16 Mosfet I-V and C-V

Embed Size (px)

Citation preview

  • 8/9/2019 16 Mosfet I-V and C-V

    1/22

    1

    The channel current is: I = V (q nS μ W) /L = V q μ W (ci/q) × (VGS – VT) /L

    MOSFET I-V characteristics:general consideration

    The current through the channelis

    V  I 

     R=

    where V is the DRAIN – SOURCE voltage

    Here, we are assuming that V

  • 8/9/2019 16 Mosfet I-V and C-V

    2/22

    2

    Key factors affecting FET performance (for any FET type):

    In most MOSFET applications, an input signal is the gate voltage VGand the output is the drain current Id.

    The ability of MOSFET to amplify the signal is given by the

    output/input ratio: the transconductance, g m = dI/dV GS.

    MOSFET transconductance

    L I and gm

    High carrier mobility and short gate length L are the key features of FETs

    I =  W ci  (VGS – VT) V /L

    gm = V  W ci /L

    (V is the Drain – Source voltage)

    From this:

    μ I and gm

  • 8/9/2019 16 Mosfet I-V and C-V

    3/22

    3

    Modern submicron gate FET

    V-groove quantum wire transistor

    Source Drain

    Gate

    Operating frequency – up to 300 GHz

    2 μm

  • 8/9/2019 16 Mosfet I-V and C-V

    4/224

    When no drain voltage V is applied, the entire channel has the same potential as the Source, i.e. VCH = 0.

    In this case, as we have seen, nS = (ci/q) × (VGS – VT)

    Drain current saturation in MOSFET

    -+ G

    Semiconductor 

    The gate length L

    DS

    +-

    V

    VGS

    where VGS is the gate – source voltage and VT is the threshold voltage

    When the drain voltage V is applied, the channel potential changesfrom VCH = 0 on the Source side to VCH= V on the drain side.In this case, the induced concentration in the channel also depends

    on the position.

  • 8/9/2019 16 Mosfet I-V and C-V

    5/225

    Drain current saturation in MOSFET

    -+ G

    Semiconductor 

    The gate length L

    DS

    +-

    V

    VGS

    With the drain voltage V is applied, the actual induced concentration inany point x of the channel depends on the potential difference between

    the gate and the channel potential V(x) at this point.This is because this local potential difference defines the voltage thatcharges the elementary gate – channel capacitor.On the source end of the channel (x=0, V

    CH=0):

    nS(0) = (ci/q) × (VGS – VT).On the drain end of the channel (x=L, VCH= V):nS(L) = (ci/q) × (VGS – VT - V) < nS(0)

    At any point between source and drain,nS(L) < nS(x) = (ci/q) × [VGS – VT – V(x)] < nS(0)

  • 8/9/2019 16 Mosfet I-V and C-V

    6/226

    L

    nS

    V=0

    VGS > VT

    x

    Drain current saturation in MOSFET

    V1 > 0

    V2 > V1

    V3 = VGS-VT

    G

    Semiconductor 

    DS

    VVGS

    Id

    V

  • 8/9/2019 16 Mosfet I-V and C-V

    7/22

    7

    MOSFET Modeling

    1. Constant mobility modelAssuming a constant electron mobility,μn, using the simple charge control

    model the absolute value of the electronvelocity is given by,

    vn = μnF = μndV 

    dx

    With the gate voltage above the threshold, the drain current, I d , is given by

     I d  = WqμndV 

    dxns Where W is the device width

    Rewriting,Where V GT = V GS – V T .

    n i GT  

     I dV dx

    W c V V  ( )μ =

    dV vs dx dependence represents a series connection of the elementary

     parts of MOSFET channel(for the series connection, voltages add up whereas current is the same).

  • 8/9/2019 16 Mosfet I-V and C-V

    8/22

    8

    Integrating along the channel, from x=0 (V=0) to x=L (V=VDS), we obtain:

     I d 

    =W μn ci

     L  V 

    GT   V  DS 

     I d  = W μnci

     LV GT  −

     V  DS 

    2

    ⎛⎝⎜

     ⎠⎟ V  DS 

    For, V  DS 

  • 8/9/2019 16 Mosfet I-V and C-V

    9/22

    9

    Channel pinch off and current saturation

    Pinch off occurs when VG

     – VCH

    = VT

    at the drain end;nS (L) =0; the current Id saturates

    When,

    V  DS = V SAT  = V GS −V T 

    where V SAT  is the saturation voltage.

