1996 Caffeic Acid J Electroanal Chem 405 169

Embed Size (px)

Citation preview

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    1/8

    E L S E V I E R J o u r n a l o f E lec t r n an a lyt i ca l C h emis t r y 4 0 5 ( 1 9 9 6 ) 1 6 9 - 1 7 6

    JOURN L OF

    x idat ion o f ca f fe ic ac id and re la ted hydroxy c innam ic ac ids

    P h i l i p p e H a p i o t a A n d r e a s N e u d e c k a J e a n P i n s o n

    a

    H 6 1 ~ ne F u l c r a n d b

    P e d a t s u r N e t a c C h r i s ti a n R o l a n d o d

    a L a b o r a t o i r e d ' E l e c t r o c h i m i e M o l ~ c u l a i r e d e l " U n i v e r s i t ~ P a r i s 7 , U n i t ~ d e R e c h e r c h e A s s o c i ~ e a u C N R S N o . 4 3 8 , 2 p l a c e J u s s i e u ,

    7 5 2 5 1 P a r i s C e d e x 0 5 , F r a n c e

    b L a b o r a t o i r e d e s P o l y m b r e s e t d e s T e c h n i q u e s P h y s i c o - c h i m i q u e s , l n s t i t u t d e s P r o d u i t s d e l a V i g n e , 9 , p l a c e V i a l a , 3 4 0 6 0 M o n t p e l l i e r C e d e x , F r a n c e

    c C h e m i c a l K i n e t i c s a n d T h e r m o d y n a m i c D i v i s io n , N a t i o n a l I n s t i t u te o f S t a n d a r d s a n d T e c h n o l og y , G a i t h e r sb u r g , A I D 2 0 8 8 9 , U S A

    a L a b o r a t o i r e d e l ' A c t i v a t i o n M o l ~ c u l a i r e , E c o l e N o r m a l e S u p ~ r i e u r e , U n i t ~ A s s o c i ~ e a u C N R S N o . 1 1 1 0 ,

    U n i t~ A s so c i ~ e ~ l ' U n i v e r si t ~ P i e r r e e t M a r i e C u r i e, 2 4 r u e L h o m o n d , 7 5 2 3 1 P a r i s C e d e x 0 5 , F r a n c e

    Receiv ed 29 Septem ber 1995; in revised form 16 Octobe r 1995

    A b s t r a c t

    Oxidation of caffeic acid (3,4-dihydroxycinnamic acid) 1H a has been studied by electrochemical methods and by pulse radiolysis in

    aqueous and organic solvents. The results h ave been c omp ared with the behaviour o f 4-coumaric acid 2 H 2 and ferulic acid 3H 2. The first

    oxidative intermediates have b een characterised by the ir UV spectra and oxidation potentials. In the ca se o f 2H 2 and 3H 2, the initial

    radicals d ecay by a second order process indicating a radic al-rad ical coupling mechanism. On the contrary, fo r caffeic acid the oxidation

    leads to the form ation of the corresponding o-quinone through disproportionation of the initial semiquinone radical.

    K e y w o r d s : Electrooxidat ion; Pulse radiolys is ; Caffeic acid ; 4-Couma ric acid ; Ferul ic acid

    1 I n t r o d u c t i o n

    P o l y p h e n o l s a x e t h e m a i n s e c o n d a r y m e t a b o l i t e s i n

    p l a n ts . T h e y p a r t l y d e t e r m i n e t h e q u a l i t y o f t h e p l a n t - d e -

    r i v e d f o o d p r o d u c t s , c o n f e r r i n g u p o n t h e m b e n e f i c i a l o r

    d e t r i m e n t a l e f f e c t s . I n p a r t i c u l a r , t h e b r o w n i n g p r o c e s s

    w h i c h a l s o t a k e s p l a c e i n w i n e s , m a y b e d e s i r a b l e f o r s o m e

    o f t h e m ( s h e r r y , M a d e i r a , M a r s a l a ) w h e r e a s i t m a y b e

    u n d e s i r a b l e f o r o t h e r s ( w h i t e w i n e s ) [ 1 ]. T h e b r o w n i n g i s

    r e l a t e d t o t h e e n z y m a t i c o x i d a t i on o f p h e n o l s t o t h e c o r r e -

    s p o n d i n g h i g h l y r e a c t i v e o - q u i n o n e s [ 2 ,3 ] . E n z y m a t i c o x i -

    d a t i o n i s t h e m o s t i m p o r t a n t r e a c t i o n i n t h e p r e s e n c e o f

    p o l y p h e n o l o x i d a s e [ 4 , 5 ] . H o w e v e r , n o n - e n z y m a t i c a u t o -

    o x i d a t i o n c a n a l s o c a n t a k e p l a c e i n t h e p r e s e n c e o f

    o x y g e n , m o r e e s p e c i a l l y w h e n t h e m e d i u m i s a l k a l i n e [ 6 ] .

    T h e d i f f e r e n t s t e p s l e a d i n g t o t h e f o r m a t i o n a n d t o f u r t h e r

    r e a c t i o n o f q u i n o n e s t o p r o d u c e c o n d e n s a t i o n p r o d u c t s a r e

    n o t f u l l y u n d e r s t o o d a n d o n l y a f e w h y p o t h e s e s h a v e b e e n

    p r o p o s e d c o n c e r n i n g t h e i r m e c h a n i s m [ 7 , 8 ] .

    E l e c t r o c h e m i s t r y [ 9 - 1 1 ] a n d p u l s e r a d i o l y s i s [ 9 , 1 2 ]

    t e c h n i q u e s p r o v i d e p o w e r f u l t o o l s f o r th e s t u d y o f r e a c t i o n

    m e c h a n i s m s i n v o l v i n g e l e c t r o n t r a n s f e r a n d a f f o r d c o m p l e -

    m e n t a r y i n f o r m a t i o n [ 9 , 1 3 - 1 6 ] . T h e f i r s t t e c h n i q u e a l l o w s

    t h e c h a r a c t e r i s a t io n o f t h e i n t e r m e d i a t e s f o r m e d u p o n e l e c -

    t r o n t r a n s f e r b y t h e i r r e d u c t i o n - o x i d a t i o n p a t t e r n [ 1 0 , 1 1 ] .

    0 0 2 2 - 0 7 2 8 /9 6 / 1 5 . 0 0 © 1 9 96 E l s ev ie r S c ien ce S .A . A l l r ig h t s r e s e r v ed

    S S D 0 0 2 2 - 0 7 2 8 ( 9 5 ) 0 4 4 1 2 -4

    I t a l s o c a n p r o v i d e s p e c t r o s c o p i c i n f o r m a t i o n o n i n t e r m e d i -

    a t e s w i t h l i f e t i m e s f r o m 1 s t o m i n u t e s b y c a r r y i n g o u t

    e l ec t ro ly s i s i n a t h in l ay e r sp ec t ro e l ec t ro ch em ica l ce l l [1 7 ] .

    I n s p i t e o f th e w i d e r a n g e o f l i f e t i m e s c o v e r e d b y c o m b i n a -

    t i on o f t h e a b o v e e l e c t r o c h e m i c a l t e c h n i q u e s , i t i s d e s i ra b l e

    t o h a v e a d d i t i o n a l i n d e p e n d e n t m e t h o d s t h a t a l lo w v e r i f i c a -

    t i on a n d c o m p a r i s o n o f t h e r e s u l ts . F o r t h i s p u r p o s e , w e

    u t i l i s ed p u l se r ad io ly s i s w h ich p e rm i t s t h e ch a rac t e r i sa t i o n

    o f s h o r t - l i v e d i n t e r m e d i a t e s b y r e c o r d i n g t h e i r U V - v i s

    s p e c t r a . T h e i r r e a c t i o n k i n e t i c s c a n a l s o b e f o l l o w e d s t a rt -

    i n g in t h e m ic ro seco n d r an g e [1 2 ] .

