7
S1 Supporting Information Carbon-Anchored MnO Nanosheets as an Anode for High-Rate and Long-Life Lithium Ion Batteries Ying Xiao, and Minhua Cao* [*] Prof. M. H. Cao, Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: [email protected]

1840571 File000002 29862317 - Cloud Object Storage | … · 2016-02-15 · Core–Shell MnO@Carbon wires 500 200 801 s16 MnO/C sheets 300 (5000) 100 (2000) 1449 (1467) This work Note:

  • Upload
    vankien

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

S1

Supporting Information

Carbon-Anchored MnO Nanosheets as an Anode for High-Rate and Long-Life Lithium Ion Batteries

Ying Xiao, and Minhua Cao*

[*] Prof. M. H. Cao,

Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key

Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of

Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China.

E-mail: [email protected]

S2

Figure S1. Photographs of commercial F127 (a) and freeze-dried F127 (b). (c) TEM

image and photograph of the carbon sample obtained by carbonizing freeze-dried

F127. (d) SEM image of the carbon sample obtained by carbonizing the commercial

F127.

Figure S2. TG curves of the as-formed MnO/C hybrids with different usages of

Pluronic F127. During the whole test process, the MnO phase was oxidized into

Mn2O3, while the carbon was completely removed in the air. Therefore, for the

MnO/C hybrids with Pluronic F127 usages of 0.3 g, 0.5 g, 1.0 g and 1.5 g, the carbon

contents are calculated to be 15.1%, 24.8%, 38.2%, and 50.0%, respectively.

100 200 300 400 500 600 7000

20

40

60

80

100

Weight loss (%)

Temperature (°°°°C)

0.3 g F127

0.5 g F127

1.0 g F127

1.5 g F127

Calcining

(b)

Freeze-drying

(d)

(c)

F127 (a)

S3

S4

Figure S5. (a) The cycle performance of pure carbon at a current density of 0.3 A g-1

.

(b) The rate performance of pure carbon at various current densities.

Figure S6. Discharge-charge profiles of the typical sample cycled at current densities

of 0.3, 0.6, 0.9, 1.5, 3, 5 and 10 A g-1

, respectively.

0 20 40 60 80 1000

100

200

300

400

500

600

0.3 A g-1

Capacity (mAh g

-1)

Cycle number0 20 40 60 80 100 120

0

100

200

300

400

500

600

0.3 A g-1

4108

5

321.51.2

0.9

0.6

0.3

Capacity (mAh g

-1)

Cycle number

(a) (b)

(d)

0 200 400 600 800 1000 12000.0

0.5

1.0

1.5

2.0

2.5

3.0

Voltage (V

)

Capacity (mAh g-1)

0.3 A g-1

0.6 A g-1

0.9 A g-1

1.5 A g-1

3 A g-1

5 A g-1

10 A g-1

S5

Table S1. The comparison of the capacity of present work with reported MnO-based

materials.

Samples

aCurrent

density

(mA g-1

)

bCycle

number

cCapacity

(mAh g-1

) Ref.

MnO/graphene hybrid 200 (2000) 150 (400) 2014 (843) s1

MnO@C nanocomposite 100 80 ca.800 s2

MnO/carbon fibers 100 (1000) 100 (200) 1082 (575) s3

3D-MnO/CNS 100 (5000) 500 (500) 1332 (567) s4

MnO@C nanoplates 200 30 563 s5

Mesoporous MnO/C networks 200 (1500) 200 (200) 1224 (731) s6

Carbon-encapsulated MnO/N-C 1000 700 1268 s7

N-doped MnO/graphene 100 90 772 s8

Hollow porous MnO/C spheres 100 50 702 s9

MnO/C-N hybrid 500 (5000) 170 (400) 1699 (908) s10

Hierarchical nanostructured MnO 98.3 200 782 s11

Porous C–MnO disks 100 140 1044 s12

MnO/Co 100 20 <500 s13

MnO/Co nanocomposites 100 20 <400 s14

MnO/C core shell rods 200 40 about 600 s15

Core–Shell MnO@Carbon wires 500 200 801 s16

MnO/C sheets 300 (5000) 100 (2000) 1449 (1467) This work

Note: The current density values in brackets in row a correspond to the cycles in brackets in row b and

the capacity values in brackets in row c.

References:

(s1) Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of

Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode

Material for Lithium Ion Batteries. Adv. Funct. Mater. 2013, 23, 2436−2444.