    The saturation (pinch off) current,

     I d  = I sat  = W μnci2 LV GT 2

     I d  = W μnci

     L

    V GT  − V  DS 

    2

    ⎜ ⎞

     ⎠

    ⎟ V  DS 

    From the Id – V dependence,at VDS=VSAT = VGT,

  • 8/9/2019 16 Mosfet I-V and C-V

    10/22

    10

    Transconductance

    Defined as

    gm =dI 

    dV GS 

      V  DS 

    From the equations for the drain current, I d , derived above, we find that

    gm =

    βV  DS ,   for V  DS  V SAT 

    ⎨⎩ β = μnciW 

     Lwhere

    High transconductance is obtained with high values ofthe low field electron mobility, thin gate insulator layers(i.e., larger gate insulator capacitance ci = εi/d i), and

    large W / L ratios.

  • 8/9/2019 16 Mosfet I-V and C-V

    11/22

    11

    2. Velocity saturation model

    In semiconductors, electric field F accelerates electrons, i.e. the drift velocity of

    electron increases: v=μ F 

    However, at high electric fields this velocitysaturates

    In modern short channel devices with channellength of the order of 1 µm or less, the electricfield in the channel can easily exceed the

    characteristic electric, Fs field of the velocitysaturation

    F s =

     vs

    μ n

  • 8/9/2019 16 Mosfet I-V and C-V

    12/22

    12

    Electric field in the channel

    the electric field in the channel in the direction parallel to the semiconductor-insulator interface

    F =

      I d 

    qμ nns  V ( )W 

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5

       P  o   t  e  n   t   i  a   l    (   V   )

    Distance (µm)

    1

    1.2

    0

    2

    4

    6

    8

    10

    1214

    16

    18

    0 1 2 3 4 5

       E   l  e  c   t  r   i  c   F   i  e   l   d   (   k   V   /  c  m

       )

    Distance (µm)

    1

    1.2

    0 1 2 3 4 5   S  u  r   f  a  c  e   C  o  n  c  e  n   t  r  a   t   i  o  n   (   1   0   1   2

       1   /  c  m

       2   )

    Distance (µm)

    1

    1.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Potential, electric field, and surface electron concentration in the channel of a Si MOSFET for V  DS = 1 and1.2 V.  L = 5 µm, di = 200 Å, µn = 800 cm2/Vs, VGS = 2 V, VT = 1 V.

    vn= μ

    nF = μ

    n

    dV 

    dx

  • 8/9/2019 16 Mosfet I-V and C-V

    13/22

    13

    Once the electric field at the drain side of the channel (where the electric fieldis the highest) exceeds Fs, the electron velocity saturates, leading to the currentsaturation.

    In short-channel MOSFETs, this occurs at the drain bias smaller than the pinch-off voltage V  DS = V GT .

    Field at drain

    Saturation condition,   F s

    =  I SAT 

    μ nci  V GT  − V SAT ( )W 

    n i GT  

     I dV dx

    W c V V  ( )μ =

    d  x L

    n i GT DS  

     I dV F L

    dx W c V V  ( )

    ( )μ == = −

  • 8/9/2019 16 Mosfet I-V and C-V

    14/22

    14

    Saturation current versus gate-to-source voltage for 0.5 µm gate and 5 µm gate

    MOSFETs. Dashed lines: constant mobility model, solid lines: velocity

    saturation model.

  • 8/9/2019 16 Mosfet I-V and C-V

    15/22

    15

    MOSFET saturation current accounting for velocity saturation:

     I sat =  gchV GT 

    1+ 1+  V GT 

    V  L

    ⎛⎝⎜

     ⎞ ⎠⎟

    2

    where V  L = F s L and the channel conductance g ch = q µ n n s W / L,

    where n s=ci V GT  /q

    When FS L >> VGT (MOSFET with long gate or no velocity saturation):

     I sat =  g

    chV 

    GT 

    1+ 1+  V GT 

    V  L

    ⎝⎜

     ⎞

     ⎠⎟

    22ch

    sat GT  g I V ≈  I d  = I sat  =

     W μnci2 L

    V GT 2

    (Expression obtained before on slide 9)

    When FS L

  • 8/9/2019 16 Mosfet I-V and C-V

    16/22

    16

    Source and drain series resistances.

    Source and drain parasitic series resistances, Rs and Rd , play an important role,

    especially in short channel devices where the channel resistance is smaller.