    W e h a v e u s e d t h e s e t e c h n i q u e s t o i n v e s ti g a t e t he o x i d a -

    t i o n o f c a f f e i c a c i d 1 H 3 ( 3 , 4 - d i h y d r o x y c i n n a m i c a c i d ), a n

    a n a l o g u e o f c a f t a r i c a n d c o u t a r i c a c i d s w h i c h a r e r e s p o n s i -

    b l e f o r t h e b r o w n i n g o f w h i t e w i n e s . W e a l s o h a v e e x a m -

    i n e d t h e o x i d a t i o n o f 4 - c o u m a r i c a c i d 2 H 2 ( 4 - h y d r o x y c i n -

    n a m i c a c i d ) a n d f e r u l ic a c i d 3 1 -1 2 ( 3 - m e t h o x y - 4 - h y d r o x y -

    c i n n a m i c a c i d ) . C o m p o u n d s o b t a i n e d b y c h e m i c a l o x i d a -

    t i o n ( s o d i u m p e r i o d a t e ) o f c a f f e i c a c i d i n a c i d i c c o n d i t i o ns

    ( p H = 2 - 7 ) h a v e b e e n p r e v i o u s l y c h a r a c t e r i s e d a s t w o

    s t e r e o i s o m e r s o f 2 , 5 - ( 3 , 4 - d i h y d r o x y p h e n y l ) t e t r a h y d r o -

    f u r a n - 3 , 4 - d i c a r b o x y l i c a c i d [ 1 8 ,1 9 ] . T h e h a l f - w a v e p o t e n -

    t ia l o f t h e o - q u i n o n e f o r m e d i n t h e o x i d a t i o n o f c a f f e ic

    a c i d h a s b e e n d e t e r m i n e d b y p o l a r o g r a p h i c r e d u c t i o n i n

    w a t e r b e t w e e n p H 1 a n d 9 [ 2 0 ] . T h e o n e - e l e c t r o n r e d o x

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    2/8

    17 P. Hapiot et al. / Journal o f Electroanalytical Chemistry 405 1996) 169-176

    p o t e n t i a l o f c a f f e i c a c i d h a s b e e n m e a s u r e d b y p u l s e

    rad io ly s i s 0 . 0 8 4 V S H E ) ) [2 1] an d th e r eac t i o n o f 4 -h y -

    d r o x y c i n n a m i c a c i d w i t h s e v e r a l r a d i c a l s h a s b e e n e x a m -

    ined [22].

    H O

    H O ~ C O O H

    C a f f e i c a c i d 1 H 3

    H O ~ C O O H

    C o u m a r i c a c i d 2 H z

    H C o H ~ C O O H

    F e r u l ic a c i d 3 I t 2

    p u r p o s e - b u i l t p o t e n t i o s t a t e q u i p p e d w i t h a p o s i t i v e f e e d -

    b a c k c o m p e n s a t i o n d e v i c e [ 2 3 ] . T h e d a t a w e r e a c q u i r e d

    w i th a 3 1 0 N ico l e t o sc i l l o sco p e .

    S p e c t r o e l e c t r o c h e m i c a l e x p e r i m e n t s w e r e p e r f o r m e d

    w i t h a c a p i l l a r y - s li t - c e l l f o r U V - v i s s p e c t r o s c o p y u s in g

    g o l d - L I G A - s t r u c t u r e s a s a n o p t i c a l t r a n s p a r e n t e l e c t r o d e

    [ 1 7] . T h e g o l d - L I G A - f o i l s u s e d w e r e 1 0 0 / x m t h i c kn e s s

    a n d o f a h o n e y c o m b s t r u ct u re w i t h 2 0 / z m d i a m e t e r h e x a g -

    o n a l h o l e s w i th a w a l l t h i ck n ess b e tw een th e h o l e s o f 1 5

    / z m . T h e g o l d - L I G A - s t r u c t u r e w a s f i x e d i n a c a p i ll a r y s li t

    o f 1 5 0 / z m . T h e c o m p l e t e e l e c t r o c h e m i c a l c o n v e r s i o n i n

    th e cap i l l a ry s l i t o ccu r r ed i n l e s s t h an 2 s . A s i l v e r w i r e

    c o a t e d w i t h s i l v e r c h l or i d e w a s u s e d a s r e f e r e n c e e l e c t r o d e .

    I n o r g a n i c s o l v e n t s , t h e c o r r e s p o n d i n g p h e n o l a t e s w e r e

    p r e p a r e d i n s i t u b y n e u t r a l i s a t i o n a f t e r r e m o v a l o f o x y g e n

    b y b u b b l i n g a r g o n t o p r e v e n t a i r o x id a t i o n o f t h e p h e n o l a t e

    [ 24 ]. T h e b a s e w a s a 2. 7 M s o l u t io n o f N M e a O H - 5 H 2 0

    i n m e t h a n o l .

    2.3 . Radiolyt ic experiments

    2 Ex p er im en ta l

    2.1. Chemicals

    A c e t o n i t r il e A C N ) w a s U v a s o l q u a l i ty M e r c k ) a nd

    w a s u s e d a s - r e c e i v e d . D i m e t h y l s u l p h o x i d e w a s f r o m

    A l d r i c h . T h e s u p p o r t i n g e l e c t r o l y t e N E t 4 B F 4 an d th e b ase

    N M e 4 O H - 5 H 2 0 w e r e f r o m F l u k a p u ri s s) . C a f f e ic a c id

    a n d t h e d i f f e r e n t h y d r o x y c i n n a m i c a c i d s w e r e c o m m e r -

    c i a l l y a v a i l a b l e A l d r i c h ). C a f f e i c a c i d w a s p u r if i e d b y

    f l a s h c h r o m a t o g r a p h y b e f o r e u s e . p H s i n h y d r o - o r g a n i c

    s o l v e n ts w e r e m e a s u r e d w i t h a g l a s s e l e c t ro d e s t a n d a r d i s e d

    i n a q u e o u s b u f f e r s .

    2.2. Cyclic voltamm etry an d spectroelectrochemical exper

    iments

    A l l t h e c y c l ic v o l t a m m e t r y e x p e r i m e n t s w e r e c a r r i e d

    o u t a t 2 0 + 0 .1 ° C u s i n g a c e l l e q u i p p e d w i t h a j a c k e t

    a l l o w i n g c i r c u l a t i o n o f w a t e r f r o m t h e t h e r m o s t a t . T h e

    c o u n t e r e l e c t r o d e w a s a P t w i r e a n d t h e r e f e r e n c e e le c t r o d e

    a n a q u e o u s s a t u r a t e d c a l o m e l e l e c t r o d e E ° S C E ) = E °

    S H E ) - 0 . 2 4 1 2 V ) w i th a s a l t b r id g e co n ta in in g t h e su p -

    p o r t i n g e l e c t r o d e . T h e S C E e l e c t r o d e w a s c h e c k e d a g a i n s t

    t h e f e r r o c e n e / f e r r o c e n i u m c o u p l e E ° = + 0 . 40 5 V S C E ) )

    b e f o r e a n d a f t e r e a c h e x p e r i m e n t .

