27
1862 (AMR 1856) Is it possible to predict earthquakes using a TM-71? Xavi Marti

1862 (AMR 1856)

Embed Size (px)

DESCRIPTION

Is it possible to predict earthquakes using a TM-71?. Xavi Marti. 1862 (AMR 1856). www.igs4.com +34 977 840 444. What is the Poisson ratio of the Earth ?. 1862 (AMR 1856). http://en.wikipedia.org/wiki/Earth_tide. 1862 (AMR 1856). Image courtesy of J. Gazquez. - PowerPoint PPT Presentation

Citation preview

Page 1: 1862 (AMR 1856)

1862

(AMR 1856)

Is it possible to predict earthquakes using a TM-71?

Xavi Marti

Page 2: 1862 (AMR 1856)

www.igs4.com+34 977 840 444

Page 3: 1862 (AMR 1856)

http://en.wikipedia.org/wiki/Earth_tide

What is the Poisson ratio of the Earth?

1862

(AMR 1856)

Page 4: 1862 (AMR 1856)

1862

(AMR 1856)

Page 5: 1862 (AMR 1856)

Image courtesy of J. Gazquez

Page 6: 1862 (AMR 1856)

Image courtesy of J. Gazquez

Page 7: 1862 (AMR 1856)

Image courtesy of J. Gazquez

Page 8: 1862 (AMR 1856)

Image courtesy of J. Gazquez

Page 9: 1862 (AMR 1856)

Josef Stemberk, Matthew Rowberry, et al.

Matthew RowberryPusty Zlebska, CZ

Page 10: 1862 (AMR 1856)

Inventor: Dr. Košták

Page 11: 1862 (AMR 1856)

Inventor: Dr. Košták

Page 12: 1862 (AMR 1856)

Inventor: Dr. Košták

Page 13: 1862 (AMR 1856)
Page 14: 1862 (AMR 1856)

1

2

Page 15: 1862 (AMR 1856)

1 2

Page 16: 1862 (AMR 1856)

Inventor: Dr. Košták

http://www.tecnet.cz/index.php?page=view_online_img_en&id=117

Page 17: 1862 (AMR 1856)

Automatic data processing

Page 18: 1862 (AMR 1856)

image1.jpg

9.08158 5.07471

-180 -90 0 90 180 -180 -90 0 90 180

Page 19: 1862 (AMR 1856)

Mesurable semidiurnal oscillation

3 3.2 3.4 3.6 3.8 4-1.5

-1

-0.5

0

0.5

1x 10

-11 Theory

3 3.2 3.4 3.6 3.8 4-0.02

-0.01

0

0.01

0.02Experiment

Time (days)

z

Page 20: 1862 (AMR 1856)

Astronomical & geophysical model

Page 21: 1862 (AMR 1856)

Astronomical & geophysical model

Page 22: 1862 (AMR 1856)

TEM Image courtesy of J. Gazquez

Elastic energy monitoring

grad[Vtidal(t)] = Km*d2/dt2 (z1-z2)|t + grad [other forces]

kakb

Page 23: 1862 (AMR 1856)

Mesurable semidiurnal oscillation

3 3.2 3.4 3.6 3.8 4-1.5

-1

-0.5

0

0.5

1x 10

-11 Theory

3 3.2 3.4 3.6 3.8 4-0.02

-0.01

0

0.01

0.02Experiment

Time (days)

z

Page 24: 1862 (AMR 1856)

0 1 2 3 4 5

-10

0

10

Sig

nal (

a.u.

)Time (days)

input, gravity tidal field

0 1 2 3 4 5

20

40

60

80

100

|A|

Frequency (days)

0 1 2 3 4 5-20

-10

0

10

20

Sig

nal (

a.u.

)

Time (days)

output, measurement

0 1 2 3 4 50

50

100

150

|A|

Frequency (days)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

2

3

Out

put/

Inpu

t

Protocol: 1) Slide-slice data in periods of ~5 days2) Extract only contributions of 1 and 2 days (filter)3) Monitor the changes in the “ratio” (transfer function)

Page 25: 1862 (AMR 1856)
Page 26: 1862 (AMR 1856)

Important remarks

1. We need time dependence to real time monitor the changes in elastic energy. Without time-dependent tidal effects we wouldn’t no monitor elastic (or any) changes. Sismographs arrive late!

2. We need angular resolved (TM71) information because tidal potentials are vectorial

3. Also, because I cannot see any other way to get Z-information, which is in particular the direction showing largest changes

We are unique

Page 27: 1862 (AMR 1856)

Thanks for your attention

[email protected]/~xmarti/talks

Idea by Josef Stemberk, Matthew Rowberry