 0.

787

0.74

7 60

15

18

.9

0.56

7 0.

768

0.00

2 ET

H15

2 13

1 6

0.0

0.51

1 0.

525

0.82

7 73

5

1.4

0.50

7 0.

527

0.81

5 ET

H18

5 12

9 14

1.

5 0.

806

0.82

3 0.

478

74

11

0.0

0.66

2 0.

757

0.28

2 H

EL5

196

726

.7

0.57

3 0.

770

0.00

0 52

629

.7

0.50

0 0.

751

0.00

0 IL

STS0

05

121

6 7.

6 0.

760

0.79

2 0.

386

71

5 4.

1 0.

732

0.75

2 0.

895

INR

A32

12

6 10

3.

8 0.

714

0.82

6 0.

033

72

10

2.7

0.80

6 0.

815

0.94

9 IN

RA

35

128

8 2.

3 0.

500

0.53

4 0.

091

71

7 4.

1 0.

577

0.67

1 0.

004

MM

12

131

14

0.0

0.83

2 0.

839

0.96

2 74

11

0.

0 0.

838

0.85

9 0.

489

Mea

n2

9.3

0.

684

0.70

9

8.

3

0.67

2 0.

707

SD

2

2.5

0.

106

0.11

3

2.

1

0.13

3 0.

127

1 E

xclu

ded

. 2 A

fter

exl

cusi

on o

f mar

kers

TG

LA

53 a

nd H

EL5

.

Page 78: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

72Characterisation of two Chadian cattle breeds

-100

-80

-60

-40

-100-80-60-40

Arab

Mbororo

log-

likel

ihoo

d

Figure 3. Log-likelihood of each individual's multilocus genotype in the population sample Arab andMbororo, respectively, assuming that it comes from this population.

Figure 4. STRUCTURE clustering result for k=2 clusters.

Results

Information content of markers andgenetic variability within populations

Table 2 gives an overview of the genotyped markers,the number of individuals with a genotype (N), thenumber of observed alleles, the fraction of animalswith missing genotypes, the observedheterozygosity and the expected heterozygosity andthe respective P-value for HWE-testing for the twopopulations, Arab and Mbororo, separately.

Genetic diversity between populationsand cluster analysis

The total degree of population subdivisionaccording to Weir and Cockerham (1984) was foundto be:FIT= 0.042 (± 0.008)FST= 0.006 (± 0.002)FIS= 0.037 (± 0.008).

Figure 3 shows the results for the genotypeassignment implemented in ARLEQUIN. Theprogram calculates the log-likelihood of eachgenotype under the assumption that it belongs tothe respective population.

The results of the clustering analysis assumingtwo clusters, are given in figure 4. The number ofclusters (k) investigated is user defined. The kresulting in the highest logarithmic probability isseen as the most probable number ofsubpopulations. For our data the highestlog-likelihood was found for k = 2 .

Discussion

Information content of markers andgenetic variability within populations

Marker HEL5 significantly deviates from HWE andwas therefore excluded from further analysis.Further, TGLA53 was omitted as its fraction ofmissing genotypes was above 20%. After exclusion

Log-likelihood

Arab Mbororo

Page 79: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

73

Animal Genetic Resources Information, No. 44, 2009

Flury et al.

of the above mentioned markers, 205 individualgenotypes for a total of 21 microsatellites remainedfor further analysis (Table 2).

Testing linkage disequilibrium revealed that foreach population three pairs of loci do not segregateindependently (P<0.001) (results not shown).However, as all of the markers in linkagedisequilibrium are mapped to differentchromosomes, the markers are informativeregarding diversity studies and are not excludedfrom further analysis (Peter, 2005).

The number of alleles per locus ranged from 4 upto 14. The minimum was found in the Mbororosample at the loci BM1824, the maximum at thethree loci TGLA122, ETH185 and MM12 of the Arabsample (table 2). These findings show that the twopopulations are polymorphic for all of the 21 lociunder investigation. The chosen loci all fulfil therule of thumb given by FAO, that markers fordiversity studies should segregate with at least4 alleles per population (FAO, 2004). The meannumber of alleles was 9.3 (± 2.5) for the genotypesbelonging to the breed Arab and 8.3 (± 2.1) for thegenotypes belonging to the Mbororo breed,averaging 8.8 (± 2.3) (Table 2) for the total sample.

28 alleles at 13 loci out of the 203 alleles werefound to be so called private alleles (results notshown). A private allele is defined as an allelefound in one population but in no other (Woolliamsand Toro, 2007). In our study the highest frequencyof a private allele was 2.8% only. Thus, theirinfluence on differences in the allelic frequenciesbetween populations is expected to be low.

The average observed heterozygosity was foundto be 0.684 (± 0.106) in the Arab and 0.672 (± 0.133)in the Mbororo populations, respectively. Theaverage expected heterozygosity was 0.709 (± 0.113)for the Arab population, and 0.707 (± 0.127) for theMbororo population (Table 2). The mean number ofalleles per locus and the expected heterozygosityare seen as informative measures for the assessmentof genetic diversity within populations (Hanotteand Jianlin, 2005; Toro and Caballero, 2004). Themean number of alleles per locus found in thepresent study is lower than the 11.5 alleles permicrosatellite locus observed by Ibeagha-Awemu etal. (2004) in West/Central African cattle breeds. Theexpected heterozygosity for the nine Bos indicusbreeds investigated by Ibeagha-Awemu et al. (2004)ranged from 0.703 – 0.744. Our estimatescorrespond with the lower end of this range.

Generally, it has to be questioned if the samplesdrawn for our study represent random samplesfrom the Mbororo and Arab breed . The number ofanimals sampled is adequate, however, the animals

were all kept in one region of southern Chad andthe size of the two samples was not equal. Abalanced affiliation of both sexes is not given for theArab sample (table 1). Further, the animals from apastoralist system arriving at abattoir do notnecessarily cover all age classes of a population(Table 1). For both breeds the average age of thesampled cows was about 2.5 years higher than theaverage age of the sampled bulls (Table 1).Considering bulls, animals from the older ageclasses (> 6 years) are under represented in bothbreeds, indicating that the majority of bulls areslaughtered at a younger age (Table 1). Olderanimals might have undergone selection as theyhad to survive the dry season, long treks, diseasepressures and other forces arising within thissystem. Due to these various factors, the assumptionof two random samples cannot be warranted.

Genetic diversity between populationsand cluster analysis

The FST indicates that the genetic diversity betweenthe two samples is very low. A high proportion ofthe FIT is accounted for by the within-heterozygotedeficiency (FIS). The low FST is seen as a firstincidence, and might be hard to elaborate geneticdifferences between the samples of Mbororo andArab cattle.

The distributions of the log-likelihoods for thegenotype assignment shown in figure 3 overlap to acertain amount. Again it is not possible to clearlydistinguish between the two populations. Thisresult was further confirmed with the exact test ofpopulation differentiation implemented inARLEQUIN (results not shown). The differentiationtest between all samples revealed in P-value > 0.05,i.e. based on the genotypic information - the twopopulations do not significantly differ.

The algorithm implemented in STRUCTURE(Pritchard et al., 2000) constructs genetic clustersfrom a collection of individual multi-locusgenotypes. Therefore the fraction of eachindividual’s genotype that belongs to each cluster isestimated (Rosenberg et al., 2001). It identifiessub-populations which differ in their allelefrequencies.

The bars in figure 4 show, that for none of the205 individuals can the genome be clearly assignedto the Arab cluster or the Mbororo cluster.Furthermore, no relation between the participationof an individual’s genome fraction and its initiallyassigned population (x-axis in figure 4) was found.

Page 80: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

74Characterisation of two Chadian cattle breeds

Rosenberg et al. (2001) showed that the power ofclustering depends on the variability of markers, thenumber of markers and the number of individualsgenotyped. For less diverged populations theypropose to genotype more than 12-15 markers for15-20 individuals of the hypothetical populations toget accurate clustering results. For our data thoserecommendations are fulfilled. Therefore theclustering results further support the notion thatthat the samples under investigation do not reflectgenetically different populations.

Before slaughtering the sampled individualswere phenotypically assigned to the two breedsMbororo and Arab. Even if relying on differentindividuals sampled, the reported differences inBTB prevalence between the two breeds (Hilty,2006) leads to the hypothesis that geneticdifferences exist and might become obvious ininvestigating the molecular diversity. However, theanalysis of the samples investigated here and thechosen microsatellites do not support thishypothesis. Those findings are somewhatunexpected. They might be explained with effectsregarding the sampling of animals kept intranshumance systems. Unfortunately, no dataabout the herd affiliation was available. As alreadymentioned above, different age structures wereobserved between sexes. There is a certain chancethat ‘old’ female individuals (5 to 8 years) are theones that survived for example BTB infection andare therefore overrepresented in both samples. Suchsampling effects can result in diminisheddifferences between breeds.

Mbororo and Arab animals are kept by nomadicpastoralists of two different ethnic groups, wherecattle breeds are named after them. This connectionappears to be rather loose and both groups oftenkeep Arab and Mbororo cattle inter-mixed in theirherds (Dr. C. Diguimbaye-Djaibe and B.N.R.Ngandolo, personal communications). Anotherpossibility is that migration of animals betweenherds and breeds occur. These aspects support therejection of the hypothesis due to populationadmixture. Admixture between populationshomogenizes allele frequencies betweenpopulations. Therefore, the exploration ofdifferences in allele frequencies between admixedpopulations does not lead to significant testingresults. This conclusion is further supported by theCountry Report of Chad (FAO, 2007b) whichrecords that important admixture between Arab andMbororo exists.

Based on our study, we fully support thestatement that sample collection is the mostimportant step in any diversity study (FAO, 2007a).

In extensive production system the lack of pedigreeinformation (Eding and Meuwissen, 2001; Ruane,1999) may hamper the collection of representativesamples. To overcome this difficulty well planneddata collection and the collection of additionalinformation like herd affiliation, records ofgeographical coordinates and photo documentationof sampling sites, animals and flocks. are highlyrecommended (FAO, 2007a). Otherwise, theinterpretation of genotyping results and statisticalanalysis become hard and loose their explanatorypower.