    F o r l ow s c a n r a te c y c l ic v o l t a m m e t r y 0 . 0 5 - 5 0 0 V

    s - 1 , t h e w o r k i n g e l e c t r o d e w a s e i t h e r a g l a s s y c a r b o n d i s k

    3 m m d i a m e t e r T o k a i C o r p .) o r a 1 m m d i a m e t e r g o l d

    d i s k . T h e y w e r e c a r e f u l l y p o l i s h e d b e f o r e e a c h v o l t a m m o -

    g r a m w i t h 1 / x m d i a m o n d p a s t e a n d u l t r a s o n i c a l l y r i n s e d

    i n a b s o l u t e e t h a n o l . E l e c t r o c h e m i c a l i n s t r u m e n t a t i o n c o n -

    s i s te d o f a P A R M o d e l 1 75 U n i v e r s a l p r o g r a m m e r a n d a

    F o r r a d i o l y s i s e x p e r i m e n t s , f r e s h s o l u t i o ns o f t h e p h e n o -

    l i c c o m p o u n d s u n d e r a n a e r o b i c c o n d i t i o n s w e r e p r e p a r e d

    b y b u b b l i n g N 2 0 i n w a t e r p u r i f ie d w i th a M i l li p o r e

    S u p e r - Q s y s t e m ) a n d t h e n a d d i n g N a N 3 a nd K O H a n d

    f i n a l l y t h e p h e n o l . T h i s p r o c e d u r e a v o i d s c o n t a c t b e t w e e n

    th e p h en o la t e a n d 0 2 an d p rev en t s au to -o x id a t io n . T h e

    so lu t i o n w as t h en t r an s fe r r ed i n to t h e i r r ad i a t i o n ce l l w i th -

    o u t b e i n g e x p o s e d t o a i r . T h e p u l s e r a d i o l y s i s a p p a r a t u s

    h as b een d esc r ib ed b e fo re [2 5 ] . I t u t i l i s e s 5 0 n s p u l ses o f 2

    M e V e l e c t r o n s f r o m a F e b e t r o n 7 0 5 a c c e l e r a t o r . T h e d o s e

    p e r p u l s e w a s v a r i e d b e t w e e n 8 a n d 8 0 G y , t o p r o d u c e

    b e t w e e n 5 a n d 5 0 m M o f o x id i s i n g r a d i c a ls , a s d e t e rm i n e d

    b y S C N - d o s i m e t r y [ 26 ]. T h e k in e t i c s p e c t ro p h o t o m e t r i c

    d e t e c t i o n s y s t e m c o n s i s t e d o f a V a r i a n 3 0 0 W x e n o n l a m p ,

    a 2 cm o p t i ca l p a th l en g th i r r ad i a t i o n ce l l , a K ra to s h ig h

    i n t e n s i t y m o n o c h r o m a t o r , a n R C A 4 8 4 0 p h o t o m u l t i p l i e r ,

    an d th e ap p ro p r i a t e sh u t t e r s , l en ses , an d o p t i ca l f i l t e r s . T h e

    s ig n a l s w ere d ig i t i s ed w i th a T ek t ro n ix 7 6 1 2 t r an s i en t

    r e c o r d e r a n d a n a l y s e d b y c o m p u t e r . A l l e x p e r i m e n t s w e r e

    car r ied ou t a t ro om tem per atu r e 22 __+ 2°C.

    3 Resu l t s

    3.1. O xidation of caffeic acid

    3.1 .1 . Cycl ic vol tammetry

    T h e o x i d a t i o n o f c a f f e i c a c i d 1 H 3 w a s f i r s t s t u d ie d b y

    c y c l i c v o l t a m m e t r y i n w a t e r a t d i f f e r e n t p H v a l u e s a n d i n

    sev e ra l w a te r + o rg an ic so lv en t m ix tu res . A ty p i ca l

    v o l t a m m o g r a m o f t he o x i d a t i o n o f a 1 0 - 3 m o l 1 - 1 c a f f e i c

    ac id so lu t i o n i n w a te r a t p H = 4 a t a s can r a t e o f 0 . 2 V s -

    i s s h o w n i n F ig . 1 . A c h e m i c a l l y r e v e r s i b l e v o l t a m m o g r a m

    E p~ = + 0 . 2 7 ,

    E p a =

    + 0 . 3 9 V S C E ) ) i s o b s e r v e d t h a t

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    3/8

    P . Ha p io t e t a l . / J o u rn a l o f E l e c t ro a n a ly t i c a l C h e mis t ry 4 0 5 1 9 96 ) 1 6 9 - 1 7 6 1 71

    20 ~.A

    ~ r

    I

    - 0 . 4 0 . 0 0 . 4

    E / V SC E)

    F i g . 1 . C y c l i c v o l t a m m e t r y o f 1 0 - 3 t o o l 1 - J s o l u t i o n o f c a f f e i c a c i d in

    w a t e r a t p H = 4 o n a 3 m m g l a s s y c a r b o n e l e c t r o d e . S c a n r a t e v =

    0 . 2 V s - I .

    can be cycled without noticeable decrease of the current.

    The number of electrons per molecule was determined to

    be two by comparison with the intensity of the peak

    current of ferrocenemethanol under the same conditions.

    The same general pattern is observed in (50/50) water

    (pH = 4) + dimethyl formamide (Er~ = + 0.21, E v a =

    + 0.36 V (SCE)) and (50/50) water (pH = 4) + methanol

    (E ~ = +0. 15, Eva = +0 .2 6 V (SCE)) mixtures. The elec-

    trochemical behaviour was studied as a function of pH in a

    (5 0/5 0) water + methanol mixture. By increasing the pH

    (of the water component) above four, the oxidation poten-

    tial becomes gradually more positive and the peak poten-

    tial separation increases. This behaviour is in agreement

    with what is expected for a quinone + hydroquinone sys-

    tem. At pH > 10 the reverse reduction peak disappears,

    indicating that under these conditions the generated o-

    quinone is not stable.

    In dimethylsulphoxide (D MSO) solutions containing 0.1

    M NEtaBF4 as supporting electrolyte, on a glassy carbon

    electrode, 1H 3 shows an irreversible oxidat ion peak at 0.2

    V s -l (E p= + 0.8 5 V (SCE)) (see Fig. 2(a)). Upon

    addition of two equivalents o f base (NMe4OH • 5H2 0) to

    neutralise both the COOH group and one of the phenol

    groups, to form 1 a 2 - , the oxidation wave appears at a less

    positive potential (Fig. 2(b)). This wave becomes totally

    reversible at scan rates higher than 0.5 V s- l and irre-

    versible for scan rates lower than 0.05 V s -~. The height

    of the anodic peak for the oxidation of 1H 2- corresponds

    to the transfer of one electron, as shown by comparison

    with t r i - t e r t - b u t y l phenolate under the same experimental

    conditions. The E°potential for this oxidation can be deter-

    mined from the reversible voltammogram as the midpoint

    between the anodic and cathodic peak potentials (E ° =

    -0 .3 1 V (SCE)) which can be ascribed to the reversible

    couple 1 HE -/ 1H - . After the addition of a third equiva-

    lent of base in order to achieve complete neutralisation of

    the acid, the trianion 13- behaves as a quasi-reversible

    system on a gold or G.C. electrode A E p = 90 mY, I v c / l p a

    = 1), with E ° = - 0 .8 6 V (SCE), down to a scan rate of

    50 mV s -~ (Fig. 2(c)). This first reversible system is

    followed by a second partially reversible one (see Fig.

