28
1990 05 01 05 2008 07 99 03 03 Time 0 400 800 1200 1600 2000 Carbon Emissions per year (tons x 1,000,000) China USA Japan Russian Fed. India Fossil Fuel Emissions: Top Emitters (>4% of Total) Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

1990

Embed Size (px)

DESCRIPTION

Fossil Fuel Emissions: Top Emitters (>4% of Total). 2000. China. 1600. USA. 1200. Carbon Emissions per year (tons x 1,000,000). 800. India. Russian Fed. 400. Japan. 0. 03. 07. 99. 03. 05. 1990. 05. 01. 2008. Time. - PowerPoint PPT Presentation

Citation preview

Page 1: 1990

1990 05 01 05 200807 99 0303Time

0

400

800

1200

1600

2000Ca

rbon

Em

issio

ns p

er y

ear

(ton

s x

1,00

0,00

0)China

USA

Japan

Russian Fed. India

Fossil Fuel Emissions: Top Emitters (>4% of Total)

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

Page 2: 1990

1990 05 01 05 200807 99 0303

Time

0

40

80

120

160 UK

Denmark

South Africa

Australia Spain

Canada

Brazil

Fossil Fuel Emissions: Profile Examples (1-4% of Total)

Carb

on E

miss

ions

per

yea

r (t

ons

x 1,

000,

000)

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

Page 3: 1990

Balance of Emissions Embodied in Trade (BEET)

Peters and Hertwich 2008, Environ, Sci & Tech., updated

MtCBEET

Warm colors Net exporters of embodied carbonCold colors Net importers of embodied carbon

Year 2004

Page 4: 1990

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience; Data: Peters & Hetwich 2009; Peters et al. 2008; Weber et al 2008; Guan et al. 2008; CDIAC 2009

Transport of Embodied Emissions

CO2 emissions (PgC y-1)

Annex B

Developed Nations

Developing Nations Non-Annex B

1990 2000 2010

5

4

3

2

55%

45%

1990 2000 2010

5

25% of growth

Annex B

Developed Nations

Developing Nations Non-Annex B

4

3

2

Page 5: 1990

CO2 Emissions Components

Le Quéré et al. 2009, Nature Geoscience

CO2 e

miss

ions

(PgC

y-1)

Oil

Coal

Gas

Cement

4

3

2

1

01990 2000 2010

40%

36%

Page 6: 1990

Per Capita CO2 Emissions

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009

Per C

apita

Em

issio

ns

(tC p

erso

n-1 y

-1)

1990 1995 2000 2005 2010

1.3

1.2

1.1

Developed countries continue to lead with the highest emission per capita

Page 7: 1990

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Raupach et al. 2007, PNAS, updated; Le Quéré et al. 2009, Nature Geoscience; International Monetary Fund 2009

1990 1995 2000 2005 2010 2015

Fo

ssil

Fu

el E

mis

sio

n (G

tC y

-1)

5

6

7

8

9

10

A1B

A1FI

A1T

A2

B1

B2

Carbon Dioxide Information Analysis Center

International Energy Agency

Averages

Full range of IPCC individual scenarios

Page 8: 1990

Le Quéré et al. 2009, Nature Geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

CO2 Emissions from Land Use Change

Fossil fuel

Land use change

10

8

6

4

2

1960 20101970 1990 20001980

CO2 e

miss

ions

(PgC

y-1)

Page 9: 1990

Net CO2 Emissions from Land-Use Change (LUC) in Tropical Countries

2000-2005

0

100

200

300

400

500

600

Brazil

Indonesia

CO2 e

miss

ions

(TgC

y-1)

RA Houghton 2009, unpublished; Based on FAO Global Forest Resource Assessment

60%

Venezuela

Rep.Dem.Congo

Nigeria

4-2%

Cameroon

Peru

Philippines

2-1%

Colombia

Nicaragua

Nepal

India

<1%

Page 10: 1990

Canadell et al. 2009, Biogeosciences

Emissions from Land Use Change (2000-2005)

(Area)

Page 11: 1990

Total Anthropogenic Emissions 2008

Fossil fuel

Land use change

10

8

6

4

2

1960 20101970 1990 20001980

CO2 e

miss

ions

(PgC

y-1) 8.7

1.2

9.9 PgC

12% of total anthropogenic

emissions

Le Quéré et al. 2009, Nature Geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

Page 12: 1990

Atmospheric CO2 Concentration

Data Source: Pieter Tans and Thomas Conway, NOAA/ESRL

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

2000 - 2008: 1.9 ppm y-1

2008 1.792007 2.122006 1.772005 2.412004 1.62 2003 2.222002 2.402001 1.852000 1.24