Conclusions

Considering phenotypes solely, one would havepresumed the samples represented two differentbreeds. However, our study does not confirmgenetic differences between the two samples. Here,the potential of genetic characterisation studies inextensive systems becomes obvious. The presentedresults increase information about cattle breeds keptin pastoralist systems and supports the notion thatregular admixture between the two breeds occurs.

Collecting samples at slaughterhouses forsemi-feral populations seems promising incomparison with the complex collection of fieldsamples. Nevertheless, careful sample collectionprocedures remain the most important step. In thiscontext the need for supplementary information(description of the breeds, herd information,information about herd management etc.) isunderlined. For this purpose, the pastoralistsarriving at slaughterhouse might be asked to fill in aquestionnaire. Future research also requiresinvestigations on cattle husbandry and herdingpractices of African pastoral communities wherevery little information is available. No detailedinformation about the influence of non-geneticfactors on differences in disease prevalence (i.e.BTB) between breeds is available.

Increased information about the geneticcomposition of breeds as well as their productionsystem allows for better understanding ofpastoralist systems in general and of specificthreats - such as zoonotic diseases – arising withinsuch systems.

Acknowledgements

This study is part of an overall SNF project. SNF isacknowledged for financial support. Stefan Rieder

Page 81: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

75

Animal Genetic Resources Information, No. 44, 2009

Flury et al.

and two independent referees are acknowledged fortheir comments on earlier versions of thismanuscript.

List of References

Ayele, W.Y., Neill, S.D., Zinsstag, J.,Weiss, M.G. & Pavlik, I. 2004. Bovine tuberculosis:an old disease but a new threat to Africa. Int. J.Tuberc. Lung Dis. 8, 924-937.

Cosivi, O., Grange, J.M., Daborn, C.J.,Raviglione, M.C., Fujikura, T., Cousins, D.,Robinson, R.A., Huchzermeyer, H.F., de, K.I. &Meslin, F.X. 1998. Zoonotic tuberculosis due toMycobacterium bovis in developing countries.Emerg. Infect. Dis. 4, 59-70.

DAGRIS. 2007. Domestic Animal GeneticResources Information System (DAGRIS).J.E.O. Rege, O. Hanotte, Y. Mamo, B. Asrat andT. Dessie (Eds), <http://dagris.ilri.cgiar.org/>,International Livestock Research Institute, AddisAbaba, Ethiopia.

Eding, H. & Meuwissen T.H.E. 2001.Marker-based estimates of between and withinpopulation kinships for the conservation of geneticdiversity. Journal of Animal Breeding and Genetics118: 141-159.

Excoffier, L., Laval G. & Schneider S. 2005.Arlequin (version 3.0): An integrated softwarepackage for population genetics data analysisEvolutionary Bioinformatics Online.

FAO. 2007a. The state of the world’s animalgenetic resources for food and agriculture,B. Rischkowsky and D. Pilling (Eds), Rome, Italy,pp. 511.

FAO. 2007b. The state of the world’s animalgenetic resources for food and agriculture - annex:Country report Chad. B. Rischkowsky andD. Pilling (Eds), Rome, Italy, pp. 511.

FAO. 2007c. Domestic animal diversityinformation system (DAD-IS). <http://dad.fao.org/>,FAO, Rome, Italy.

FAO. 2004. Secondary guidelines fordevelopment of national farm animal geneticresources management plans, Rome, Italy, pp. 55.

Goudet, J. 1995. Fstat (version 1.2): Acomputer program to calculate f-statistics. Journal ofHeredity 86: 485-486.

Hanotte, O. & H. Jianlin. 2005. Geneticcharacterization of livestock populations and itsuse in conservation decision-making. In: The role ofbiotechnology for the characterization andconservation of crop, forestry, animal and fisherygenetic resources. FAO Workshop, Turin, Italy.

Hilty, M. 2006. Molecular epidemiology ofmycobacteria: Development and refinement ofinnovative molecular typing tools to studymycobacterial infections, Universität Basel, Basel,Switzerland, pp. 157.

Ibeagha-Awemu, E.M., O.C. Jann,C. Weimann, & G. Erhardt. 2004. Genetic diversity,introgression and relationships amongWest/Central African cattle breeds. GeneticsSelection Evolution 36: 673-690.

Peter, C. 2005. MolekulargenetischeCharakterisierung von Schafrassen Europas unddes Nahen Ostens auf der Basis vonMikrosatelliten, Justus-Liebig-Universität, Giessen,Germany, pp. 160.

Pritchard, J.K., Stephens M. & Donnelly P.2000. Inference of population structure usingmultilocus genotype data. Genetics 155: 945-959.

Qiagen. 2007. Qiagen: sample and assaytechnologies. <www1.qiagen.com/literature/handbooks/literature.aspx?id=1000190>.

Rosenberg, N. A., Burke, T., Elo, K.,Feldman, M.W., Freidlin, P.J., Groenen, M.A.M.,Hillel, J., Mäki-Tanila, A., Tixier-Boichard, M.,Vignal, A., Wimmers, K. & Weigend S. 2001.Empirical evaluation of genetic clustering methodsusing multilocus genotypes from 20 chicken breeds.Genetics 159: 699-713.

Ruane, J. 1999. A critical review of the valueof genetic distance studies in conservation ofanimal genetic resources. Journal of AnimalBreeding and Genetics 116: 317-323.

Toro, M. & Caballero. 2004. Characterisationand conservation of genetic diversity betweenbreeds. In: Proceedings 55th EAAP Annual Meeting,Bled, Slovenia.

Weir, B. & C. Cockerham. 1984. Estimatingf-statistics for the analysis of population structure.Evolution 38: 12.

Page 82: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

76Characterisation of two Chadian cattle breeds

Woolliams, J. & Toro M. 2007. Chapter 3.What is genetic diversity? In: Utilisation andconservation of farm animal genetic resources.Wageningen Academic Publishers, Netherlands,55-74.

Zibrowski, D. 1997. Atlas d’élevage dubassin du lac tschad/livestock atlas of the lakechad bassin. CIRAD-EMVT, Wageningen,Netherlands, 79-80.

Page 83: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

77

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 77-86

Summary

The Banni buffaloes distributed in the Kachchhregion of Gujarat state in western India are mediumto large in body size with a compact body andtypical coiled horns. Mean body length, heart girthand height at withers estimated during the surveywere 153.7±0.4 cm, 205.5±0.6 cm and 136.7±0.2 cm,respectively. Data on 397 adult milking buffaloesfrom Banni area based on interviews with farmers,revealed the mean age at first calving to be39.7±0.4 months, a mean service period of66.4±1.3 days, a mean lactation length of293.3±1.5 days and a mean peak yield of15.7±0.1 litres. Genetic diversity analysis of Bannibuffaloes using a set of 15 heterologus bovinemicrosatellite markers revealed a high degree ofallelic polymorphism with a total of 81 alleles and amean of 5.4. The observed heterozygosity was foundto be moderate with a mean of 0.506 and rangedfrom 0.125 (ILSTS 045) to 0.795 (ILSTS 008). Themean FIS value (0.181) across 15 microsatellite lociwas significantly positive indicating heterozygotedeficiency in the population. The test forHardy-Weinberg equilibrium revealed seven of the15 microsatellite loci analyzed showing significantdeviations.

Résumé

Les buffles de Banni ont distribué dans la région deKachchh d’état de Gujarat dans Inde de l’ouest sontmoyen à grand dans la taille de corps avec le corpscompact et les cornes embobinées typiques. Lalongueur de corps, la circonférence de coeur et lahauteur moyens à se rabougrit estimé pendantl’étude étaient 153,7±0,4 cm, 205,5±0,6 cm et136,7±0,2 cm respectivement. Les données sur

Characterization of Banni buffalo of Western India

B. P. Mishra1, K.P. Singh2, D.B. Chavan2, D.K. Sadana1, R.S. Kataria1, P. Kathiravan1 & S.P.S. Ahlawat1,3

1National Bureau of Animal Genetic Resources, Karnal -132 001, Haryana, India2Department of Animal Genetics & Breeding, College of Veterinary & Animal Husbandry, SDAU,

Sardarkrushinagar, Gujarat, India3Present address: Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India

397 buffles de milking adultes du secteur de Banniont basé l’entretien de fermiers, révélés signifier quel’âge vêlant au début pour être 39,7±0,4 mois,signifier la période de service de 66.4±1,3 jours, lalongueur de lactation moyenne de 293,3±1,5 jours etsignifie le rendement de sommet de 15,7±0.1litres.L’analyse génétique de diversité de buffles de Banniutilisant une série de 15 heterologus les bornes demicrosatellite bovines ont révélé un haut degré depolymorphisme d’allelic avec un total de 81 alleleset un moyens de 5,4. Le heterozygosity observé a ététrouvé pour être modéré avec un moyens de 0,506 etétendant de 0,125 (ILSTS 045) à 0,795 (ILSTS 008).La valeur moyenne de FIS (0,181) à travers 15 lieuxde microsatellite était indiquer le manque deheterozygote significativement positif dans lapopulation. Le test pour l’équilibre deHardy-Weinberg a révélé sept des 15 lieux demicrosatellite ont analysé montrant des déviationssignificatives.

Resumen

Los búfalos de Banni se distribuyen en la región deKachchh, en el Estado de Gujarat en el oeste de laIndia. Son de tamaño medio-grande, cuerpocompacto y cuernos típico enroscados. La larguradel cuerpo, la circunferencia del torax y la alturamedia durante el estudio fueron de 153,7±0,4 cm;205,5±0,6 cm y 136,7±0,2 cm, respectivamente. Losdatos sobre 397 búfalos de leche de la zona deBanni se basan sobre encuestas a los ganaderos ymuestran una media de edad al primo parto de39,7±0,4 meses, un periodo medio de monta de66,4±1,3 días, una media de lactación de293,3±1,5 días y una producción media de15,7±0,1 litros. Los análisis sobre diversidad

Page 84: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

78Banni buffalo of India

genética de los búfalos de Banni con la utilizaciónde 15 marcadores microsatelitares heterologusbovinos han mostrado un grado elevado depolimorfismo alelico con un total de 81 alelos y unamedia de 5,4. La heterocigosis observada ha sidomoderada con una media de 0,506 y un rango de0,125 (ILSTS045) a 0,795 (ILSTS008). La media delvalor Fis(0,181) entre los 15 loci microsatelitares fuepositiva de forma significativa, lo que indica undéficit de heterocigosis en la población. El testHardy-Weinberg de equilibrio muestra siete de los15 loci microsatelitares analizados condesviaciones significativas.