    2(c)). These two peaks were found to be monoelectronic

    and were ascribed to the reversible couples 1 3 - / 1 2 - . a n d

    1 2 - / 1 -. Similar studies performed in ACN exhibit the

    same general features with minor differences: the oxida-

    tion of 1H a presents an irreversible peak around + 1.2 V

    (SCE) (more positive than in DMSO) and the second

    oxidation of 13- is completely irreversible. The electro-

    chemical characteristics are summarised in Table 1.

    I ~ (a)

    I I I

    - 0 . 7 0 . 1 0 . 9

    o.5~ ~ b)

    - 0 . 7 - 0 . 3 0 . 1

    o . 4 ~ j ~

    (c)

    I [ I

    - 1 . 2 - 0 . 4 0 . 4

    E / V S C E )

    F i g . 2 . C y c l i c v o l t a m m e t r y o f t h e o x i d a t i o n o f 1 0 - 3 m o l 1 - ~ s o l u t i o n o f c a f f e i c a c i d i n d i m e t h y l s u l p h o x i d e o n a 1 m m g l a s s y c a r b o n e l e c t r o d e + 0 . I M

    N E t 4 B F 4 a s s u p p o r t i n g e le c t r o l y t e ) . a ) I H 3 , b ) I H 2 - , c ) 1 3 - . S c a n r a t e v = 0 . 2 V s - t .

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    4/8

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    5/8

    P . Ha p io t e t a l . / J o u rn a l o f E l e c tro a n a ly t ic a l C h e mis try 4 0 5 1 9 9 6 ) 1 6 9 - 1 7 6

    173

    O . 2

    0.16

    0.12

    0 . 0 8 •

    • I

    0 . 0 4

    0 . . . . | * i i . . . . i . . ~ - . . ~

    3 8 0 4 2 0 4 6 0 5 0 0 5 4 0

    ~ , / n m

    Fig. 4. D ifferential absorption spectra after pulse radiolysis of

    1 0 - 3

    mol

    1-t of caffeic acid in 0.1 M NaN3 aqueous solution saturated with N20

    (pH = 5.7). Monitored af ter 1 gs ( I ) and 10 ms (0) .

    c o m p l e t e i n 1 / xs o r l e s s . D i f f e r e n t i a l a b s o r p t i o n s p e c t r a

    m o n i t o r e d a t v a r i o u s t i m e s a f t e r t h e p u l s e a r e p r e s e n t e d i n

    F i g . 4 f o r s l i g h t l y a c i d i c p H ( p H = 5 .7 ) . T h e i n i ti a l s p e c -

    t r u m ( 1 / z s a f te r t h e p u l s e ) c a n b e a s s i g n e d t o th e c o r r e -

    s p o n d i n g o - s e m i q u i n o n e ; t h e s p e c t r u m o b t a i n e d a f te r 1 m s

    i s a s c r i b e d t o s u b s e q u e n t p r o d u c t s . T h e o - s e m i q u i n o n e

    e x h i b i t s a b r o a d p e a k w i t h a m a x i m u m a r o u n d 4 8 0 n m

    ( 6 = 1 9 0 0 1 m o l - ] c m - 1 ) s i m il a r t o t he s p e c tr a o f o t h e r

    c o n j u g a t e d p h e n o x y l r a d i c a l s [ 1 5 , 1 6 ] . T h i s a b s o r p t i o n i s i n

    t h e s a m e w a v e l e n g t h r a n g e a s w e f o u n d b y s p e c t r o e l e c t r o -

    c h e m i s t r y f o r th e s a m e i n t e r m e d i a t e i n A C N . H o w e v e r , i n

    t h e r a d i o l y s i s e x p e r i m e n t s a t p H = 6 - 1 2 , t h e s p e c t r u m

    s h o u l d c o r r e s p o n d t o t h a t o f t h e d e p r o t o n a t e d f o r m o f t h e

    s e m i q u i n o n e 1 2 - . a s th e p K a o f o - s e m i q u i n o n e r a d i c a l s

    a r e k n o w n t o b e a r o u n d f i v e [ 2 8 ] . A f t e r 1 0 m s a b r o a d

    p e a k i s o b s e r v e d w i t h A n ~x = 4 1 0 n m , w h i c h c a n b e

    a s c r i b e d t o t h e o - q u i n o n e 1 H b y c o m p a r i s o n w i th a n

    a u t h e n t i c s a m p l e u n d e r i d e n t i c a l c o n d i t i o n s [ 1 9 ] . B y v a r y -

    i n g t h e d o s e p e r p u l s e , t o p r o d u c e d i f f e r e n t i n i t i a l c o n c e n -

    t r a t io n s o f t h e s e m i q u i n o n e r a d i c a ls , 1 2 - ' , i t w a s f o u n d t h a t

    t h e d e c a y o b e y e d a s e c o n d - o r d e r r a t e l a w , w i t h 2 k ] = 8 . 4

    X 10 7 1 m o l - 1 s - 1 . ( s e e F i g . 4 ). A t t h is p H , s o m e o t h e r

    a b s o r p t i o n s c o r r e s p o n d i n g t o d i f f e r e n t s p e c i e s w i t h d i f f e r -

    e n t k i n e t i c e v o l u t i o n s w e r e a l s o o b s e r v e d a t l o w w a v e -

    l e n g t h s ( A < 4 0 0 n m ) . T h e s e a r e a s c r i b e d t o t h e i n t e r m e d i -

    a t e f o r m e d b y t h e r e a c t i o n o f c a f f e ic a c i d w i t h a s m a l l

    f r a c t i o n o f t h e s o l v a t e d e l e c t r o n s ( i n c o m p e t i t i o n w i t h t h e

    r e a c t i o n o f e~q w i t h N 2 0 ) . T h i s w a s d e m o n s t r a t e d b y

    a d d i t i o n o f i s o p r o p a n o l t o t h e s o l u t i o n t o r e a c t w i t h t h e

    O H r a d i ca l , t o p r e v e n t f o r m a t i o n o f t h e o x i d i s i n g ra d i c a l

    N 3 r a d i c a l , a n d t o l e a v e t h e s o l v a t e d e l e c t r o n a s th e o n l y

    r e a c t i v e s p e c i e s r e m a i n i n g i n t h e s o l u t i o n .

    S i m i l a r s p e c t r a w e r e o b s e r v e d a t h i g h e r p H b u t , b e c a u s e

    o f t h e s t r o n g a b s o r b a n c e o f t h e p a r e n t m o l e c u l e s a t t h e s e

    p H v a l u e s , i t w a s n o t p o s s i b l e t o r e c o r d s p e c t r a a t w a v e -

    l e n g th s b e l o w 4 2 0 - 4 3 0 n m . T h e a b s o r b a n c e w a s t h e r ef o r e

    m o n i t o r e d a t 4 8 0 n m t o s t u d y t h e d e c a y o f t h e in i ti a l

    s e m i q u i n o n e . L a r g e v a r i a t i o n s o f t h e s e m i q u i n o n e r a d i c a l

    l i f e ti m e w i t h p H w e r e o b s e r v e d ( s e e T a b l e 2 ) . I n b a s i c

    s o l u t i o n s ( p H = 1 1 . 3 ) th e s e m i q u i n o n e w a s r e l a t iv e l y s t a-

    b l e , w i t h a l i f e - t i m e l o n g e r t h a n 1 0 0 m s , w h e r e a s a t

    p H = 5 . 7 t h e r a d i c a l d e c a y e d a b o u t 2 0 0 0 t i m e s m o r e

    r a p i d l y . T h e s e f i n d i n g s a r e i n a g r e e m e n t w i t h t h e u s u a l

    b e h a v i o u r o f q u i n o n e / h y d r o q u i n o n e c o u p l e s an d c o rr e -

