Document1

Embed Size (px)

DESCRIPTION

1

Citation preview

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    11

    SECIUNEA

    SECTION

    MECANIC APLICAT, REZISTENA

    MATERIALELOR, ORGANE DE MAINI

    APPLIED MECHANICS, STRENGTH OF MATERIALS,

    MACHINE PARTS

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    12

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    13

    ANALIZA POZIIONALA IN

    FORMA ANALITICA A GRUPELOR ASSUR DE CLASA A

    TREIA RP-RP-PP I RP-PR-PP

    Sevasti Mitsi, prof. dr. eng., Department of Mechanical

    Engineering, Aristotle University of Thessaloniki, Greece

    Konstantinos-D. Bouzakis, prof. dr. eng., Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece

    Gabriel Mansour, ass. prof. dr. eng., Department of Mechanical

    Engineering, Aristotle University of Thessaloniki, Greece

    Iulian Popescu, prof. dr. eng., Faculty of Mechanics, University of Craiova, Romania

    REZUMAT: Lucrarea prezint analiza poziional in forma analitic a dou grupe Assur de clasa a 3-a, ordinul 3, ce includ dou cuple de rotaie i patru cuple de translaie (triadele RP-RP-PP si RP-PR-PP). Scopul analizei poziionale este determinarea tuturor configuraiilor posibile ale triadei fiind cunoscute poziiile cuplelor exterioare. Analiza poziional conduce la un sistem liniar de patru ecuaii cu patru necunoscute. Metodele propuse se exemplific pe dou aplicaii numerice. Cuvinte cheie: analiz poziional, triada 1. INTRODUCERE

    Grupele Assur de clasa a 3-a, ordinul 3 cu cuple de rotaie i translaie sunt frecvent utilizate in domeniul mecanismelor plane. Analiza poziional a unei grupe Assur stabilete toate configuraiile posibile ale grupei, cunoscndu-se poziiile articulaiilor externe i dimensiunile elementelor. Determinarea tuturor configuraiilor posibile a diferitelor modele cinematice ale grupei Assur

    POSITION ANALYSIS IN ANALYTICAL FORM OF RP-RP-PP AND RP-PR-PP CLASS-THREE

    ASSUR GROUPS

    Sevasti Mitsi, prof. dr. eng., Department of Mechanical

    Engineering, Aristotle University of Thessaloniki, Greece

    Konstantinos-D. Bouzakis, prof. dr. eng., Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece

    Gabriel Mansour, ass. prof. dr. eng., Department of Mechanical

    Engineering, Aristotle University of Thessaloniki, Greece

    Iulian Popescu, prof. dr. eng., Faculty of Mechanics, University of Craiova, Romania

    ABSTRACT: This paper presents the position analysis in analytical form of two Assur groups of class 3 and order 3 including two revolute and four prismatic joints (RP-RP-PP and RP-PR-PP triads). The aim of this position analysis is to determine all possible configurations of the Assur group, for a given position of its external joints. The position analysis leads to a linear system of four equations with four unknown parameters. Two numerical applications of the proposed method are presented. Keywords: position analysis, class-three Assur group 1. INTRODUCTION

    Frequently the three-class Assur groups

    with revolute and prismatic pairs are used in different family-three planar mechanisms.The position analysis for an Assur group is to find all possible configurations, when the position of the external joints and dimensions of the links are given. Several papers covering the determination of all possible configurations of different three-class Assur groups have been