Key words: Banni buffaloes, Phenotypiccharacterization, Production performance, Geneticdiversity, Microsatellites markers.

Introduction

Water buffalo (Bubalus bubalis) is the mainstay of theIndian dairy industry with a contribution of about54% of the total milk production in the country.Buffaloes are valuable not only as milk producers,but have multiple roles in rural livelihood system,where it forms a part of the cultural structure of the

society apart from employment generation andnutritional security. In some areas, buffalo keepingis a way of life for certain social groups, particularlyamongst tribal people (the Todas of Nilgiris inTamil Nadu) and pastoralists/semi pastoralists(the Maldharis of Banni area in Gujarat). Indiapossesses a wide variety of buffalo genetic resourcescomprising 10 well recognized breeds and manylesser known populations which are equallyimportant to buffalo husbandry in India.Characterization and documentation of these lesserknown buffalo populations in different parts of thecountry is of prime significance.

The Banni area of Kachchh district in Gujaratstate is one of the finest pasture lands in Asia withabout 30 varieties of grasses and is well known forits livestock wealth. The Banni buffalo, which wasevolved by the Maldhari community in this region,has good adaptability to harsh climatic conditions,drought resistance and survival on scanty fodderand shrubs. They have good genetic potential formilk production and form a main source oflivelihood for Maldharis. Also, Banni buffaloes aregaining popularity among the farmers and privatedairy owners in North Gujarat and Mumbai(Maharashtra) due to their high milk productionpotential, fairly good lactation length, hardy natureand regular breeding. However, information

Figure 1. Breeding tract of Banni buffaloes in Kachchh district of Gujarat state in Western India.

Page 85: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

79

Animal Genetic Resources Information, No. 44, 2009

Mishra et al.

regarding this buffalo population is very scanty inthe literature. The present study was undertakenwith the following objectives:1. To evaluate the Banni buffalo for its

morphological characteristics and productionperformance in its natural habitat.

2. To assess the genetic diversity of Banni buffalousing heterologus microsatellite markers.

Material and Methods

Information on Banni buffalo regarding theirhabitat, distribution and management practices wascollected using preset questionnaires. Dataregarding various morphometric traits wererecorded on 397 adult buffaloes from the Banniarea. Data on production and reproduction traitswere collected based on interviews with farmers indifferent parts of the breeding tract. Blood sampleswere collected from unrelated animals from variousvillages in the breeding tract (Figure 1). As pedigreerecords are not available under field conditions,care was taken by way of interviewing the farmersin order to ascertain that the animals tested duringsample collection were not related. Genomic DNAwas extracted from whole blood following thestandard Phenol-Chloroform extraction method(Sambrook and Russell, 2001). A total of15 heterologus bovine specific microsatellitemarkers evaluated in buffaloes for genetic diversitystudies (Navani et al., 2002) were utilized togenerate microsatellite genotypic data on47 animals. The PCR conditions were standardizedfor all the 15 primer pairs and PCR was carried outin the PTC-200 Thermal Cycler (MJ Research, Inc,MA, USA) using cycling conditions: 2 min at 94°C,followed by 30 cycles of 1 min at 94°C, 1 min atprecise annealing temperature, 1 min at 72°C andfinal extension at 72°C for 10 min. PCR productswere resolved on 6% denaturing PAGE (Sequi GTSystem, Bio-Rad, USA) and allele size estimatedusing a 10bp ladder (Invitrogen, Life Technologies,CA, USA) run in parallel to the samples. Gels werestained by the silver staining method of Bassam etal.(1991) and genotypes were scored manually foreach microsatellite locus.

Different measures of genetic variation such asobserved number of alleles (na), effective number ofalleles (ne), observed (Ho) and expectedheterozygosity (He) estimates were computed afterNei (1973) using POPGENE software (Yeh etal.,1999). Polymorphism Information Content was

calculated in accordance to Botstein et al. (1980).Tests for departure from Hardy-Weinbergequilibrium and Ewens Watterson’s test forneutrality of markers (Manly, 1985) were performedusing POPGENE software.

Results and Discussion

Habitat, distribution and populationstatus

Banni buffaloes are distributed throughout theKachchh district of Gujarat and in some parts of theBanaskantha and Patan districts of North Gujarat.These buffaloes are centered between the Hajipirand Khavada areas of Kachchh district. TypicalBanni animals are seen in Bhirandara, Hodka,Luna, Mithadi, Udama, Dhorda, Goravali, Kaduli,Rabviry and Kakar villages of Banni region (Bhujcircle) and in Anjar, Bhachua, Nakhatrana andLakhpat circles of Kachchh district. The Banni areais about 840 square miles of flat land comprised ofabout 45 villages, which are bounded by a desertarea (Rann of Kachchh) in the North. The Banniregion is one of the finest pasture lands supportinga traditional livestock system. The name ‘Banni’buffalo originated from the name of this region andthe Maldharis (traditional livestock keepers)evolved this population through conventionalbreeding.

Rainfall in this area is generally very erratic(250-500 mm) with average maximum andminimum temperatures of 42°C and 12°Crespectively. The soil of the Banni area is highlycalcareous, saline and loam sandy with poor waterholding capacity, low permeability and is prone toerosion. The nature of the soil has limitedagricultural farming to a great extent in this areaand grasses grow naturally in the rainy season.Moreover, Banni area has been preserved for thegrazing of livestock by the Maldharis under theregulations of the district revenue department.

The total cattle and buffalo population in theKachchh district of Gujarat is 3 190 000 and1 780 000, respectively (17th Livestock Census, 2003,Government of India). Most of the buffalopopulation in the district except in eastern Kachchhregion is of Banni type, reared especially for milkproduction. Among the cattle population, only anegligible 0.013% are estimated to be crossbredswith the farmers rearing Zebu cattle, mostly fordraught purposes. Thus it is clear that farmers in

Page 86: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

80Banni buffalo of India

this region prefer buffaloes as their main milkanimals. However, according to the Maldharis ofthis region, there has been a decline in Bannibuffaloes in the last two decades. This decliningtrend is mainly because of a significant reduction inpasture land due to drought in consecutive yearsand extensive vegetation by Prosopis julioflora(Israeli Babool), an undesirable weed for livestockgrazing. Also, selling of buffaloes by Maldharis tofarmers in North Gujarat and in cities like Mumbai,Ahmedabad, Surat and Pune for milk productionhas substantially affected the population status.

Management practices

Banni buffaloes are mostly maintained byMaldharis whose livelihood is totally dependent onbuffalo rearing for the sale of milk, milk productsand animals. In each village, herds of buffaloes aremaintained by a group of villagers under anexclusive traditional production system. Theanimals are taken to the forests in the evening, stayfor grazing overnight and come back to the owner’sdoor early in the morning. Most of the time, theowners do not accompany the animals, and thebuffaloes follow the routine on their own. Theanimals stay loose in the village near the owner’s

house and no special housing and supplementaryfeeding is provided.

Two types of production systems were found toexist in the Banni area. One is an extensivemanagement system as described above which isprevalent in the Nakhatrana and Hajipir areas(Lower Banni region), where only one time milkingis practiced as transport facilities for marketing milkare very limited. The Maldharis produce khoa, anindigenous milk product from buffalo milk made byconcentration, which is later sold for sweetpreparation. However, in areas like Anjar,Mundara, Bhachua, Hodka and Khavada (GreaterBanni region), where comparatively better transportand marketing facilities are available, twice dailymilking is practiced. Also, animals are relativelybetter fed with concentrate feeding during the timeof milking and a semi-intensive type of productionsystem with some housing is practiced in this region.Banni buffaloes are very docile in nature and areoften milked by women villagers.

The Maldharis in Banni area breed their animalsthrough their own buffalo bull adopting naturalmating only. Artificial insemination is not practicedin this area. The survey of the Banni tract alsorevealed that the Maldharis are well aware of theimportance of their breeding bull and they are verycareful in selecting a bull calf from their highyielding buffaloes with good morphological

Figure 2. The head of a Banni buffalo.

Page 87: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

81

Animal Genetic Resources Information, No. 44, 2009

Mishra et al.

features. Another important tradition prevalent inthe Maldharis of Banni area is that they never allowmating between the bull and his daughters. Also,they use a breeding bull only for three years in aherd after which they exchange it with othervillages thus avoiding possible inbreeding withinBanni buffalo population. Thus the practice ofbreeding and replacement of bulls by Maldhariherdsmen, plays a very important role in the geneticimprovement of production performance, fertilityand maintenance of body conformation andmorphological features in Banni buffaloes.

Physical characteristics

The Banni buffalo is medium to large in body sizewith a compact body and typical coiled horns, oftenwith double coiling. The head of a Banni buffalo(Figure 2) is wide with slight depression in themiddle and no slope towards base of the horns. Theface is comparatively elongated and straight withwide muzzle. Eyes are prominent, black and bright.The body is generally covered with hair. The neck ofBanni buffaloes is medium and thin without skinfolds over the region. The dewlap is almost absentin both the sexes. The chest is slightly deep and thebarrel is long with well sprung ribs. The hindquarter is wide, heavy and well developed. The

back is wide at the hip joint and overall the body iswedge shaped. The legs are medium in length withbroad bones and hooves are black, small in size andfirmly attached, which might be the effect ofadaptation to grazing under extensive productionsystems.

