1.7 PARAMETRIC EQ

Embed Size (px)

Citation preview

  • 8/7/2019 1.7 PARAMETRIC EQ

    1/20

    PARAMETRIC

    REPRESENTATIONS OFCONIC SECTIONS

  • 8/7/2019 1.7 PARAMETRIC EQ

    2/20

    IntroductionIntroduction

    2) xyi ! 4) 22 ! yxiiFor example:

    Equations represent a curve in Cartesian coordinate

    )(Ufr!

    Usin) !riFor example: Ucos2) !rii

    Equations represent a curve in polar equations

  • 8/7/2019 1.7 PARAMETRIC EQ

    3/20

    )(tfx!

    These are called parametric equations for the curve.

    )(tgy!

    In this method, the x and y-coordinates of points on

    the curve are given separately as functions of an

    additional variable t, called the parameter.

    IntroductionIntroduction

  • 8/7/2019 1.7 PARAMETRIC EQ

    4/20

    Parametric equation of circleParametric equation of circle

    222 ryx !

    The Cartesian equation of circle

    can be replaced by the parametric equation

    tay

    tax

    sin

    cos

    !

    !

    where (a cos t, a sin t) is a point on the circle

  • 8/7/2019 1.7 PARAMETRIC EQ

    5/20

    Parametric equation of circleParametric equation of circle

    In this case the parameter , t , has graphical

    significance as can be seen in the diagram below.

  • 8/7/2019 1.7 PARAMETRIC EQ

    6/20

    Parametric equation of circleParametric equation of circle

    )cos1( Uax

    Example 1:

    Show that the curve whose parametric equation are

    x = a (1 + cos ) and y= asin represent a circle.

    Solution:

    To convert the parametric equations to Cartesian

    form we eliminate t as follows

    Usin

    ay!

    !@ 1cosa

    xU

    a

    yUsin

    Continue

    (1) (2)

  • 8/7/2019 1.7 PARAMETRIC EQ

    7/20

    Parametric equation of circleParametric equation of circle

    But1sincos

    22! UU

    Hence squaring and adding equating (1) & (2) giving

    11

    22

    !

    a

    y

    a

    x

    ayx !

    22

    1

    This represents a circle with centre (9,0) and radius a.

  • 8/7/2019 1.7 PARAMETRIC EQ

    8/20

    Parametric equation of circleParametric equation of circle

    Example 2:

    Describe and graph the curve represented bythe parametric equations x = cos t and y= sin t0 t 360o

    Solution:

    Continue

    Graph

  • 8/7/2019 1.7 PARAMETRIC EQ

    9/20

    y

    x0

    t=0

    t = /2

    T=

    t=3/2

    (cos t, sin t)

    t

    To identify the curve, weeliminate the parameter.

    Since

    1sincos22

    ! UU

    and since

    x = cos t and y = sin t

    for every point (x,y) on the curve

    This means that all points on thecurve satisfy the equation

    1)(sin)(cos 2222 !! ttyx

    122! yx

    @radius =1 and centre at origin

  • 8/7/2019 1.7 PARAMETRIC EQ

    10/20

    Parametric equation of parabolaParametric equation of parabola

    axy 42!

    The Cartesian equation of parabola

    can be replaced by the parametric equation

    aty

    atx

    2

    2

    !

    !

    where t R

    P (at2, 2at) is a point on the parabola

  • 8/7/2019 1.7 PARAMETRIC EQ

    11/20

    Parametric equation of parabolaParametric equation of parabola

    In this case the parameter , t , has graphical

    significance as can be seen in the diagram below.

    y

    x

    0

    y

    x

    0

    (x,y)

    y=2at

    x=at2

  • 8/7/2019 1.7 PARAMETRIC EQ

    12/20

    Parametric equation of parabolaParametric equation of parabola

    Example 1:Graph the plane curve given parametrically by

    a) x = t2 , y= 2t b) x = t2+ 1 , y= 2t

    Solution:y

    x0

    a) b) y

    x0 (1,0)

    Standard parabola A similar parabola whereeach x coordinate is

    increased by 1 unit

  • 8/7/2019 1.7 PARAMETRIC EQ

    13/20

    Parametric equation of parabolaParametric equation of parabola

    Example 1:Graph the plane curve given parametrically by x = t+1 and

    y= t2-2t, -g < t

  • 8/7/2019 1.7 PARAMETRIC EQ

    14/20

    Parametric equation of parabolaParametric equation of parabola

    To eliminate the parametert as follows

    1xt

    Substitute into the y = t2 2t

    y = (x-1)2 2(x-1)

    y = x2 4x +3

    y

    x0

  • 8/7/2019 1.7 PARAMETRIC EQ

    15/20

    Parametric equation of an ellipseParametric equation of an ellipse

    12

    2

    2

    2

    !

    b

    y

    a

    x

    The Cartesian equation of an ellipse

    can be replaced by the parametric equation

    tby

    tax

    sin

    cos

    !

    !

    where (a cos t, b sin t) is a point on the ellipse

  • 8/7/2019 1.7 PARAMETRIC EQ

    16/20

  • 8/7/2019 1.7 PARAMETRIC EQ

    17/20

    Parametric equation ofellipseParametric equation ofellipse

    To eliminate the parameterU as follows

    Ucos8!x Usin4!y

    8

    cosx

    !@ U4

    siny

    !U

    Substitute into the Pythagorean identity

    18

    22

    !

    y

    1sincos22

    ! UU

    11664

    22

    !yx

    y

    x0 10

    10

    -10

    -10

    The graph is an ellipse

  • 8/7/2019 1.7 PARAMETRIC EQ

    18/20

    Parametric equation ofellipseParametric equation ofellipseExample 2:

    Find parametric equations for the conic section with thegiven equation 25x2 + 9y2 100x + 54y - 44 = 0

    Solution:

    125

    )3(

    9

    )2( 22!

    yx

    By completing the square in x and y we obtain

    the standard form

    so, centre of ellipse (2, -3), major axis on line x=2

    since cos2 U + sin2 U = 1, so

    Ucos3

    2!

    xUsi

    4

    3!

    y

    therefore x = 2 +3 cos U

    y = -3+

    5 sin U

    -g

  • 8/7/2019 1.7 PARAMETRIC EQ

    19/20

    Parametric equation ofHyperbolaParametric equation ofHyperbola

    12

    2

    2

    2

    !

    b

    y

    a

    x

    The Cartesian equation of hyperbola

    can be replaced by the parametric equation

    tby

    tax

    tan

    sec

    !

    !

    where (a sec t, b tan t) is a point on the hyperbola

  • 8/7/2019 1.7 PARAMETRIC EQ

    20/20

    Parametric equation of hyperbolaParametric equation of hyperbolaExample 1:

    Find parametric equations for the conic section with thegiven equation x2 - 16y2 10x +32y - 7 = 0

    Solution:

    1)1(16

    )5( 22

    !

    y

    x

    By completing the square in x and y we obtain

    the standard form

    so, centre of hyperbola (5, 1) & transverse axis

    on line y = 1

    since sec2 U - tan2 U = 1, so

    Usec4

    5!

    xUtan1!y

    therefore x = 5 + 4 sec U

    y = 1+

    tan U

    -g