    s p o n d t o a d i s p r o p o r t i o n a t i o n r e a c t i o n l e a d i n g t o t h e f o r -

    m a t i o n o f th e o - q u i n o n e f r o m t h e s e m i q u i n o n e . F o r e x a m -

    p l e , f o r t h e w e l l k n o w n

    p - b e n z o q u i n o n e / p - h y d r o q u i n o n e

    c o u p l e , t h e s e m i q u i n o n e i n t e r m e d i a te b e c o m e s u n s t a b le a t

    p H < 1 0 in w a t e r [ 2 9 ]. A s i m i l a r b e h a v i o u r w a s f o u n d f o r

    t h e s e m i q u i n o n e f o r m e d b y o x i d a t i o n o f t h e m e t h y l e s t e r

    o f t h e c a f f ei c a c i d , w h i c h h a s a n a b s o r b a n c e p e a k a t 5 2 0

    n m ( 6 = 2 8 0 0 1 m o l - t c m - ] ) a n d a l a rg e a b s o r b a n ce i n

    t h e U V b e l o w 4 2 0 n m . R a d i o l y t i c o x i d a t i o n s w e r e a l s o

    p e r f o r m e d b y c o n t i n u o u s i r r a d i at i o n o f a q u e o u s s o l u t i o n s

    t o m o n i t o r s p e c t r a o f s t a b le p r o d u c t s . S o l u t i o n s s i m i l a r t o

    t h o s e u s e d i n t h e p u l s e r a d i o l y s i s e x p e r i m e n t s w e r e i r r a d i -

    a t e d i n a g a m m a s o u r c e a n d t h e s p e c t r a w e r e m o n i t o r e d

    a f t e r v a r i o u s i r r a d i a t i o n t i m e s . T h e r e s u l t s o f th i s t e c h n i q u e

    w e r e c o m p a r a b l e w i t h t h o s e o f s p e c t r o e l e c t r o c h e m i s t r y : i n

    t h e r a d i o l y s i s t h e o x i d i s i n g s p e c i e s a r e p r o d u c e d c o n t i n u -

    o u s l y i n a n h o m o g e n e o u s f a s h i o n , w h i l e i n t h e s e c o n d c a s e

    a c o n t i n u o u s o x i d a t i o n i s p r o v i d e d b y t h e e l e c t r o d e . I n

    b o t h m e t h o d s t h e r e a c t i o n i s f o l l o w e d b y r e c o r d i n g a b s o r p -

    t i o n s p e c t r a . T h e s p e c t r u m o b t a i n e d u p o n i r r a d i a t i o n o f

    c a f f e i c a c i d a t p H = 6 . 3 ( F i g . 5 ) s h o w s a d e c r e a s e o f t h e

    3 1 0 n m p e a k a n d a n i n c r e a s e o f a b r o a d a b s o r p t i o n a t

    3 4 0 - 3 5 0 n m . A f t e r l o n g e r i r r a d i a t i o n t i m e s a l o n g t a i l

    g r o w s a t h i g h e r w a v e l e n g t h , a p p a r e n t l y i n d i c a t in g p o l y m e r

    f o r m a t i o n .

    Table 2

    Pulse radiolysis: characteristics of the radicals in w ater

    Compound Radical

    hma t

    ¢rnax pH 2k/1.m ol- 1 s- 1

    / n m / 1 m o l -

    1 c m i

    Caffeic acid (1H 3) 12 . 480 1900 5.7 8.4 × 107

    1 1 . 6 2 . 6 X

    104

    12.6 stable

    Caffeic acid methyl ester (4H 2) 4 - 520 2800 8.0 (8 + 3) × 107

    4-Coum aric acid (2H 2) 2 - 600 1900 6.3 7.3 × 10s

    7.3 6.8 × lOs

    12.05 7.5 × l0 s

    Ferulic acid (3I-I2) 3 - 550 900 7.1 7.0 × 108

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    6/8

    1 7 4 P. Hapiot et al . /Jo ur na l of Electroanalytical Chemistry 405 1996) 169-1 76

    3 2 Oxidation of monohydroxycinnamic acids

    3 2 1 Cyclic voltammetry

    F o r c o m p a r i s o n w i t h t h e r e s u l t s o f c a f f e i c a c id , t w o

    m o n o h y d r o x y c i n n a m i c a c i d s w i th t h e s a m e g e n e r a l s k e le -

    t o n w e r e e x a m i n e d b y c y c l i c v o lt a m m e t r y u n d e r t he s a m e

    c o n d i t io n s : 2 H 2 ( 4 - c o u m a r i c a c i d ) a n d 3 H 2 ( f e r u l ic a c i d ).

    T h e c y c l i c v o l t a m m e t r y o f 2 H 2 a n d 3 H 2 i n 5 0 / 5 0 w a t e r

    + m e t h a n o l m i x t u r e s w a s i n v e s t i g a t e d a t d i f f e r e n t p H

    v a lu es . A t n eu t r a l o r s l i g h t ly ac id i c p H , t h ey ex h ib i t an

    i r r e v e r s ib l e o n e - e l e c t r o n o x i d a t i o n p e a k . T h e p e a k p o s i t i o n

    v a r i e s l i n e a r l y w i t h t h e p H w i t h a s l o p e c l o s e t o 5 8 m V

    p H - l ( t h e t h eo r e t ic a l s l o p e f o r 1 H ÷ a n d 1 e - ) . A t h i g h e r

    p H , t h e v a l u e o f t he p e a k p o t e n t i a l r e m a i n s c o n s t a n t u p t o

    p H = 1 3 . T h i s p H d ep e n d en ce in d i ca t e s t h a t i t i s t h e

    d e p r o t o n a t e d f o r m s 2 2 - o r 3 2 - w h i c h a r e o x id i s e d , e v e n

    a t p H b e l o w t h e p K a , to g i v e t h e p h e n o x y l r a d i c a ls

    [ 9 , 1 3 - 1 6 ] . T h i s e l e c t r o c h e m i c a l b e h a v i o u r i s v e r y s i m i l a r

    to t h e r e su l t s o b t a in ed fo r t h e a l co h o l s [9 , 1 6 ] o r a ld eh y d es

    [ 1 5 ] d e r i v e d f r o m h y d r o x y c i n n a m i c a c i d .

    I n n e u t r a l A C N , 2 H 2 a n d 3 H 2 e x h i b i t i r r e v e r s ib l e

    b r o a d p e a k s a t 1 .0 a n d 0 .9 5 V ( S C E ) r e s p e c t i v e l y . O n t h e

    r e v e r s e s c a n ( i f th e o x i d a t i o n o f 3 H 2 h a s b e e n s c a n n e d

    b e f o r e h a n d ) a b r o a d r e d u c t i o n p e a k i s v is i b l e a r o u n d 0 . 5 V

    ( S C E ) w h i c h c a n b e a s c r i b e d t o t h e f o r m a t i o n o f d i m e r s o r

    h i g h e r o l i g o m e r s . T h e o x i d a t i o n p e a k p o t e n t i a l w a s f o u n d

    to in c rease l i n ea r ly w i th t h e l o g a r i t h m o f t h e scan r a t e ,

    w i t h a s l o p e a r o u n d 4 0 m V p e r l o g ( v ) , w h i c h i n d i c a t e s a

    m ix ed co n t ro l o f t h e g lo b a l k in e t i c s , i .e . b y th e e l ec t ro n

    t r a n s f e r s t e p a n d b y a s u b s e q u e n t c h e m i c a l r e a c t i o n . T h i s

    i s i n ag reem en t w i th t h e o x id a t io n o f 3 I - I 2 t o t h e p h e n o x o -

    n i u m c a t i o n 3 H 2 + w h i c h i s l i k e l y t o b e a s t r o n g a c i d a n d

    to d ep ro to n a t e r ap id ly .