The skin is soft, thin and generally black incolour but a few animals are also observedpossessing copper colour. In some animals whitepatches are also observed on forehead, lower legsand tail. The udder of Banni buffaloes is welldeveloped, round in shape and squarely placed.The hind and fore quarters are uniformly welldeveloped. Typically, the whole udder of a Bannibuffalo looks like four equal divisions with teatswell attached to each quarter. The majority ofanimals have conical teats with round and pointedtips. The breeding bull, a she-buffalo and a herd ofBanni buffalo are presented in figures 3, 4 and 5respectively.

Morphological traits

The overall least squares means along with theirstandard error for various morphological traits arepresented in table 1. The mean values for most of themorphological traits in Banni buffalo were found tobe higher than that of Mehsana buffaloes (Pundir et

Figure 3. A breeding bull of Banni buffalo.

Page 88: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

82Banni buffalo of India

������������±������ ��������� ��������������������������������������������

� � ���������

��� �� ����±������� � �� ����

������������ �������� � � �� ����

!������ ���� "�������#� �$�� "���

!� �������% ����&� ��#�����"� ��"� ��$�

'����������� �������"� �"� � �

����������� "$������� "(� ���

!� �������� )�*���� �"��(����� �"�� �"$�

!� �������) ��*���� �"�������� ���� �"��

!� ���������*�%�+� ��� ���$���"� #(� �"�

, &������*��%����� )�*���� ��� ����� ��� ���

, &������*��%����) ��*���� "��$����� "�� "(�

�� ��������� ((� ����� (�� $��

�� ��&% ����������� # �"��� � #"� ##�

- �����.�.�������� "#�#����� "#� "$�

��������������± ��������� ����������������������������������������������������

� � � ������

����� /�� ����� ����� ����� �����

0�������������1����������� ���� ���� ���� ����� ��� �

���1����2���!��!�"��� � �� ##�� ���� #���� �����

3��1��������1���������� ���� �$�$ ���� ����� �$���

���1�����%�������%��� �� � ��� ���� � �

4�������������!�"��� ���� $���� �� � $�$��� $�����

&�"�%���!��!�"��� ���� ���� ���� #���� �����

2��5����5�"���!��������� ���� � �� ���� �$��� �����

�������������������� � �������

Page 89: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

83

Animal Genetic Resources Information, No. 44, 2009

Mishra et al.

al., 2000) whereas they are fairly similar to that ofreported for Murrah buffaloes (Nivsarkar et al.,2000).

Performance

The overall least squares means ± S.E for variousproduction and reproduction traits of Bannibuffaloes as recorded based on interviews withfarmers are presented in table 2. The mean age atfirst calving observed for Banni buffaloes(39.7±0.4 months) was found to be less than thatreported for Murrah [43.9+0.2 months (Dhara, 1994)to 53.9+0.7 months (Kumar, 2000)] and Mehsanabuffaloes [42.8+0.4 months (Pundir et al., (2000)].Similarly reproductive traits like service period andcalving interval were found to be less than that ofMurrah (Sadana et al., 2006) and Mehsana buffaloes(Pundir et al., 2000). The mean peak milk yield inBanni buffalo was estimated to be 15.7±0.1 litresHowever, it should be mentioned that the valuesobtained in the present study are based on thereports of the farmers gathered through structuredquestionnaires. Hence data recording needs to beinitiated in farmers herds of Banni buffaloesregarding various performance characteristics todelineate the breed descriptor.

Genetic characterization of BanniBuffaloes

Genetic diversity measures

Different measures of genetic variation like observednumber of alleles, effective number of alleles,observed and expected heterozygosity andpolymorphism information content (PIC) withrespect to Banni buffaloes are presented in table 3. Ahigh degree of allelic polymorphism was found toexist in the Banni buffalo population with 12 of the15 microsatellite loci analyzed exhibiting 4 or morealleles. A total of 81 alleles was observed across15 microsatellite loci ranging from 2 (ILSTS 045 andILSTS 073) to 10 (ILSTS 058). The observedheterozygosity was found to be moderate with amean of 0.506 and a range of 0.125 (ILSTS 045) to0.795 (ILSTS 008) across different microsatellite loci.The overall mean polymorphism informationcontent was found to be 0.578 with 11 of the15 microsatellite loci having values of more than0.5, 3 having values between 0.25 and 0.50 and onlyone microsatellite locus (ILSTS 019) having a PICvalue of less than 0.25. According to Botstein et al.,(1980), those polymorphic markers which wereclassified as highly informative had a PIC value

Table 3. Measures of genetic variation across 15 microsatellite loci in Banni buffalo.

Locus No. na ne Ho He Nei's He PIC CSRM 060 40 5 2.42 0.625 0.594 0.587 0.547 ILSTS 026 43 4 2.04 0.488 0.515 0.509 0.463 HEL 013 45 7 4.88 0.644 0.804 0.795 0.765 ILSTS 030 39 5 2.86 0.564 0.659 0.651 0.607 ILSTS 033 43 6 3.18 0.256 0.694 0.686 0.638 ILSTS 017 41 4 3.05 0.610 0.681 0.673 0.618 ILSTS 019 46 3 1.22 0.196 0.183 0.181 0.172 ILSTS 045 32 2 1.93 0.125 0.490 0.482 0.366 ILSTS 058 41 10 5.68 0.610 0.834 0.824 0.803 ILSTS036 46 6 4.11 0.717 0.765 0.757 0.715 ILSTS095 40 8 2.38 0.200 0.587 0.580 0.556 ILSTS052 41 7 4.32 0.634 0.778 0.768 0.737 ILSTS073 44 2 1.88 0.523 0.474 0.469 0.359 ILSTS061 38 7 2.94 0.605 0.669 0.660 0.630 ILSTS008 39 5 3.94 0.795 0.756 0.746 0.700 Mean 41 5.4 3.12 0.506 0.632 0.624 0.578

No.=No. of observations. na=observed no. of alleles. ne=effective no. of alleles. Ho=Observed heterozygosity. He=Expected heterozygosity. PIC=Polymorphism Information Content.

Page 90: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

84Banni buffalo of India

Table 4. Locus wise heterozygote deficit (FIS) and Hardy Weinberg equilibrium at 15 different microsatellite loci in Banni buffalo.

H-W Equilibrium Locus FIS DF Chi-Square P-Value CSRM 060 -0.065 10 8.72 0.559 ILSTS 026 0.041 6 13.51 0.036 HEL 013 0.189 21 43.14 0.003 ILSTS 030 0.133 10 25.41 0.005 ILSTS 033 0.627 15 82.16 0.000 ILSTS 017 0.093 6 7.58 0.270 ILSTS 019 -0.082 3 0.48 0.924 ILSTS 045 0.741 1 18.37 0.000 ILSTS 058 0.260 45 59.07 0.078 ILSTS 036 0.052 15 52.86 0.000 ILSTS 095 0.655 28 110.21 0.000 ILSTS 052 0.174 21 31.12 0.072 ILSTS 073 -0.115 1 0.47 0.411 ILSTS 061 0.083 21 18.70 0.604 ILSTS 008 -0.066 10 9.76 0.462 Overall 0.181 - - -

Figure 5. A herd of Banni buffalo.

Page 91: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

85

Animal Genetic Resources Information, No. 44, 2009

Mishra et al.

greater than 0.5, reasonably informative a PIC valueranging between 0.25 and 0.50 and relatively lessinformative if the PIC value was below 0.25. The allelicdiversity and observed heterozygosity values arecomparable to those reported for Bhadawari andTarai buffaloes (Arora et al., 2004), while they wererelatively lower compared to that reported for otherbuffalo breeds by Kumar et al., (2006) with adifferent set of microsatellite markers.

Heterozygosity deficit and Hardy-Weinbergequilibrium

The mean FIS (0.181) across 15 microsatellite lociwas significantly positive indicating considerableheterozygosity deficit within the population. Sevenof the 15 microsatellite loci analyzed showedsignificant deviations from Hardy-Weinbergequilibrium (Table 4). These results showed thepossible existence of subdivisions within thepopulation. Possible reasons could include selectivebreeding with fewer available bulls and relatednessof a few samples analyzed as proper pedigreerecords are not available under field conditions.However, the major role of selective breeding in theheterozygosity deficit was not supported by theresults of Ewens-Watterson neutrality test as all themicrosatellite markers under the present studyexcept ILSTS 008 were found to be neutral. Theobserved F-value for ILSTS 008 did not fall withinthe range of 95% confidence interval when the testwas performed using 1000 simulated samples.Thus, the genetic analysis showed that Bannibuffaloes have a reasonably moderate level ofdiversity as reflected by average heterozygosityestimates.

Conclusion

Banni buffalo, reared in the Kachchh region ofwestern India by the traditional Maldharicommunity are found to have a better productionpotential under an extensive management system.They are found to have moderate genetic variationas revealed by microsatellite markers. Their geneticdiversity combined with their superior productionpotential and demand make a strong case for thenecessity of initiating genetic improvementprograms. Further studies need to be carried out in

order to establish their genetic superiority by meansof performance recording under field conditions.Also, analysis with a greater number ofmicrosatellite markers and comparisons with otherbuffalo breeds of the region will delineate thegenetic structure of this germplasm of westernIndia.

Acknowledgements

We thank the Director, NBAGR, Karnal forproviding all necessary facilities to carrying out thepresent study. Thanks are due to field staff ofDepartment of AH & Vety Services, Govt. of Gujaratfor their assistance in field work and blood samplecollection.

List of References

Arora R., Lakhchaura, Prasad R.B.,Tantia M.S. & Vijh R.K. 2004. Genetic diversityanalysis of two buffalo populations of northernIndia using microsatellite markers. J. Anim. Breed.Genet., 121: 111-118.

Bassam B.J., Coetano-Anolles G. &Gressho P.M. 1991. Fast and sensitive silverstaining of DNA in polyacrylamide gels. Anal.Biochem. 196, 80–83.

Botstein D., White R.L., Skolnick M. &Davis R.W. 1980. Construction of a genetic linkagemap in man using restriction fragment lengthpolymorphisms. Am. J. Hum. Genet. 32, 314–331.