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    14

    de clasa a 3-a, ordinul 3 constituie obiectivul lucrrilor [1-8]. Soluii analitice pentru triada cu cuple de rotaie sunt prezentate in [2,3], unde se obin 6 configuraii de asamblare sub form complex. Unele din modelele cinematice ale grupei Assur cu cuple de rotaie si translaie sunt cercetate in [4-8]. In [4] se face analiza poziional sub forma polinomial a modelelor cinematice RR-RR-PR, RR-RR-RP, RR-RP-PR si PR-PR-PR, iar in [6] a modelelor cinematice RR-RP-RP, RR-PR-PR, RR-RR-PP, PR-PR-RP i RR-PR-PP. Pe de alt parte, analiza poziional a triadei cu trei cuple de translaie interioare RP-RP-RP este rezolvat in [8], unde se obin dou moduri de asamblare in domeniul complex. In prezenta lucrare se abordeaz problema analizei poziionale a dou noi modele cinematice a grupei Assur de clasa a 3-a, ordinul 3 avnd dou cuple de rotaie i patru de translaie (RP-RP-PP si RP-PR-PP). 2. GRUPA ASSUR DE CLASA A 3-A RP-RP-PP n fig. 1 este dat triada RP-RP-PP cu trei cuple prismatice interioare i una exterioar. Forma simbolic a acestei triade este definit astfel: AC1-DC2-F1C3, unde AC1, DC2 i F1C3 sunt elemente binare, primul i al doilea simbol al elementului binar corespunznd cuplei exterioare, respectiv interioare, R fiind cupl de rotaie iar P cupl prismatic. Pentru a se face analiza poziional a triadei, fr a pierde din generalitate, se adopt un sistem de coordonate cartezian, cu originea n cupla exterioar A, axa x trecnd prin A i prin cupla exterioara D (fig. 1). Poziiile cuplelor exterioare de rotaie A (0, 0), D (d, 0) i poziia punctului auxiliar F (xF, yF) situat pe direcia ghidajului cuplei prismatice exterioare F1, sunt cunoscute. Se cunosc de asemenea distanele d1, d2, d3, d4, d5 i unghiurile i . Dimensiunile C1C2, C2C3 i C3C1 ale elementului ternar sunt cunoscute. Datorita faptului ca elementul ternar este conectat cu celelalte elemente ale triadei prin cuple prismatice rezulta ca laturile triunghiului BCE rmn constante in timpul

    published [1-8]. Analytical solutions of the position analysis of the Assur group of class 3 and order 3 (triad) with revolute joints only are presented in Refs. [2,3], where six assembly configurations in the complex field are obtained. Also, some kinds of the class-three Assur group with revolute and prismatic joints are investigated in Refs. [4-8]. In Ref. [4] the position analysis in polynomial form of four kinds of the class-three Assur group (RR-RR-PR, RR-RR-RP, RR-RP-PR and PR-PR-PR) is solved. The position analysis of the different types of the class-three Assur group (RR-RP-RP, RR-PR-PR, RR-RR-PP, PR-PR-RP and RR-PR-PP) is analyzed in Ref. [6]. On the other hand, the polynomial form position analysis of the RP-RP-RP class-three Assur group including three prismatic joints is solved in Ref. [8] where two assembly configurations in the complex domain are obtained.

    In the present paper two new kinematic models of the class-three Assur group (RP-RP-PP and RP-PR-PP) are investigated. 2. RP-RP-PP CLASS-THREE ASSUR GROUP

    In Fig. 1 a RP-RP-PP triad with one external and three internal prismatic joints is illustrated. The symbolic form of triad is defined as: AC1-DC2-F1C3, where AC1, DC2 and F1C3 are the binary links, first and second symbol of the binary link correspond to external and internal joint respectively, R denotes a revolute pair and P a prismatic pair. To solve the position analysis of this Assur group, without loss of generality, a local Cartesian coordinate system, with origin the external joint A, and x-axis from A to external joint D is chosen (Fig. 1). The position of the external revolute joints A (0, 0), D (d, 0) and of the auxiliary point F (xF, yF) situated on sliding direction of the external prismatic joint F1 are known. Also the distances d1, d2, d3, d4, d5 and the angles , are given. The dimensions C1C2, C2C3 and C3C1 of the ternary link are given. Due to the fact that the ternary link is connected with the other links

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    15

    micrii mecanismului i sunt cunoscute. Din acest motiv, dimensiunile lBC, lBE i lCE i unghiurile i pot fi considerate ca date geometrice ale triadei.

    of the triad through prismatic joints, the sides of the triangle BCE remain constant during the motion of the linkage and are also known. For this reason, the dimensions lBC, lBE and lCE and the angles and can be considered as geometrical data of the triad.

    Fig. 1. Triada RP-RP-PP

    Fig. 1. The triad RP-RP-PP

    Din considerente geometrice, unghiurile 1 si 2 sunt:

    From geometrical considerations, the angles 1 and 2 are:

    1 (1) 2 (2)

    Poziia elementelor triadei este descrisa de deplasrile s1, s2, s3 i s4. Pentru evaluarea acestor deplasri se folosesc urmtoarele ecuaii scrise pentru contururi nchise. Conturul ABEFA:

    The position of the triad links is described by the displacements s1, s2, s3 and s4. In order to evaluate these displacements, the following loop-closure equations are used. Loop ABEFA:

    1 1 1 1 BE 1 F 4 3 3d cos s sin l sin( ) x s cos d sin s sin( ) (3) 1 1 1 1 BE 1 F 4 3 3d sin s cos l cos( ) y s sin d cos s cos( ) (4) Conturul ABCDA: Loop ABCDA:

    1 1 1 BC 1 2 2 2 2d cos ( s l )sin d d cos s sin (5) Conturul DCEFD: Loop DCEFD:

    2 2 2 CE 1 F 4 3 3d sin ( s l )cos y s sin d cos s cos( ) (6) Din ecuaiile (3-6) i lund in considerare

    ecuaiile (1) i (2), dup transformri, se obin:

    From the equations (3-6) and taking into account equations (1) and (2), after transformations, are obtained:

    i 1 i 2 i 3 i 4 iA s B s C s D s E i=1,2,3,4 (7) unde coeficienii Aj Bi, Ci i Di (i=1,2,3,4) depind numai de datele triadei i coeficienii

    where the coefficients Aj Bi, Ci and Di (i=1,2,3,4) depend on the triad data and the

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    16

    A4= B1= B2= C3 = D3 =0. Ecuaiile (7) reprezint un sistem of patru

    ecuaii liniare in deplasrile s1, s2, s3 i s4. Acest sistem este rezolvat analitic. Soluia pentru deplasrile si (i=1,2,3,4) este listat in Anex.

    Prin urmare, numrul maxim a modurilor de asamblare a triadei RP-RP-PP triadei este unu.

    3. GRUPA ASSUR DE CLASA A 3-A RP-PR-PP

    O procedura similar cu cea descris anterior poate fi utilizat la analiza poziional a triadei RP-PR-PP cu dou interioare i dou exterioare cuple prismatice (Fig. 2). Sistemul local de coordonate cu originea in cupla exterioar de rotaie A este orientat astfel ca AD, unde D este un punct auxiliar situat pe direcia de translaie a cuplei de translaie D1, coincide cu axa x. Datele de intrare pentru analiza poziional sunt coordonatele cuplei exterioare A(0,0), coordonatele punctelor auxiliare D(d,0) i F(xF, yF), distanele d1, d2, d3, d4, d5 si unghiurile , , 1, 2.

    coefficients A4= B1= B2= C3 = D3 =0. Equations (7) represent a system of four

    linear equations in displacements s1, s2, s3 and s4.This system is solved analytically. The solution for displacements si (i=1,2,3,4) are listed in the Appendix.

    Therefore the maximum number of the assembly modes of the RP-RP-PP triad is one.

    3. RP-PR-PP CLASS-THREE ASSUR GROUP

    A similar procedure previously described can be used for the position analysis of the RP-PR-PP triad with two internal and two external prismatic joints (Fig. 2). The local coordinate system, located at external revolute joint A, is oriented such that AD, where D is an auxiliary point situated on sliding direction of the external prismatic joint D1, coincidents with x-axis. The input data for this position analysis are the coordinates of the external joint A(0, 0), the coordinates of the auxiliary points D(d,0) and F(xF, yF), the distances d1, d2, d3, d4, d5 and the angles , , 1, 2.

    Fig. 2. Triada RP-PR-PP

    Din considerente geometrice se poate

    scrie: From geometrical considerations, the

    angles is: 2 (8)

    Poziia elementelor triadei este descris cu ajutorul deplasrilor s1, s2, s3 i s4. Pentru determinarea acestor deplasri se folosesc

    The position of the triad links is described by the displacements s1, s2, s3 and s4. In order to evaluate these displacements, the following

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    17

    urmtoarele ecuaii de contur. Conturul ABCEFA:

    loop-closure equations are used. Loop ABCEFA:

    1 3 1 F 4 2 5 2 3 2 2 2( d d )cos s sin x s cos d sin s sin( ) d cos( ) (9) 1 3 1 F 4 2 5 2 3 2 2 2( d d )sin s cos y s sin d cos s cos( ) d sin( ) (10)

    Conturul ABCDA: Loop ABCDA: 1 3 1 2 1 4 1( d d )cos s sin d s cos d sin (11)

    Conturul DCEFD: Loop DCEFD: 2 1 4 1 F 4 2 5 2 3 2 2 2s sin d cos y s sin d cos s cos( ) d sin( ) (12)

    Din ecuaiile (9-12) i lund in considerare ecuaia (8), dup transformri, se obine un sistem liniar de patru ecuaii cu patru necunoscute s1, s2, s3 i s4. Sistemul de ecuaii are forma ecuaiilor (7), unde coeficienii Aj Bi, Ci i Di (i=1,2,3,4) depind de datele triadei i coeficienii A4=B1=B2=C3=D1=D2=D3=0. Sistemul obinut este rezolvat analitic i deci numrul maxim a modurilor de asamblare a triadei RP-PR-PP este egal cu unu. 4. APLICAII NUMERICE

    In aceast seciune se prezint dou aplicaii numerice ale procedurilor propuse.