(s2) Wang, T. Y.; Peng, Z.; Wang, Y. H.; Tang, J.; Zheng, G. F. MnO

Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates

S6

Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor. Sci.

Rep. 2013, 3, 2693−2701.

(s3) Liu, B.; Hu, X. L.; Xu, H. H.; Luo, W.; Sun, Y. M.; Huang, Y. H.

Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as

High-Performance Anode Materials for Lithium-Ion Batteries. Sci. Rep. 2014, 4,

4229–4234.

(s4) Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X.

H.; Zahiri, B.; Olsen, B. C. Holt, C. M. B. Mitlin, D. Hybrid Device Employing

Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges

Battery−Supercapacitor Divide. Nano Lett. 2014, 14, 1987−1994.

(s5) Zhang, X.; Xing, Z.; Wang, L. L.; Zhu, Y. C.; Li, Q. W.; Liang, J. W.; Yu,

Y.; Huang, T.; Tang, K. B.; Qian, Y. T.; Shen, X. Y. Synthesis of MnO@C

Core–Shell Nanoplates with Controllable Shell Thickness and Their Electrochemical

Performance for Lithium-Ion Batteries. J. Mater. Chem. 2012, 22, 17864−17869.

(s6) Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Controlled Synthesis of

Mesoporous MnO/C Networks by Microwave Irradiation and Their Enhanced

Lithium-Storage Properties. ACS Appl. Mater. Interfaces 2013, 5, 1997−2003.

(s7) Chen, W. M.; Qie, L.; Shen, Y.; Sun, Y. M.; Yuan, L. X.; Hu, X. L.; Zhang,

W. X.; Huang, Y. H. Superior Lithium Storage Performance in Nanoscaled MnO

Promoted by N-Doped Carbon Webs. Nano Energy 2013, 2, 412–418.

(s8) Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.;

Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H.; Xu, H. X.; Cui, G. L.; Chen, L. Q.

Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for

Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 658−664.

(s9) Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu,

W. J.; Tu, J. P.; Zhang, W. K.; Tao, X. Y. Green and Facile Fabrication of Hollow

Porous MnO/C Microspheres from Microalgaes for Lithium-Ion Batteries. ACS Nano

2013, 7, 7083−7092.

S7

(s10) Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering Hybrid

between MnO and N‑Doped Carbon to Achieve Exceptionally High Capacity for

Lithium-Ion Battery Anode. ACS Appl. Mater. Interfaces 2014, 6, 2051−2058.

(s11) Xu, G. L.; Xu, Y. F.; Fang, J. C.; Fu, F.; Sun, H.; Huang, L.; Yang, S.; Sun, S.

G. Facile Synthesis of Hierarchical Micro/Nanostructured MnO Material and Its

Excellent Lithium Storage Property and High Performance as Anode in a

MnO/LiNi0.5Mn1.5O4-δ Lithium Ion Battery. ACS Appl. Mater. Interfaces 2013, 5,

6316−6323.

(s12) Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Porous Carbon-Modified

MnO Disks Prepared by a Microwave-Polyol Process and Their Superior Lithium-Ion

Storage Properties. J. Mater. Chem. 2012, 22, 19190−19195.

(s13) Kokubu, T. K.; Oaki, Y. Y.; Hosono, E. J.; Zhou, H. S.; Imai, H. K.

Biomimetic Solid-Solution Precursors of Metal Carbonate for Nanostructured Metal

Oxides: MnO/Co and MnO-CoO Nanostructures and Their Electrochemical

Properties. Adv. Funct. Mater. 2011, 21, 3673−3680.

(s14) Dang, F.; Oaki, Y. Y.; Kokubu, T. K.; Hosono, E. J.; Zhou, H. S.; Imai, H. K.

Formation of Nanostructured MnO/Co/Solid-Electrolyte Interphase Ternary

Composites as a Durable Anode Material for Lithium-Ion Batteries. Chem. - Asian J.

2013, 8, 760−764.

(s15) Sun, B.; Chen, Z.; Kim, H. S.; Ahn, H.; Wang, G. MnO/C Core–Shell

Nanorods as High Capacity Anode Materials for Lithium-Ion Batteries. J. Power

Sources 2011, 196, 3346−3349.

(s16) Li, X. W.; Xiong, S. L.; Li, J. F.; Liang, X.; Wang, J. Z.; Bai, J.; Qian, Y. T.

MnO@Carbon Core–Shell Nanowires as Stable High-Performance Anodes for

Lithium-Ion Batteries. Chem. - Eur. J. 2013, 19, 11310−11319.