    Gate

    DrainSource

     I Rs  I R

    d + V + DS 

     Rs

     Rd 

    d d V =ds

    V GS  = V gs − I d  Rs

    V  DS  = V ds − I d   Rs + Rd ( )

  • 8/9/2019 16 Mosfet I-V and C-V

    17/22

    17

    The measured transconductance(extrinsic)

      gm =  dI d 

    dV gs V ds

    =const

    The intrinsic transconductance(VGS and VDS being intrinsicvoltages)

    gmo =  dI d 

    dV GS  V  DS =const

    Where gd0 is the drain conductance   gdo =

      dI d 

    dV  DS  V GS =const

    These parameters are related as   gm =  gmo

    1 + gmo R s + gdo   R s + Rd ( )

    Similarly, extrinsic drain conductance can be written as,

    gd 

    =g

    do

    1 + gmo R s + gdo   Rs + Rd ( )

    In the current saturation region (VDS > VSAT), gd0 ≈ 0

  • 8/9/2019 16 Mosfet I-V and C-V

    18/22

    18

    The saturation current in MOSFET with parasitic resistances:

     I sat =

      gchoV gt 

    1+ gcho Rs + 1+ 2gcho Rs +   V gt / V  L( )2

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 0.5 1 1.5 2 2.5

       D  r  a   i  n   C  u  r  r  e  n   t   (  m   A   )

    Drain-to-Source Voltage (V)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 0.5 1 1.5 2 2.5

       D  r  a   i  n   C  u  r  r  e  n   t

       (  m   A   )

    Drain-to-Source Voltage (V)

    MOSFET output characteristics calculated for zero parasiticresistances and parasitic resistances of 5 Ω. Gate length is 1 µm

    where V  L = F s L and gcho = ciV gt µnW / L.

    MOSFET i l h i i

  • 8/9/2019 16 Mosfet I-V and C-V

    19/22

    19

    MOSFET capacitance-voltage characteristics

    To simulate MOSFETs in electronic circuits, we need to have models for boththe current-voltage and the capacitance-voltage characteristics.

    As MOSFETs is a three terminal device, we need three capacitances: Cgs, Cgdand Cds.

    Capacitance (differential) is defined as C = dQ/dV . For example,C  gs = dQ s /dV  gs (where Qs is the channel charge between S and G)

    Therefore, the total channel charge Q N has to be divided (partitioned) betweenthe source and drain charges. How should we partition Q N  between Qs and Qd ?

    It is clear from the device symmetry that at zero drain bias Qs = Qd . If the totalchannel charge is Q N, then Qs = 0.5 Q N and Qd = 0.5 Q N.

    G

    Semiconductor 

    DS

    VVGS

    MOSFET it lt h t i ti

  • 8/9/2019 16 Mosfet I-V and C-V

    20/22

    20

    In this case, we let Qs = F  pQ N and Qd = (1 –  F  p)Q N ,where F  p is the partitioning factor. In saturation, F p > 0.5

    The challenge using this model is to determine F p as a function of Vgs and V

    In the saturation regime, the charge distribution is no longer symmetrical: Q s > Q d 

    MOSFET capacitance-voltage characteristics

    M d l f MOSFET it

  • 8/9/2019 16 Mosfet I-V and C-V

    21/22

    21

    Meyer model for MOSFET capacitance(used in SPICE)

    22

    13 2

    GT DS  gs i f  

    T DS 

    V V C C C 

    V V 

    ⎡ ⎤⎛ ⎞−⎢ ⎥= − +⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

    C i = ci  × W × L is the channel capacitance

    The capacitance C  f  is the fringing capacitance.

    C  f  ≈ βc εsW where βc ≈ 0.5

    22

    13 2

    GT gd i f  

    T DS 

    V C C C 

    V V 

    ⎡ ⎤⎛ ⎞⎢ ⎥= − +⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

    In saturation, VDS has to be replaced by VSAT (where VSAT = VGT)

    This results in CGS SAT = (2/3) Ci+Cf ;CGd SAT = Cf 

    Meyer model for MOSFET capacitance

  • 8/9/2019 16 Mosfet I-V and C-V

    22/22

    22

    Meyer model for MOSFET capacitance(used in SPICE)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    VDS/VSAT

    CGD/Ci

    CGS/Ci

         C     /     C

         i

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    VDS/VSAT

    CGD/Ci

    CGS/Ci

         C     /     C

         i