Dhara S.K. 1994. Prediction of breedingvalue for milk production by multiple regressionand principal component analysis in Murrahbuffaloes. M. Sc Thesis, NDRI Deemed University,Karnal, India.

Kumar A. 2000. Genetic studies on firstlactation traits in Murrah buffaloes. M.V.Sc Thesis,CCS, HAU, Hisar, India.

Page 92: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

86Banni buffalo of India

Kumar S., Gupta J., Niraj K., Dikshit K.,Navani N., Jain P. & Nagarajan M. 2006. Geneticvariation and relationships among eight Indianriverine buffalo breeds. Molecular Ecology, 15:593-600

Nei M., Tajima F. & Tateno Y. 1983.Accuracy of estimated phylogenetic trees frommolecular data. Journal of Molecular Evolution 19,153-170.

Manly B.F.J. 1985. The Statistics of NaturalSelection. Chapman and Hall, London ,pp. 186-195.

Navani N., Jain P.K., Gupta S., Sisodia B.S.& Kumar S. 2002. A set of cattle microsatellite DNAmarkers for genome analysis of riverine buffalo(Bubalus bubalis). Animal Genetics, 33, 149–154.

Nei M. 1973. Analysis of gene diversity insubdivided populations. Proc. Natl. Acad. Sci. USA,70: 3321-3323.

Nivsarkar A.E., Vij P.K. & Tantia, M.S. 2000.Animal Genetic Resources of India: Cattle andBuffalo. Directorate of Information and Publicationsof Agriculture, ICAR, New Delhi.

Pundir R.K., Sahana G., Navani N.K.,Jain P.K., Singh D.V., Kumar S. & Dave A.S. 2000.Characterization of Mehsana buffaloes in India.Animal Genetic Resources Information 28: 53-62.

Sadana D.K., Kataria R.S & Mishra B.P.2006. Buffalo Genetic Resources of India-Murrah.Monograph No. 25, NBAGR, Karnal, India.

Sahana G. 1993. Association betweenproductive and reproductive traits in Murrahbuffaloes. M.Sc Thesis, NDRI Deemed University,Karnal, India.

Sambrook J. & Russell D.W. 2001. Molecularcloning: A Laboratory Manual, 3rd Edition, ColdSpring Harbour Laboratory Press, Cold SpringHarbour, New York.

Yeh F.C., Yang R., Boyle C., Timothy B.J.,Ye Z.H. & Mao J.X. 1999. POPGENE version 1.32,the user-friendly shareware for population geneticanalysis. Molecular Biology and BiotechnologyCentre, University of Alberta, Canada<www.ualberta.ca/~fyeh/> accessed on 25-12-2007.

Page 93: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

87

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2009, 44: 87-88

Background

There is an increasing concern about losing geneticdiversity in farm animals, and poultry geneticresources are considered to be one of the mostendangered (Crawford, 1990). A large number oflocal dual-purpose breeds used at the beginning ofthe last century have been replaced with highlyspecialised lines. Market orientated intensivelivestock breeding programs tend to concentrate onjust a limited number of breeds, and the proportionof low-input, low-output breeds used in agriculturalproduction in developed countries has beendecreased almost to zero. Decreasing numbers ofbreeds results in reduced genetic variability, andlimits the flexibility of future breeding programs. Onthe other hand, an increase in income in thesecountries leads to a rise in demands for specialisedfood, diversification in the product supply, andchanges in preferences of production conditions.

In developed countries, a wide spectrum ofpoultry breeds comprising, to some degree, thegenetic diversity of local middle-level foodproducers no longer used, are nowadaysmaintained by fancy breeders. Clearly, without theirefforts many of these poultry breeds would havedisappeared. However, in most cases fanciers aimat achieving a certain phenotype. This may lead toinbreeding, and as a consequence of inbreedingdepressions, crossbreeding between populationsfollows, in most cases unrecorded. Pedigree recordsand performance information are missing.Consequently, a classification and labeling ofindividuals given by an investigator might notaccurately describe the true genetic structure of thegene pool, and limit the success of conservation andutilisation of genetic resources.

Establishing a conservation flock for “Vorwerkhuhn” chickenbreed – a case study of in-situ conservation of local chicken

breeds in Germany

S. Weigend1, K. Stricker2 & F.-G. Röhrßen3

1Institute for Animal Breeding Mariensee, Federal Agricultural Research Centre, 31535 Neustadt, Germany249196 Bad Laer, Germany

3Hof Arche Noah, 27726 Worpswede, Germany

Objective

Success in animal breeding is dependent on thegenetic composition of populations. Efficient in-situconservation and utilisation of genetic resourcesrequire a population management system thatallows the maintenance of genetic variability withina given population. Thus, the goal of theVorwerkhuhn project is to establish a conservationflock of chickens according to a well definedconcept recommended by FAO (FAO, 1998).

Principle

The conservation flock of the Vorwerkhuhn chickenwas established in 1999 by collecting individualsfrom fancy breeders. At that time, the breed was atrisk of extinction. The project started with ninebreeders, and currently 14 breeders are involved.The genetic management of the population is basedon sire rotation, i.e. each sire is replaced by one ofhis sons in every generation. This principle ofrotating sires (via hatching eggs) across familiesavoids mating of closely related birds, and hencereduces the inbreeding rate. Each breeder keeps onebreeding sire which he got from direct neighbourwithin the breeding chain, and four breedingfemales. All birds have pedigree information fromthe father’s side. Sire families are usuallyestablished in January of each year, and hatchingeggs are collected for three hatches. The firsthatching eggs rotate, i.e. they are given to the nextbreeder in the chain. From these, males hatched arethe potential sires for the next generation. Thesecond and third hatches within the breedingseason are used to obtain the potential breedinghens. The generation interval is one year.

Page 94: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

88Conservation for “Vorwerkhuhn” chicken breed

Record keeping

All pedigree information and phenotypic records(including body weight) are recorded electronically.Information is available to the founder population.All potential breeding cocks and dams arephenotypically evaluated (in the fall) according tothe breed standard. The weight of hatching eggs(which should be above 54g) is recorded as well asbody weight at weeks 2, 8, 16, and 20 weeks of age.A few breeders record laying performance duringthe whole year – this is optional.

Veterinary control

Blood samples from two males and two females ineach flock are taken and checked for salmonellapullorum and mycoplasma gallisepticum infection.Excrements (one sample per flock collected fromfour different sites in each chicken house) areanalysed for endoparasites, bacteria in general, andsalmonella. In some cases (depending on the region)blood samples are tested for H5- and H7-antibodies.

Cross breeding and niche market

Population management and flock book recordingrequire additional effort. Financial support ishardly forthcoming from public sources, and hencebreeders need to find other ways. Since the layingperformance of the Vorwerkhuhn is rather low(about 180 eggs) and eggs are small (50-55g), it isdifficult to place the breed into a niche market. Toimprove the economic situation for breeders westarted a crossing experiment to obtain hybrids foregg (and partly meat) production. Thereby, theconservation flock is being maintained throughpure breeding only. We used hens from acommercial line from Lohmann Tierzucht GmbH(Lohmann Tierzucht is supporting the project) to bemated with Vorwerkhuhn cocks. Chicks can becolour sexed. This hybrid is called the‘Kollbecksmoor Huhn’. Our first results show thatthis hybrid has acceptable laying performance (250eggs, 60g) and the bird can be sold at a reasonableprice at small producers.

Perspectives

Under current conditions, it difficult to define thegenetic features of a given poultry breed and toestablish it in niche markets. Overall, theVorwerhuhn project has contributed to identifyingways in which to establish conservation flocks inpractice, and the difficulties facing breeders. Theircontinued existence will depend on the motivationof breeders to continue this activity, publicacceptance and support, and the success of thecrossbred Kollbecksmoor Huhn in niche markets.

Additional information

More information of the Vorwerhuhnconservation flock can be found at: http://www.erhaltungszucht-vorwerkhuhn.de/index.html. Tolearn more about the “Kollbecksmoor Huhn” lookat: http://www.kollbecksmoorhuhn.de/.

In chickens, a similar conservation flock as forthe Vorwerkhuhn has been established for the breed“Ostfriesische Möwen” (http://www.ostfriesische-moewen.de, contact: Michael Ruhnau, E-Mail:[email protected]).

The Society for the Conservation of Old andEndangered Livestock Breeds (GEH) has initiated awide range of activities to conserve endangeredbreeds of farm animal genetic resources in Germany(Address: Am Eschenbornrasen 11, D-37213Witzenhausen, Tel. 05542/1864, Fax: 05542/72560;E-Mail: [email protected] - Internet: http://www.g-e-h.de).

List of References

Crawford, R.D. 1990. Origin and history ofpoultry species. In: Poultry Breeding and Genetics(Crawford, R.D., Ed.), Elsevier, Amsterdam, TheNetherlands, pp. 1-42.

FAO. 1998. Secondary Guidelines:Management of Small Populations at Risk, 1998<http://dad.fao.org/en/home.htm>

Page 95: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

89

Animal Genetic Resources Information, No. 44, 2009

Recent publications

The Damara of Southern Africa,D. du Toit (Ed.)

Published in 2007, pp. 128ISBN 978-0-620-38877-1

The core of this new book on the Damara sheepbreed of Southern Africa consists of two papers onthe colour genetics of the Damara, one byProfessor Phillip Sponenberg and one by RogerLundie. The former presents and overview of coatcolours and patterns in the Damara. The latter, andlonger, paper provides an introduction to sheepcoat colour genetics and then seeks to relate thecolour patterns of the Damara to what is known inwoolled breeds. The discussion of colour genetics isput into context by a number of shorter chapters.The book starts with a brief history of the breed.A chapter on conservation describes some of themanagement principles that need to be borne inmind to ensure that the status of the Damara as anadapted landrace is maintained for the future.A chapter on commercial farming with the Damarafocuses on the value of the fitness traits that make itideally suited for production under harsh Africanconditions; a short discussion of carcass and meatquality characteristics is also included. The book isbeautifully illustrated with many colourphotographs.