    I n o r d e r t o a v o i d t h e r e a c t i o n s o w i n g t o t h e p r o t o n

    t r a n s f e r, t h e o x i d a t io n o f t h e c o r r e s p o n d i n g p h e n o l a t e s w a s

    i n v e s ti g a t e d . A f t e r a d d i t io n o f t w o e q u i v a l e n t s o f b a s e

    ( N M e 4 O H - 5 H 2 0 ) , t he p h e no l a te 2 2 - e x h i b i t s i n D M S O

    0

    0.5

    . ~ t

    i

    |

    300 400 500

    k / n m

    F i g . 5 . U V - v i s s p e c t ra l c h a n g e s d u r i n g i rr a d i a ti o n o f a 4 . 4 × 1 0 . 4 m o l

    - 1 o f c a f f e i c a c i d i n 0 . 0 3 M N a N 3 a q u e o u s s o l u t i o n s a t u r a t e d w i t h N 2 0

    ( p H = 6 . 3 ). N u m b e r s o n e a c h s p e c t r u m a r e t h e i r r a d i a t i o n t i m e s i n

    m i n u t e s .

    - 0 .0 8

    O.S ~tA

    I

    -0 .8 -0 .4 0 .0

    E / V ( S C E )

    a )

    ~'~ -0 .12

    - 0 . 1 4

    (b)

    -0. 16 , 11 t t , i

    - 1 .5 - - 0 .5 0 0 .5

    l o g (v )

    F i g . 6 . C y c l ic v o l ta m m e t r y o f b a si c 3 2 - i n D M S O ( + 0 . 1 m o l 1 - 1

    N E t 4 B F 4 ) o n a 1 m m d i a m e t e r g o l d e l e c t r o d e . ( a ) c ° = 1 0 - 3 t o o l 1 - i ,

    v = 0 . 2 V s - ~ . ( b ) V a r i a t i o n o f t h e p e a k p o t e n t i a l a s a f u n c t i o n o f t h e

    l o g a r i t h m o f t h e s c a n r a t e ( v ) .

    a n d i n A C N a w e l l - d e f i n e d m o n o e l e c t r o n i c i r r e v e r s i b l e

    o x i d at i o n p e a k ( E p = - 0 . 0 2 V ( S C E ) in D M S O a n d

    - 0 . 0 3 V ( S C E ) i n A C N a t 0 . 2 V s - l ) . S i m i la r r e s ul ts

    w e r e f o u n d f o r t he o x i da t i on o f 3 2 - ( E p = - 0 . 1 5 V

    ( S C E ) i n D M S O a n d i n A C N a t 0 .2 V s - 1 ). F o r b o t h

    p h e n o l a t e s , a r e d u c t io n p e a k c o u l d b e o b s e r v e d o n t h e

    r e v e r s e s c a n a r o u n d - 0 . 4 V ( S C E ) ( F i g . 6 ( a )) . T h e v a r i a -

    t i o n o f t h e o x id a t io n p eak p o ten t i a l w i th t h e scan r a t e w as

    i n v e s t i g a t e d i n D M S O w h e r e r e p r o d u c i b l e r e s u l t s c a n b e

    o b t a i n e d . T h e p e a k p o t e n t i a l w a s f o u n d t o v a r y l i n e a r l y

    w i th t h e scan r a t e b e tw een 0 . 0 5 a n d 1 0 V s - ~ w i th a s lo p e

    o f 2 1 m V d e c a d e - ~ o f t h e s c a n r a t e . T h i s s l o p e i s c o n s is -

    t e n t w i t h a m e c h a n i s m i n v o l v i n g a f a s t e l e c t r o n t r a n s f e r

    b e t w e e n t h e e l e c t r o d e a n d t h e p h e n o l a t e f o l l o w e d b y a n

    i r r e v e r s i b l e c o u p l i n g o f t w o r a d i c a l s ( D I M 1 m e c h a n i s m )

    [111.

    3 2 - , . 3 - - + e - ( E o )

    2 k l

    3 - + 3 - ~ d i m e r

    S i m i l a r r e s u l t s l e a d in g t o t h e s a m e m e c h a n i s t i c c o n c l u -

    s i o n s w e r e o b t a i n e d w i t h t h e n e u t r a l i s e d 4 - c o u m a r i c a c i d

    2 2 - . T h e s e r e s u l ts a r e v e r y s i m i l a r t o t h o s e p r e v i o u s l y

    o b t a i n e d f o r t h e c o r r e s p o n d i n g a l c o h o l s [ 16 ] a n d a l d e h y d e s

    [ 1 5 ] w h e r e a c o u p l i n g b e t w e e n t w o p h e n o x y l r a d i c a l s w a s

    f o u n d t o b e t h e k e y s t e p i n t he f o r m a t i o n o f t h e d i m e r .

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    7/8

    P. Hapiot et al. / Journal of Electroanalytical Chemistry 405 1996) 169-176 1 7 5

    0 . 0 2

    0 . 0 1 5

    ~ O . O 1

    <

    0 . ~ 5

    . . . . i . . ° . - . . . . i . . . L

    3 9 0 4 3 0 4 7 0 S l 0 5 5 0 5 9 0 6 3 0

    k / n m

    0 . 0 2 .

    0 . 0 1 5 [ ( b )

    0 . 0 0 5

    0 - * - - ' - - * - • ' - - * - '

    3 9 0 4 3 0 4 7 0 5 1 0 5 5 0 5 9 0 6 3 0

    k / n m

    F i g . 7 . D i f f e r e n t i a l a b s o r p t i o n s p e c t r a a f t e r p u l s e r a d i o l y s i s o f 1 0 - 3 m o l

    I - I o f a ) 2 H z a n d b ) 3 H z a c i d s i n 0 . 1 M N a N 3 a q u e o u s s o l u t i o n

    s a t u r a t e d w i t h N 2 0 p H = 1 2 ) . M o n i t o r e d 1 / . ~ s a f t e r t h e p u l s e .

    3 2 2 P u l s e r a d i o l y s i s

    P u l s e r a d i o l y s i s e x p e r i m e n t s w e r e p e r f o r m e d w i t h t h e

    m o n o h y d r o x y c i n n a m i c a c i d s 2 H 2 a n d 3 H 2 u n d e r t h e s a m e

    c o n d i t i o n s a s t h o s e u s e d f o r t h e o x i d a t i o n o f c a f f e i c a c i d .