    Metoda prezentat in seciunea 2 se aplic la primul exemplu numeric pentru triada RP-RP-PP (Fig. 1). Datele geometrice i poziiile cuplelor exterioare A, D si F1 sunt date in partea superioar a Tabelului 1.

    Pentru geometria considerat, rezolvnd sistemul liniar de ecuaii (7), se obine o soluie pentru deplasrile s1, s2, s3 i s4 (vezi Tabelul 1). Configuraia triadei ce corespunde acestei soluii este ilustrat in Fig. 3 stnga.

    From the equations (9-12) and taking into account equation (8), after transformations, is obtained a system of four linear equations in displacements s1, s2, s3 and s4, written as equations (7), where the coefficients Aj Bi, Ci and Di (i=1,2,3,4) depend on the triad data and the coefficients A4=B1=B2=C3=D1=D2=D3 =0. This linear system is solved analytically and therefore the maximum number of the assembly modes of the RP-PR-PP triad is one. 4. NUMERICAL APPLICATION

    In this section the proposed procedures are applied to corresponding numerical examples. The method presented in Section 2 is applied in the first numerical example for RP-RP-PP triad with one external and three internal prismatic joints (Fig.1). The geometrical data, the position of external joints A, D and F1 are given in the up part of the Table 1. For the specific geometry here considered, by solving the equations linear system (7), one solution for displacements s1, s2, s3 and s4 is obtained (see Table 1). The corresponding configuration of the RP-RP-PP triad is presented in Fig. 3 left.

    Tabelul 1. Date i soluii pentru triada RP-RP-PP Table 1. Data and solutions of the RP-RP-PP triad

    Data xF=86.16, yF=54.92, lBE=43.6, lBC=54.9, lCE=67.66, =122.34,

    =98.3, d=106.74, d1=30, d2=25.15, d3=35.08 Config. s1 s2 s3 s4

    1 14. 4 19.85 15.33 27.64

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    18

    In al doilea exemplu numeric, folosind procedura descris in seciunea 3, se consider analiza poziional a triadei RP-PR-PP (vezi Fig. 2). Datele geometrice i poziia cuplelor externe A, D1 i F1 sunt date in Tabelul 2. Soluia pentru deplasrile s1, s2, s3 i s4 sunt inserate in Tabelul 2, iar configuraia corespunztoare a triadei este ilustrat in partea dreapta a Fig. 3.

    In the second example, using the procedure described in Section 3, the position analysis of the RP-PR-PP triad is considered (see Fig. 2). The geometrical data, the position of external joints A, D1 and F1 are inserted in the up part of the Table 2.The solution for displacements s1, s2, s3 and s4, obtained by solving the equation linear system (7), is given in Table 2. The corresponding configuration of the RP-PR-PP triad is presented in Fig. 3 right.

    Tabelul 2. Date si soluii pentru triada RP-PR-PP Table 2. Data and solutions of the RP-PR-PP triad

    Data xF=119.83,yF=11.35,=64.19, =138.04, 1=104.13,2=172.91,

    d=118.85, d1=36.22, d2=38.05, d3=40.97, d4= 29.09, d5=25.08 Config. s1 s2 s3 s4

    1 49.47 60.33 19.35 51.53

    Fig. 3. Modul de asamblare a triadelor RP-RP-PP(a) i RP-PR-PP (b) Fig. 3. Assembly mode of the RP-RP-PP (a) and RP-PR-PP (b) triads

    5. CONCLUZII

    In lucrare se prezint o metod analitic

    pentru analiza poziional a grupelor Assur de clasa a 3-a, ordinul 3 ce includ dou cuple de rotaie i patru cuple de translaie (RP-RP-PR i RP-PR-PP). Analiza poziional a acestor grupe conduce la un sistem liniar de patru ecuaii cu patru necunoscute, oferind maxim un mod de asamblare a triadelor studiate.