Page 96: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

90Recent publications

Adaption and fitness in animal populations. Evolutionary andbreeding perspectives on genetic resources management.

J. van der Werf, H.-U. Graser, R. Frankham & C. Gondro (Eds)Published by Springer Science

Published in 2009, pp. 258ISBN: 978-1-4020-9004-2

This book, the outcome of a symposium held inArmidale Australia in 2007, brings together a seriesof papers by some of the world’s leading scientistsin animal breeding and evolutionary genetics. Asthe title indicates, the objective was to explore theconcepts of adaptation and fitness and theirrelevance to the management of (particularlyanimal) genetic resources for food and agriculture.The book comprises four sections: modelling fitness;maintaining fitness, the genetic basis of adaptation;and strategies for managing diversity – each madeup of three papers and a summary of the discussionthat followed the respective session of thesymposium. The target audience is quantitativegeneticists, animal and plant breeders, evolutionand population geneticists, ecologists, researchersand graduate students.

Page 97: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

91

Animal Genetic Resources Information, No. 44, 2009

Recent publications

This publication is a compilation ofcommunications and posters presented during theNinth Biennial Conference of the InternationalSociety for Tropical Veterinary Medicine (STVM),held in Merida, Mexico, in June 2007. Theapproximately 100 articles are grouped into13 sections: globalization; anti-arthropod vaccines;genetics; viruses; Anaplasma; Babesia; helminths;ticks and tick-borne diseases; farm animal diseases;microbiology; wildlife; Trypanosoma/Leishmania; andgeneral tropical veterinary medicine. The coverageranges from cellular pathogenesis to the drivingforces of global pandemics. Its target audienceincludes researchers, academics, governmental andNGOs representatives, technicians, veterinariansand other professionals from the industry sectorinterested in tropical veterinary medicine.

The introduction, written by Jean-CharlesMaillard and Olivier A.E. Sparagano, respectivelypresident and president-elect of the STVM, notes thepotential role of genetic diversity in reducing therisk of disastrous economic consequences in theevent of epidemics, and concludes that "All playersinvolved in the farming production pipeline, whetherpolitical, economical or professional, should be aware ofthe importance of valorizing biodiversity through thediversification other animal strains used for breeding.Strains with different potential and qualities would, inturn, diversify economic markets and offer a wider choiceof products to the consumer."

Animal diversity and emergingdiseases. Prediction and prevention

O.A.E. Sparagano, J-C Maillard and JV. Figueroa (Eds)Annals of the New York Academy of Sciences, Volume 1149

Published by Blackwell Publishing on behalf of the New York Academy ofSciences, Boston Massachusetts, United States of America

Published in 2008, pp. 404.ISBN: 978-1-57331-714-6

Page 98: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

92Recent publications

Chickens, goats, pigs and sheep are the latestspecies to be added to the series of pamphlets onindigenous livestock from the Nepal AgriculturalResearch Council. Pamphlets on cattle and buffalowere published in 2005 and 2007, respectively.Each publication provides information on thedistribution of the breeds within the country, theirphenotypic and in some cases molecularcharacteristics, their performance levels and anestimate of their risk status and population trends.A further section is devoted to the specific positiveattributes of the indigenous animals - multiple uses,marketable products and adaptation to localtopography, feed resources, climate, etc. In several ofthe pamphlets it is suggested that these positiveattributes are not duly recognized. The final sectionof each pamphlet outlines future prospects for theindigenous breeds and their production systems,including descriptions of initiatives taken orplanned in the fields of, characterization, geneticimprovement, marketing and conservation. Allpamphlets contain a number of photographs(colour in the case of cattle, black and white for theother species).

Indigenous buffalo of NepalS.P. Neopane, N.A. Gorkhali & P.K. PokharelNepal Agricultural Research Council, Kathmandu.Published in 2007, pp. 14.

Indigenous cattle of NepalS.P. Neopane & P.K. PokharelNepal Agricultural Research Council, Kathmandu.Published in 2005, pp. 18.

Indigenous chicken of NepalS.P. Neopane & N.A. GorkhaliNepal Agricultural Research Council, KathmanduPublished in 2008, pp. 10.

Indigenous goats of NepalS.P. Neopane & P.K. PokharelNepal Agricultural Research Council, KathmanduPublished in 2008, pp. 14.

Indigenous pigs of NepalS.P. Neopane & R. KadelNepal Agricultural Research Council, KathmanduPublished in 2008, pp. 10.

Indigenous sheep of NepalS.P. Neopane, N.A. Gorkhali & P.K. PokharelNepal Agricultural Research Council, KathmanduPublished in 2008, pp. 14.

Page 99: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

93

Editorial policies andprocedures

The mission of the Animal Genetic ResourcesInformation Bulletin (AGRI) is the promotionof information on the better use of animalgenetic resources of interest to food andagriculture production. All aspects of thecharacterization, conservation and utilization ofthese resources are included, in accordance with theConvention on Biological Diversity.

AGRI will highlight information on the genetic,phenotypic and economic surveying andcomparative description, use, development andmaintenance of animal genetic resources; and onthe development of operational strategies andprocedures which enable their more cost-effectivemanagement. In doing this AGRI will give specialattention to contributions dealing with breeds andprocedures capable of contributing to thesustainable intensification of the world’s medium tolow input production environments(agro-ecosystems), which account for thesubstantial majority of the land area involved inlivestock production; the total production of foodand agriculture from livestock; and of ourremaining farm animal genetic resources.

Views expressed in the paper published in AGRIrepresent the opinions of the author(s) and do notnecessarily reflect those of the institutions whichthe authors are affiliated, FAO or the Editors.

The suitability of manuscripts for publication inAGRI is judged by the Editors and reviewers.

Electronic publication

AGRI is available in full electronically on theInternet, in addition to being published in hardcopy, at: www.fao.org/dad-is

Types of articles

The following types of articles are published inAGRI.

Research articles

Findings of work on characterization, conservationand utilization of farm animal genetic resources(AnGR) in well described production environments,will be considered for publication in AGRI. Qualityphotographs of these genetic resources viewed inthe primary production environment to which theyare adapted, accompanying the manuscripts areencouraged.

Review articles

Unsolicited articles reviewing agro-ecosystems,country-level, regional or global developments onone or more aspects of the management of animalgenetic resources, including state-of-the-art reviewarticles on specific fields in AnGR, will beconsidered for publication in AGRI.

Position papers

Solicited papers on topical issues will also bepublished as deemed required.

Other published material

This includes book reviews, news and notescovering relevant meetings, training courses andmajor national, regional and international eventsand conclusions and recommendations associatedwith the outcomes of these major events. Readersare encouraged to send such items to the editors.

Guidelines for authors

Manuscript submission

Manuscripts prepared in English, French orSpanish with an English summary and anothersummary in either French or Spanish, should besubmitted to AGRI Editor, AGAP, FAO, Viale delleTerme di Caracalla, 00153 Rome, Italy. Additionallythe manuscript must be sent as a WinWordElectronic Mail attachment to [email protected].

Page 100: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

94

Photographs, coloured or black and white, andfigures must be always sent by mail.

Manuscripts should be typed double-spacedand with lines numbered in the left margin. Allpages, including those of references, tables etc.,must be consecutively numbered. Thecorresponding author is notified of the receipt of amanuscript.

For manuscripts that are accepted after revision,authors are encouraged to submit a last version(3½” disc format) in Word 6.0 for Windows of theirrevised manuscript along with the printed copy.

Preparation of the manuscript

The first page of the manuscript must include therunning head (abbreviated title), title, names ofauthors, institutions, full addresses includingpostal codes and telephone number and othercommunication details (fax, e-mail, etc.) of thecorresponding author. The running head notexceeding 45 characters plus spaces, should appearat the top of page 1 of the manuscript entirely incapital letters. The title of the manuscript is typed inupper and lower case letters. The title should be asbrief as possible not exceeding 150 characters(including spaces) with species names whenapplicable. Authors, institutions and addresses arein upper and lower case italics. There is one blankline between the title and the authors. Addresses aretyped as footnotes to the authors after leaving oneblank line. Footnotes are designated numerically.Two lines are left below the footnotes.

Headings

Headings of sections, for example Summary,Introduction, etc., are left-justified. Leave two blanklines between addresses footnotes and Summaryand between the heading Summary and its text.Summary should not exceed 200 words . It shouldbe an objective summary briefly describing theprocedures and findings and not simply statingthat the study was carried on such and such andresults are presented, etc. Leave one line betweenthe summary text and Keywords which is written initalics as well as the keywords themselves. Allheadings of sections (14 regular) and sub-sections(12 regular) are typed bold and preceded andsucceeded by one blank line and their text beginswith no indention. The heading of a sub-subsection

is written in italics, and ends with a dot after whichthe text follows on the same line. Keywords comeimmediately after the summaries. They should be nomore than six, with no “and” or “&”.

Tables and figures

Tables and figures must be enclosed with the paperand attached at the end of the text according theircitation in the document. Photos will not bereturned

Tables

Tables, including footnotes, should be preceded andsucceeded by 2 blank lines. Table number andcaption are written, above the table, in italics (12)followed by a dot, then one blank line. For eachcolumn or line title or sub-title, only the 1st letter ofthe 1st word is capitalized. Tables should benumbered consecutively in Arabic numerals. Tablesand captions should be left justified as is the text.Use horizontal or vertical lines only whennecessary. Do not use tabs or space-bar to create atable but only the appropriate commands.

Figures

Figures including titles and legends should bepreceded and succeeded by two blank lines. Figurenumber and title are written, below the figure, initalics (12) and end with a dot. The term figuresincludes photos, line drawings, maps, diagrams etc.

All the submitted diagrams, must beaccompanied with the original matrix of the dataused to create them. It is strongly advised to submitdiagrams in Word 6.0 or Excel 5.0. Figures shouldbe numbered consecutively in Arabic numerals.

References

Every reference cited in the text should be includedin the reference list and every reference in thereference list should have been mentioned in thetext at least once. References should be orderedfirstly alphabetically by the first author’s surnameand secondly by year.