    T h e s p e c t r a o f t h e f i rs t i n te r m e d i a t e s r e c o r d e d 1 g s a f t e r

    t h e p u l s e , a s c r i b e d t o t h e g e n e r a t e d p h e n o x y l r a d i c a l , a r e

    p r e s e n t e d i n F i g . 7. T h e p h e n o x y l r a d i c a l o f 4 - c o u m a r i c

    a c i d s h o w s a l a r g e a b s o r b a n c e b e l o w 4 0 0 n m a n d a n o t h e r

    o n e i n t h e v i s i b l e r a n g e , w i t h a p e a k a t h = 6 0 0 n m

    ( 6 = 1 9 0 0 1 m o l - 1 c m - 1 ) . T h e p h e n o x y l r a d ic a l o f f e r u l ic

    a c i d s h o w s a b r o a d w e a k e r a b s o r b a n c e i n t h e v i s i b l e r a n g e

    w it h a m a x i m u m a t A = 5 1 0 - 5 5 0 n m ( 6 = 9 0 0 1 t oo l - 1

    c m - l ) . B o t h r a d i c a l s e x h i b i t e d a n o th e r in t e n s e a b s o r p t i o n

    a t l o w e r w a v e l e n g t h s w h i c h w e r e n o t d e t e r m i n e d b e c a u s e

    o f i n t e r f e r e n c e b y t h e a b s o r p t i o n o f t h e p a r e n t p h e n o l . T h e

    d e c a y o f t h e p h e n o x y l r a d i c a l d e r i v e d f r o m 4 - c o u m a r i c

    a c i d w a s s t u d ie d i n d e t a il a t d i f f e r e n t p H v a l u e s , p h e n o l a t e

    c o n c e n t r a t i o n s ( 0 . 7 t o 7 m M ) , a n d d o s e s ( r a d i c a l c o n c e n -

    t r a t i o n s b e t w e e n 5 a n d 5 0 m M ) . I n a l l c a s e s , t h e d e c a y o f

    t h e r a d i c a l f o l l o w e d a s e c o n d - o r d e r r a t e l a w , w i t h 2 k = 7

    × 1 0 8 1 m o l - 1 s - 1 ( c a l c u l a t i o n b a s e d o n t h e m o l a r a b -

    so rp t iv i ty i n T ab le 2 ) . T h e f in d in g th a t t h e d ecay r a t e

    c o n s t a n t o f t h e p h e n o x y l r a d i c a l d o e s n o t c h a n g e w i t h t h e

    in i t i a l co n cen t r a t i o n o f p h en o la t e i n d i ca t e s t h a t t h e r eac t io n

    p r o c e e d s v i a a r a d i c a l - r a d i c a l m e c h a n i s m a n d t h a t t h e

    p o ss ib l e a d d i t i o n o f t h e r ad i ca l t o t h e p a ren t m o le cu le i s

    t o o s l o w t o b e o b s e r v e d u n d e r t h e s e c o n d i t i o n s . F e r u l i c

    a c i d e x h i b i t e d a s i m i l a r b e h a v i o u r a n d i ts s e c o n d o r d e r

    d e c a y r a t e c o n s t a n t i s r e p o r t e d i n T a b l e 2 . ( T h e s e d i m e r i s a -

    t i o n r a te c o n s t a n t s a r e o f t h e s a m e o r d e r o f m a g n i t u d e a s

    th o se r ep o r t ed in t h e l i t e r a tu re [9 , 1 5 , 1 6 ] . )

    4 . D i s c u s s i o n a n d c o n c l u s i o n s

    T h e e l e c t r o c h e m i c a l o x i d a t i o n o f 4 - c o u m a r i c a n d f e r u l i c

    a c i d s i n w a t e r + o r g a n i c s o l v e n t m i x t u r e s t a k e s p l a c e b y

    e l e c t r o n t r a n s f e r f r o m t h e c o r r e s p o n d i n g p h e n o l a t e i o n

    e v e n a t p H v a l u e s l o w e r t h a n t h e p K a . T h e p h e n o l a t e i s

    o x i d i s e d t o t h e p h e n o x y l r a d i c a l w h i c h t h e n d i m e r i s e s b y

    r a d i c a l - r a d i c a l c o u p l i n g , a c c o r d i n g t o t h e g e n e r a l p a t t e r n :

    P h O H . P h O - + H +

    P h O - • . P h O + e -

    P h O + P h O ~ d i m e r

    R a d i o l y t i c o x i d a t i o n b y t h e a z i d y l r a d i c a l i n a q u e o u s

    so lu t io n s i s r ap id w i th b o th t h e p h en o la t e i o n an d th e

    n e u t r a l p h e n o l s u n d e r s t u d y . T h e d i m e r i s a t i o n o f t h e p h e -

    n o x y l r ad i ca l s i s f a s t , w i th r a t e co n s t an t s o f th e o rd e r o f

    1 0 8 1 m o 1 -1 s -1 , s im i l a r t o t h e v a lu e s fo u n d fo r t h e

    a l c o h o l s a n d a l d e h y d e s d e r i v e d f r o m h y d r o x y c i n n a m i c

    acid .

    T h e c h e m i c a l b e h a v i o u r o f c a f f e i c a c i d i s v e r y d i ff e r e n t .

    C y c l i c v o l t a m m e t r y i n w a t e r s h o w s a r e v e r s i b l e t w o e l e c -

    t r o n w a v e , s p e c t r o e l e c t r o c h e m i s t r y a t p H - ~ 4 s h o w s t h e

    s p e c t r u m o f o - q u i n o n e , a n d d e c a y o f th e r a d i c al o b s e r v e d

    b y p u l s e r a d i o l y s i s a l s o r es u l t s i n f o r m a t i o n o f t he o -

    q u in o n e . In n eu t r a l o r ac id i c p H th e o -q u in o n e i s r ap id ly

    f o r m e d b y d i s p r o p o r t i o n a t i o n o f t h e o - s e m i q u i n o n e w i t h

    r e a c t i o n t i m e s l o w e r t h a n 1 0 - 4 s .

    Q - ' + Q - ' + 2 H + , . Q + Q H 2

    T h e o b s e r v a t i o n o f a r e v e r s i b l e t w o - e l e c t r o n t r a n s f e r i n

    e l e c t r o c h e m i s t r y c o n f i r m s t h a t t h e f o r m a t i o n o f t h e o -

    q u i n o n e i s f a s t a n d a l s o e q u i l i b r a t e d . T h e s a m e g e n e r a l

    b e h a v i o u r i s o b s e r v e d w i t h t h e m e t h y l e s t e r o f c a f f e i c a c i d.

    I n a p r o t i c s o l v e n t s , t h e s a m e o - q u i n o n e i s a l s o o b ta i n e d b y

    a t w o - s t e p o x i d a t i o n i n v o l v i n g p r o t o n e x c h a n g e p r e - e q u i -

    l i b r i u m p r i o r t o t h e e l e c t r o n t r a n s f e r . T h e s e m i q u i n o n e

    i n t e r m e d i a t e s h a v e b e e n c h a r a c t e r i s e d b y t h e i r r e d o x p o -

    t e n t i a l s a n d U V s p e c t r a .

    T h e f a c t t h a t t h e o - q u i n o n e i s f o r m e d d u r i n g t h e o x i d a -

    t i o n o f c a f f e i c a c i d i s i n a g r e e m e n t w i t h w h a t w a s p r e v i -

    o u s l y d e s c r i b e d f o r t h e h o m o g e n e o u s o x i d a t i o n o f c a f f e i c

    ac id b y d i f f e ren t o x id an t s [1 8 , 1 9 an d r e fe ren ces c i t ed

    t h e re i n ]. T h e f o r m a t i o n o f t h e c o u p l i n g p r o d u c t s i s o b -

    s e r v e d i n w a t e r a n d o r g a n i c s o l v e n t s d u r i n g c o n t i n u o u s

    r a d i o l y s i s o r e l e c t r o l y s i s e x p e r i m e n t s ( e x p e r i m e n t a l t i m e

    o f t h e o r d e r o f s e v e r a l m i n u t e s ) . T h i s i n d i c a t e s t h a t t h e

    o - q u i n o n e i s f o r m e d p r i o r t o t h e c o u p l i n g p r o d u c t s a n d i s

    i n v o l v e d i n t h e f o r m a t i o n o f t h e s e p r o d u c t s .