Year 2008

385 ppm38% above pre-industrial

Annual Mean Growth Rate

Page 13: 1990

Total CO2 emissions

Atmosphere

Data: NOAA, CDIAC; Le Quéré et al. 2009, Nature Geoscience

CO2 P

artit

ioni

ng (P

gC y

-1)

1960 20101970 1990 20001980

10

8

6

4

2

Key Diagnostic of the Carbon CycleEvolution of the fraction of total emissions that remain in the atmosphere

Page 14: 1990

Airb

orne

Fra

ctio

n

1960 20101970 1990 20001980

1.0

0.8

0.6

0.4

0.2

Fraction of total CO2 emissions that remains in the atmosphere

Airborne Fraction

Trend: 0.27±0.2 % y-1 (p=0.9)

40%45%

Le Quéré et al. 2009, Nature Geoscience; Canadell et al. 2007, PNAS; Raupach et al. 2008, Biogeosciences

Page 15: 1990

Modelled Natural CO2 Sinks

Le Quéré et al. 2009, Nature Geoscience

Page 16: 1990

outgas

uptake

Estimated Trends in Sea-Air pCO2

1981-2007

Le Quéré et al. 2009, Nature Geoscience

μatm y-1

Page 17: 1990

Possible Reasons for a Positive Trend in Airborne Fraction

• Emissions are rising faster than the time scales regulating the rate of uptake by sinks.

• Sinks are becoming less efficient at high CO2 – Land: saturation of the CO2 fertilization effect– Ocean: decrease in [carbonate] which buffers CO2

• Land and/or ocean sinks are responding to climate change and variability.

• We are missing sink processes in models that are contributing to the observed changes.

Page 18: 1990

deforestation

tropicsextra-tropics

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

Human Perturbation of the Global Carbon Budget

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

1.4

2000-2008PgC

Page 19: 1990

fossil fuel emissions

deforestation

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

Human Perturbation of the Global Carbon Budget

7.7

1.4

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Page 20: 1990

fossil fuel emissions

deforestation

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

atmospheric CO2

Human Perturbation of the Global Carbon Budget

7.7

1.4

4.1

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Page 21: 1990

atmospheric CO2

fossil fuel emissions

deforestation

ocean

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

Human Perturbation of the Global Carbon Budget

7.7

1.4

4.1

2.3 (4 models)

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Page 22: 1990

atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.7

1.4

4.1

3.0 (5 models)

2000-2008PgC

CO2 f

lux

(PgC

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

2.3 (4 models)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Page 23: 1990

atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.7

1.4

4.1

3.0 (5 models)

2000-2008PgC

CO2 f

lux

(PgC

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

0.3 Residual

2.3 (4 models)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Page 24: 1990

Fate of Anthropogenic CO2 Emissions (2000-2008)

Le Quéré et al. 2009, Nature Geoscience; Canadell et al. 2007, PNAS, updated

1.4 PgC y-1

+7.7 PgC y-1

3.0 PgC y-1

29%

4.1 PgC y-1

45%

26%2.3 PgC y-1

Page 25: 1990

Global Carbon Project 2009

Page 26: 1990

• The efficiency of the natural sinks has being declining over the last 60 years, a trend not fully captured by climate models.

• The human perturbation of the carbon cycle continues to grow strongly and track the most carbon intensive scenarios of the IPCC. The economic crisis will likely have a transitional impact on the growth of CO2 emissions and a undetectable effect on the growth of atmospheric CO2 (because the much larger inter-annual variability of the natural sinks).

Conclusions

Page 27: 1990

• Canadell JG, Raupach MR, Houghton RA (2009) Anthropogenic CO2 emissions in Africa. Biogeosciences 6: 463-468.

• International Monetary Fund (2009) World economic outlook. October 2009.• http://www.imf.org/external/pubs/ft/weo/2009/02/index.htm• Le Quéré C, Raupach MR, Canadell JG, Marland G et al. (2009) Trends in the

sources and sinks of carbon dioxide. Nature geosciences, doi: 10.1038/ngeo689.• Marland G, Hamal K, Jonas M (2009) How uncertain are estimates of CO2 emissions.

Journal of Industrial Ecology 13: 4-7.• Peters GP, Hertwich E G (2008) CO2 embodied in international trade with implications for global

climate policy. Environmental Science and Technology 42, 1401-1407.• Raupach MR, Canadell JG, Le Quéré C (2008) Drivers of interannual to interdecadal

variability in atmospheric in atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5: 1601–1613.

• Sitch S, Huntigford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 1–25, doi: 10.1111/j.1365-2486.2008.01626.x.

• van der Werf GR, Randerson JT, Giglio L, Collatz GL, Kasibhatla PS, Arellano AF, Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6: 3423–3441.

References cited in this ppt

Page 28: 1990

www.globalcarbonproject.org