Page 101: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

95

• Example for reference in a periodical is:Köhler-Rollefson, I. 1992. The camel breeds ofIndia in social and historical perspective.Animal Genetic Resources Information 10, 53-64.

• When there are more than one author:Matos, C.A.P., D.L. Thomas, D. Gianola,R.J. Tempelman & L.D. Young. 1997. Geneticanalysis of discrete reproductive traits in sheepusing linear and nonnlinear models: 1.Estimation of genetic parameters 75, 76-87.

• For a book or an ad hoc publication, e.g., reports,theses, etc.:Cockrill, W.R. (Ed.). 1994. The Husbandry andHealth of the Domestic Buffalo. FAO, Rome,Italy, pp. 993.

For all future manuscript dispatch and correspondence regardingAGRI, please use the following mailbox:

[email protected]

Thanks for the collaboration

• For an article in the proceedings of a meeting:Hammond, K. 1996. FAO’s programme for themanagement of farm animal genetic resources. InC. Devendra (Ed.), Proceedings of IGA/FAORound Table on the Global Management ofSmall Ruminant Genetic Resources, Beijing,May 1996, FAO, Bangkok, Thailand, 4-13.

• Where information included in the article hasbeen obtained or derived from a World WideWeb site, then quote in the text, e.g. “derivedfrom FAO. 1996” and in the References quote theURL standard form:FAO. 1996. Domestic Animal DiversityInformation System, http://www.fao.org/dad-is/,FAO, Rome, Italy.

Page 102: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

96

Normes et règles éditoriales

L’objectif du Bulletin d’information sur lesressources génétiques animales (AGRI) est lavulgarisation de l’information disponible sur lameilleure gestion des ressources génétiquesanimales d’intérêt pour la production alimentaire etagricole. Tous les aspects relatifs à lacaractérisation, la conservation et l’utilisation deces ressources seront pris en considération, suivantles normes de la Convention pour la Biodiversité.

AGRI désire diffuser de l’information sur lagénétique, les enquêtes phénotypiques etéconomiques et les desciptions comparatives,l’utilisation et la conservation des ressourcesgénétiques animales, ainsi que toute informationsur le développement de stratégies opérationnelleset de normes qui puissent permettre une meilleuregestion de la relation coût/efficacité. C’est pour celaque AGRI prendra spécialement en considérationtoutes les contributions référées aux races et auxnormes capables de permettre une intensificationdurable des milieux (agroécosystèmes) à revenusmoyens et bas dans le monde; qui comprennent lamajeur partie des terres consacrées à l’élevage, à laproduction totale des aliments et l’agricultureprovenants de l’élevage; et tout ce qui reste commeressources génétiques des animaux domestiques.

Les opinions exprimées dans les articles publiésdans AGRI appartiennent seulement aux auteurs etdonc ne représentent pas nécessairement l’opiniondes instituts pour lesquels ils travaillent, la FAO oules éditeurs.

L’opportunité ou non de publier un article dansAGRI sera jugée par les éditeurs et les réviseurs.

Publication électronique

En plus de sa version imprimée, la versiontotale de AGRI se trouve disponible surInternet, sur le site:http://www.fao.org/dad-is/

Types d’articles

Les articles suivants pourront être publiés surAGRI.

Articles de recherche

Seront prises en considération pour leur publicationsur AGRI les études sur la caractérisation, laconservation et l’utilisation des ressourcesgénétiques des animaux domestiques (AnGR)accompagnées d’une bonne description du milieu.On encourage les auteurs à envoyer desphotographies de bonne qualité qui montrent lesraces en question dans leur milieu naturel deproduction.

Révisions

Occasionnellement, des articles contenant unerévision des agroécosystèmes, au niveau national,régional ou mondial, avec un ou plusieurs aspectsse rapportant à la gestion des ressources génétiquesanimales, y compriss les mises à jour des différenteszones de AnGR, seront pris en considération.

Articles spécifiques

Ponctuellement, des articles sur des thèmesspécifiques pourront être demandés pour lapublication d’éditions spéciales.

Autre matériel pour publication

Ceci comprend la révision de livres, nouvelles etnotes de réunions importantes, cours de formationet principaux évènements nationaux, régionaux etinternationaux; ainsi que les conclusions etrecommandation par rapport aux objectifs des cesprincipaux évènements. Les auteurs sont priésd’envoyer ce genre de matériel aux éditeurs.

Guide pour les auteurs

Présentation du manuscript

Les articles se présenteront en anglais, français ouespagnol, avec un résumé en anglais et satraduction en français ou en espagnol; ils serontenvoyés à l’éditeur de AGRI, AGAP, FAO, Viale

Page 103: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

97

delle Terme di Caracalla, 00153 Rome, Italie. Enoutre, l’article devra être envoyé par courrierélectronique comme document attaché en versionWinWord à [email protected]. Les photographies,en couleur ou en blanc et noir, seront toujoursenvoyées par courrier normal.

Les manuscripts se présenteront à doubleinterligne et avec le numéro correspondant à chaqueligne sur la marge gauche. Toutes les pages serontnumérotées, y compriss celles avec les référencesbibliographiques, les tableaux, etc. L’auteur recevraune lettre lui donnant bonne réception de sondocument.

Lorsqu’un article, après sa révision, sera accepté,on demandera à l’auteur d’envoyer la version finalerévisée sur disquette (format 31/2”) en Word 6.0 xWindows, ainsi qu’une copie sur papier.

Préparation du manuscript

Sur la première page du manuscript on indiquera letitre de l’article en abrégé, le titre et noms desauteurs, des institutions, les adresses complètes (ycompris code postal et numéro de téléphone); ainsique tout autre moyen de contact tel que télécopie,courriel, etc. avec l’auteur principal. Le titre abrégéne devra pas dépasser 45 caractères, plus lesespaces nécessaires, et s’écrira sur la partiesupérieure de la page 1 du manuscript enmajuscules. Le titre en entier du manuscript seraécrit en majuscules et minuscules; il devra être aussibref que possible, sans dépasser 150 caractères (ycompris les espaces nécessaires), et avecl’indication des noms des espèces. Les noms desauteurs, des institutions et les adresses seront enitalique et en lettres majuscules et minuscules. Onlaissera un espace en blanc entre le titre et les nomsdes auteurs. Les adresses seront indiquées commede bas à pied de page pour chacun des auteursaprès avoir laissé un espace en blanc après lesnoms. Chaque note de bas de page sera numérotée.On laissera deux espaces en blanc après lesadresses.

Titres

Les titres de chaque chapitre, par exemple Résumé,Introduction, etc. seront alignés à gauche. Laisserdeux espaces en blanc entre les notes de bas de pageavec les adresses et le Résumé, et entre le titreRésumé et le texte qui suit. Le résumé ne devra pasdépasser les 200 mots. Il s’agira d’un résuméobjectif faisant une brève description des processus

utilisés et des résultats obtenus, et non pas unesimple présentation du travail réalisé avec unedescription générale des résultats. Laisser unespace en blanc entre la fin du texte du résumé et lesmots clés, qui seront écrits en italique ainsi que letitre Mots clés. Les mots clés seront au maximum sixet il ne devra pas y avoir de et ou &. Tous les titresprincipaux de chapitre (14 regular) et sous-chapitre(12 regular) seront en gras avec un espace en blancavant et après. Le texte commencera sans retrait. Untitre à l’intérieur d’un sous-chapitre s’écrira enitalique, suivi d’un point, avec le texte àcontinuation.

Tableaux et figures

Les tableaux et les figures iront à la fin du texte ensuivant l’ordre d’apparition dans le texte. Lesphotographies ne seront pas dévolues aux auteurs.

Tableaux

Les tableaux, y compris les notes de bas de page,devront avoir un espace en blanc avant et après. Lenuméro du tableau et le titre s’écriront sur la partiesupérieure en italique (12) avec un point à la fin etun espace en blanc en dessous. Sur chaque colonne,titre d’en-tête ou sous-titre, seulement la premièrelettre du premier mot sera en majuscule. Lestableaux et leur titre seront alignés à gauche, ainsique le texte. Les lignes verticales et horizontalesseront utilisées seulement si nécessaire. Ne pasutiliser les "tabs" ou la barre d'espacement pourcréer un tableau.

Figures

Les figures, y compris les titres et les légendes,seront précédés et suivis de deux espaces en blanc.Le numéro de la figure et le titre s’écriront sur lapartie supérieure en italique (12) avec un point à lafin. Sous la rubrique figure on trouvera lesphotographies, les graphiques, les cartes, lesdiagrammes, etc. Dans le cas des diagrammes, lamatrice originale avec les données utilisées pourson élaboration devra être envoyée. On recommandel’utilisation de Word 6.0 ou Excel 5.0 pour laprésentation des diagrammes.

Page 104: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

98

Références

Toute référence présente dans le texte devraapparaître sur la liste des références, et chaqueréférence de la liste aura été citée au moins une foisdans le texte. Les références iront en ordrealphabétique du nom de l’auteur, suivi de l’année.• Exemple dans le cas d’une référence sur une

revue:Köhler-Rollefson, I. 1992. The camel breeds ofIndia in social and historical perspective.Animal Genetic Resources Information 10, 53-64.

• Lorsqu’il s’agit de plus d’un auteur:Matos, C.A.P., D.L. Thomas, D. Gianola,R.J. Tempelman & L.D. Young. 1997. Geneticanalysis of discrete reproductive traits in sheepusing linear and nonnlinear models: 1.Estimation of genetic parameters 75, 76-87.

Pour tout envoi de manuscripts ou correspondence au sujet d’AGRI, vousêtes prié d’utiliser l’adresse suivante:

[email protected]

Merci pour votre collaboration

• Dans le cas d’un livre ou d’une publication adhoc, par example un rapport, une thèse, etc.:Cockrill, W.R. (Ed.). 1994. The Husbandry andHealth of the Domestic Buffalo. FAO, Rome,Italy, pp. 993.

• S’il s’agit d’un acte d’une réunion:Hammond, K. 1996. FAO’s programme for themanagement of farm animal genetic resources. InC. Devendra (Ed.), Proceedings of IGA/FAORound Table on the Global Management ofSmall Ruminant Genetic Resources, Beijing, May1996, FAO, Bangkok, Thailand, 4-13.