    I n a p r e v i o u s p u b l i c a t i o n , i t w a s p r o p o s e d t h a t t h e

    o x i d a t i v e c o u p l i n g o f c a f f e i c a c i d a t p H = 4 - 5 i n v o l v e d

  • 8/15/2019 1996 Caffeic Acid J Electroanal Chem 405 169

    8/8

    176 P. Hapiot et aL / Journal o f E ectroanalytical Chemistry 405 1996) 169-176

    t h e d i r e c t d i m e r i s a t i o n o f t h e s e m i q u i n o n e r a d i c a l [8 ]. T h i s

    d i r e ct m e c h a n i s m i s u n l ik e l y t o o c c u r b e c a u s e o f t h e f a st

    a n d d i re c t f o r m a t i o n o f t h e o - q u i n o n e f r o m t h e s e m i q u i n o n e

    a t t h e s e p H v a l u e s ( d i s p r o p o r t i o n a t i o n r a t e c o n s t a n t 2 k = 8

    X 1 0 7 1 m o l - 1 s - 1 . A v a r i a n t o f t h is m e c h a n i s m h a s b e e n

    p r o p o s e d w h i c h c o n s i d e r s t he c o m p r o p o r t i o n a t i o n e q u i l ib -

    r i u m b e t w e e n t h e o - q u i n o n e a n d t h e c a f fe i c a c i d t o g iv e

    s e m i q u i n o n e , w h i c h t h e n l e a d s to t h e f o r m a t i o n o f t he

    d i m e r . T h e a b o v e c o m p r o p o r t i o n a t i o n e q u i l i b r i u m i s c e r -

    t a i n l y fa s t a n d r e v e r s i b l e , a s i n d i c a t e d b y t h e e l e c t r o c h e m i -

    c a l d a ta , b u t t h e f o r m a t i o n o f t h e s e m i q u i n o n e i s n o t

    t h e r m o d y n a m i c a l l y f a v o u r e d [ 2 9] a t s l ig h t l y a c i d ic p H . I n

    a d d i t io n , u n d e r t h e c o n d i t i o n s w h e r e t h e s e m i q u i n o n e d o e s

    n o t r a p i d l y d i s p r o p o r t i o n a t e t o t h e o - q u i n o n e ( i n w a t e r a t

    b a s i c p H o r i n o r g a n ic s o l v e n t s ) n o e v i d e n c e f o r a c o u p l i n g

    r e a c t i o n w a s f o u n d . O n t h e c o n tr a r y , u n d e r s u c h c o n d i t i o n s

    t h e s e m i q u i n o n e w a s u n r e a c t i v e .

    I t t h e r e f o r e a p p e a r s t h a t th e f o r m a t i o n o f d i m e r s ( o r

    o l i g o m e r s ) f o l l o w s v e r y d i f f e re n t p a t h w a y s s t a rt i n g f ro m

    t h e m o n o p h e n o l s ( d e r i v e d f r o m 4 - c o u m a r i c o r f e r u li c a c id s )

    a n d f r o m c a f f e i c a c i d . I n t h e fi r s t ca s e , t h e p h e n o l a t e i s

    o x i d i s e d t o a p h e n o x y l r a d i c a l w h i c h u n d e r g o e s f u r t h e r

    d i m e r i s a t i o n , w h i l e i n t h e s e c o n d c a s e , c a f f e i c a c i d i s

    o x i d i s e d to th e c o r r e s p o n d i n g o - q u i n o n e , w h i c h u n d e r g o e s

    f u r th e r c o n d e n s a t i o n s l e a d i n g t o b r o w n i n g p r o d u c t s .

    A c k n o w l e d g e m e n t

    M s . B ~ n ~ d i c t e G r e n e t te i s g r a t e fu l l y a c k n o w l e d g e d f o r

    h e r h e l p w i t h t h e c y c li c v o l t a m m e t r y e x p e r i m e n t s .

    R e f e r e n c e s

    [1] V.L. Singleton, in R.W. Hemmingway and P.F. Laks (Eds.), Plant

    Polyphcnols, Plenum, New York, 1992, pp. 859-8 80.

    [2] W.S. Pierpoint, Biochem. J., 98 (1966) 1202.

    [3] A.G. Mathew and H.A.B. Parpia, Adv. Food Res., 19 (1971) 75.

    [4] M.Y. Coseteng and C.Y. Lee, J. Food Sci., 52 (1987) 985.

    [5] G. Matheis, Chem. Mikrobiol. Technol. Lebensm., 11 (1987) 33.

    [ ] J.J.L. Cilliers and V.L. Singleton, J. Agric. Food Chem., 37 (1989)

    890.

    [7] J. Ribereau-Gayon, E. Peynaud, P. Ribereau-Gayon and P. Sudraud,

    Sciences et Techniques du Vin, Vol. 3, Dunod, Paris, 1976.

    [8] V .L. Singleton, Am. J. Enol. Vitic., 38 (1987) 69.

    [9] P. Hapiot, P. Neta, J. Pins on, C. Rolando and S. Schneider, New J.

    Chem ., 17 (1993) 211.

    [ 10] A.J. Bard and R .L. Fan lkne r, Electrochemical M ethods, Wiley, New

    York, 1980.

    [11] C.P. Andrieux and J.-M.Sav6ant, in C.F. Bemasconi (Ed.), Investi-

    gation of Rates and Mechanisms of Reactions, Vol. 6, 41E, Part 2,

    Wiley, New York, 1986, Chapter 7.

    [12] L.M. Dorfman, in G.G. Hammes (Ed.), Techniques of Chemistry,

    Vol . 6 , Par t 2 , W iley- lnterscie nce, New York, 1974, 3rd edn., pp

    463- 519 .

    [13] P. Hapiot, J. Pinson, C. Francesch, F. Mhamdi, C. Rolando and S.

    Schneider, J. Electroanal. Chem., 328 (1992) 327.

    [14] P. Hapiot, J. Pinson , P. Neta and C . Rolando, J. Electroanal.Chem .,

    353 (1993) 225.

    [15] P. Hapiot, J. Pinso n, C. Francesch, F. M hamdi, C. Rolando and P.

    Neta., J. Phys. Chem., 98 (1994) 2641.

    [ 16] P. Hapiot, J. Pinso n, P. Neta, C . Francesch, F. M hamdi, C. Rolando

    and S. Schneider, Phytochem., 36 (1994) 1013.

    [17] A. Neudeck and L. Dunsch, J. Electroanal. Chem., 386 (1995) 135.

    [18] H. Fulcrand, A. C heminat, R. Brouillard and V. Chen ier, Phy-

    tochem., 35 (1994) 499.

    [19] H. Fulcrand, Th~se de l Universi t6 Louis Pasteur, Strasbourg, France.

    [20] D.I. Stom and S.N. Suslov, Biofizika, 21 (1976) 40.

    [21] S. Steenken and P. Neta, J. Phys. Chem., 86 (1982) 3661.

    [22] K. Bobrowski, J. Chem. Soc. Faraday Trans. I , 80 (1984) 1377.

    [23] D. Garreau and J.-M. Sav6ant, J. Electroanal. Chem., 35 (1972) 309.

    [24] A. Ficht and D.H. Evans, J. Electroanal. Chem., 202 (1986) 83.

    [25] P. Neta and R.E. Huie, J. Phys. Chem., 89 (1990) 1783.

    [26] R.H. S chuler, L.K. Patterson an d E. Janata, J. Phys. Chem., 8 4

    (1980) 2088.

    [27] Z.B. Alfassi and R.H. Schuler, J. Phys. Chem., 89 (1985) 3359.

    [28] S. Steenken and P. O Neill , J. Phys. Chem ., 81 (1977) 505.

    [29] E. Laviron, J. Electroanal. Chem ., 1 64 (1984) 29.