• Lorsque l’information contenue dans l’article aitété obtenue ou dérive d’un site World Wide Web,il faudra mettre le texte entre guillemets; parexample “tiré de la FAO. 1996” et indiquer dansles Références la forme standard URL:FAO. 1996. Domestic Animal DiversityInformation System, http://www.fao.org/dad-is/,FAO, Rome, Italy.

Page 105: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

99

Reglas y normas editoriales

El objetivo del Boletín de Información sobreRecursos Genéticos Animales (AGRI) es ladivulgación de la información sobre una mejorgestión de los recursos genéticos animales deinterés para la producción alimentaria y agrícola.Todos los aspectos referidos a la caracterización, laconservación y el uso de estos recursos serántomados en consideración, de acuerdo con elConvenio sobre la diversidad biológica.

AGRI publicará información sobre genética,encuestas fenotípicas y económicas y descripcionescomparativas, uso, desarrollo y conservación de losrecursos genéticos animales, así como sobre eldesarrollo de estrategias operacionales y normasque permitan una gestión más eficaz de la relacióncosto/eficacia. Por ello, AGRI prestará especialatención a las contribuciones referidas a razas ynormas capaces de contribuir a la intensificaciónsostenible de los medios (agroecosistemas) coningresos medios y bajos en el mundo, quecomprenden casi la mayor parte de las tierrasdedicadas a la producción ganadera; la produccióntotal de alimentos y agricultura provenientes de laganadería; y el resto de los recursos genéticos deanimales domésticos.

Los puntos de vista expresados en los artículospublicados en AGRI son solamente las opiniones delos autores y, por tanto, no reflejan necesariamentela opinión de las instituciones para las cualestrabajan dichos autores, de la FAO o de los editores.

La oportunidad o no de publicar un artículo enAGRI será juzgada por los editores y revisores.

Publicación electrónica

Además de su publicación impresa, la versióníntegra de AGRI se encuentra disponibleelectrónicamente en Internet, en el sitio:www.fao.org/dad-is/

Tipos de artículos

Serán publicados en AGRI los siguientes tipos deartículos:

Artículos sobre investigación

Se tomarán en consideración para su publicaciónen AGRI los estudios sobre la caracterización,conservación y uso de los recursos genéticos de losanimales domésticos (AnGR) con una buenadescripción del entorno. Se agradecerá el envío defotografías de calidad que presenten a las razas encuestión en su ambiente natural de producción.

Artículos de revisión

Se podrán tomar en consideración ocasionalmenteaquellos artículos que presenten una revisión de losagroecosistemas, a nivel nacional, regional omundial, con el desarrollo de uno o más aspectosreferidos a la gestión de los recursos genéticosanimales, incluidas las revisiones sobre el estadoactual de las distintas áreas de AnGR.

Artículos específicos

Se solicitarán puntualmente artículos sobre temasespecíficos para ediciones especiales.

Otro material para publicación

Incluye la revisión de libros, noticias y notasreferidas a reuniones importantes, cursos deformación y principales eventos nacionales,regionales e internacionales, así como conclusionesy recomendaciones relacionadas con los objetivosde estos principales eventos. Se invita a los lectoresa enviar este tipo de material a los editores.

Guía para los autores

Presentación del manuscrito

Los artículos se presentarán en inglés, francés oespañol, junto con un resumen en inglés y sutraducción en francés o español, y se enviarán aleditor de AGRI, AGAP, FAO, Viale delle Terme diCaracalla, 00153 Roma, Italia. El artículo deberá serenviado en versión WinWord en fichero adjunto por

Page 106: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

100

correo electrónico a [email protected]. Lasfotografías, color o en blanco y negro, se enviaránsiempre por correo normal.

Los manuscritos se presentarán con dobleespacio y con el número correspondiente a cadalínea en el margen izquierdo. Todas las páginasserán numeradas, incluidas las de las referenciasbibliográficas, cuadros, etc. El autor recibirá unanotificación sobre la recepción de su documento.

En el caso de aceptación de un artículo despuésde su revisión, se solicitará al autor una versiónfinal de su artículo revisado en disquete (formato31/2”) en Word 6.0 x Windows, así como una copiaimpresa del mismo.

Preparación del manuscrito

En la primera página del manuscrito se indicará eltítulo abreviado del artículo, títulos y nombres delos autores, instituciones, direcciones completas(incluido código postal y número de teléfono); asícomo otros medios de contacto tales como fax,correo electrónico, etc. del autor principal. El títuloabreviado no deberá sobrepasar los 45 caracteresmás los espacios correspondientes, y aparecerá enla parte superior de la página 1 del manuscrito enmayúsculas. El título entero del manuscrito seescibirá en mayúsculas y minúsculas. Dicho títulodebe ser lo más breve posible y no sobrepasar los150 caracteres (incluidos los espacios necesarios),con los nombres de las especies, si necesario. Losnombres de los autores, instituciones y direccionesse escribirán en cursiva y en letras mayúsculas yminúsculas. Se dejará una línea en blanco entre eltítulo y los nombres de los autores. Las direccionesse escribirán como notas de pie de página de cadaautor después de dejar una línea en blanco entre losnombres y éstas. Cada nota de pie de página con ladirección será indicada numéricamente. Se dejarándos líneas en blanco después de las direcciones.

Títulos

Los títulos de cada sección, por ejemplo Resumen,Introducción, etc., serán alineados a la izquierda.Dejar dos líneas en blanco entre las notas de pie depágina con las direcciones y el Resumen y entre eltítulo Resumen y el texto que sigue. El resumen nodeberá exceder de 200 palabras. Deberá ser unresumen objetivo que describa brevemente losprocesos y logros obtenidos, y no una presentaciónde cómo se ha llevado a cabo el estudio y unadescripción genérica de los resultados. Dejar una

línea en blanco entre el final del texto del resumen ylas palabras clave, que se escribirán en cursiva asícomo el titulo Palabras clave. No deberán ser másde seis y no deberán contener “y” o “&”. Todos lostítulos principales de capítulo (14 regular) ysubcapítulo (12 regular) serán en negrita e iránprecedidos y seguidos de una línea en blanco. Eltexto correspondiente empezará sin sangrado. Untítulo dentro de un subcapítulo se escribirá encursiva e irá seguido de un punto con acontinuación el texto correspondiente.

Cuadros y figuras

Los cuadros y las figuras se incluirán al final deltexto siguiendo el orden de cita dentro del mismo.Las fotografías no serán devueltas a sus autores.

Cuadros

Los cuadros, incluidas las notas de pie de página,deberán ir precedidos y seguidos por dos líneas enblanco. El número del cuadro y su título seescribirán en la parte superior en cursiva (12) conun punto al final y seguido de una línea en blanco.En cada columna o título de encabezamiento osubtítulo, sólo la primera letra de la primera palabrairá en mayúscula. Los cuadros irán numerados deforma consecutiva con números árabes. Los cuadrosy sus títulos se alinearán a la izquierda, así como eltexto. Se utilizarán líneas horizontales o verticalessólo cuando sea necesario. No utilizar tabuladoreso la barra espaciadora para crear un cuadro.

Figuras

Las figuras, incluidos los títulos y leyendas, iránprecedidas y seguidas de dos líneas en blanco. Elnúmero de la figura y el título se escribirán en laparte superior en cursiva (12) con un punto al final.La palabra figura incluye las fotografías, losgráficos, los mapas, los diagramas, etc. En el casodel diagrama se enviará la matriz original con losdatos utilizados para crearlo. Se recomiendaencarecidamente la utilización de Word 6.0 o Excel5.0 para la presentación de los diagramas.

Page 107: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

101

Referencias

Toda referencia presente en el texto deberá apareceren la lista de referencias y, de la misma manera,cada referencia de la lista deberá haber sido citadapor lo menos una vez en el texto. Las referenciasdeben ir en orden alfabético del apellido del autor,seguido por el año.• Ejemplo en el caso de una referencia de una

revista:Köhler-Rollefson, I. 1992. The camel breeds ofIndia in social and historical perspective.Animal Genetic Resources Information 10, 53-64.

• Cuando se trate de más de un autor:Matos, C.A.P., D.L. Thomas, D. Gianola,R.J. Tempelman & L.D. Young. 1997. Geneticanalysis of discrete reproductive traits in sheepusing linear and nonnlinear models: 1.Estimation of genetic parameters 75, 76-87.

Se ruega enviar los manuscritos o la correspondencia relativa a AGRI a ladirección siguiente:

[email protected]

Gracias por su colaboración

• En el caso de un libro o de una publicación adhoc, por ejemplo informes, tesis, etc.:Cockrill, W.R. (Ed.). 1994. The Husbandry andHealth of the Domestic Buffalo. FAO, Rome,Italy, pp. 993.

• Cuando se trate de un artículo dentro de lasactas de una reunión:Hammond, K. 1996. FAO’s programme for themanagement of farm animal genetic resources. InC. Devendra (Ed.), Proceedings of IGA/FAORound Table on the Global Management ofSmall Ruminant Genetic Resources, Beijing,May 1996, FAO, Bangkok, Thailand, 4-13.

• Cuando la información contenida en el artículohaya sido obtenida o derive de un sitio WorldWide Web, poner el texto entre comillas; porejemplo “sacado de la FAO. 1996” e indicar enlas Referencias la forma estándar URL:FAO. 1996. Domestic Animal DiversityInformation System, http://www.fao.org/dad-is/,FAO, Rome, Italy.

Page 108: 2 0 0 9 2009 - Food and Agriculture Organization · 2021. 2. 8. · 114 Cooke Road, Witta, Maleny, Qld 4552, Australia sbarker@une.edu.au • Jean Boyazoglu, 51 Porte de France, 06500,

442009

2 0 0 944

ISBN 978-92-5-006269-3 ISSN 1014-2339

TC/M/I0831Tri/1/5.09/2300

9 7 8 9 2 5 0 0 6 2 6 9 3