    Soluiile obinute pot fi utilizate sub forma de subrutine pentru soluii simbolice ale grupelor Assur de diferite clase i in

    5. CONCLUSIONS

    In the present paper, an analytical

    procedure is developed for the position analysis of the Assur group of class 3 and order 3 with two revolute and four prismatic joints (RP-RP-PR and RP-PR-PP). Position analysis of these Assur groups leads to a system of four linear equations in four unknowns and therefore the maximum number of the assembly modes of the investigated triads is one.

    The obtained solutions can be introduced

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    19

    consecin la analiza poziional a mecanismelor plane complexe cu structuri decuplate. BIBLIOGRAFIE 1. Peysah, E. E. , Machinery 5 55-61 (in

    Russian), 1985 2. Gosselin, M. C., Sefrioui, J., Richard, J.

    M, Solutions polynomiales au probleme de la cinematique directe des manipulateurs paralleles plans a trois degree de liberte, Mechanism and Machine Theory, vol. 27, no. 2 , pp. 107-119, 1992

    3. Kong, X., Gosselin, C.M., Forward displacement analysis of class-three analytic 3-RPR, planar parallel manipulators, Mechanism and Machine Theory, vol. 36, pp. 1009-1018, 2001

    4. Mitsi, S., Bouzakis, K. D., Mansour, G., Popescu, I., Position analysis in polynomial form of planar mechanisms with Assur groups of class 3 including revolute and prismatic joints, Mechanism and Machine Theory, vol. 38, no. 12, pp. 1325 1344, 2003

    5. Chung, W. Y., The position analysis of Assur kinematic chain with five links, Mechanism and Machine Theory, vol. 40, pp. 1015-1029, 2005

    6. Mitsi, S., Bouzakis, K. D., Mansour, G., Popescu I., Position analysis in polynomial form of class-three Assur groups with two or three prismatic joints, Mechanism and Machine Theory, vol. 43, pp. 1401 1415, 2008

    7. Mitsi S., Bouzakis K.-D., Mansour G., Popescu I., Position analysis in polynomial form of class-three Assur group with two internal and one external prismatic joints (RP-RP-PR), Annals of the Constantin Brancusi University of Targu Jiu, Engineering series, nr. 2, Romania, pp. 41-48, 2009

    8. Mitsi S., Bouzakis K.-D., Mansour G., Popescu I., Position analysis in polynomial form of class-three RP-RP-RP Assur Group, Intern. Conference of Mechanical Engineering ICOME 2010,

    into a library of subroutines for symbolic solutions of the Assur groups of different class and used into a general procedure for position analysis in polynomial form of the complex planar mechanisms with decoupled structure. REFERENCES 1. Peysah, E. E. , Machinery 5 55-61 (in Russian), 1985

    2.Gosselin, M. C., Sefrioui, J., Richard, J. M, Solutions polynomiales au probleme de la cinematique directe des manipulateurs paralleles plans a trois degree de liberte, Mechanism and Machine Theory, vol. 27, no. 2 , pp. 107-119, 1992 3.Kong, X., Gosselin, C.M., Forward displacement analysis of class-three analytic 3-RPR, planar parallel manipulators, Mechanism and Machine Theory, vol. 36, pp. 1009-1018, 2001 4.Mitsi, S., Bouzakis, K. D., Mansour, G., Popescu, I., Position analysis in polynomial form of planar mechanisms with Assur groups of class 3 including revolute and prismatic joints, Mechanism and Machine Theory, vol. 38, no. 12, pp. 1325 1344, 2003 5.Chung, W. Y., The position analysis of Assur kinematic chain with five links, Mechanism and Machine Theory, vol. 40, pp. 1015-1029, 2005 6.Mitsi, S., Bouzakis, K. D., Mansour, G., Popescu, I., Position analysis in polynomial form of class-three Assur groups with two or three prismatic joints, Mechanism and Machine Theory, vol. 43, pp. 1401 1415, 2008 7.Mitsi S., Bouzakis K.-D., Mansour G., Popescu I., Position analysis in polynomial form of class-three Assur group with two internal and one external prismatic joints (RP-RP-PR), Annals of the Constantin Brancusi University of Targu Jiu, Engineering series, nr. 2, Romania, pp. 41-48, 2009 8.Mitsi S., Bouzakis K.-D., Mansour G., Popescu I., Position analysis in

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    20

    Craiova, pp. 473-479, 2010. polynomial form of class-three RP-RP-RP Assur Group, Intern. Conference of Mechanical Engineering ICOME 2010, Craiova, pp. 473-479, 2010.

    ANEXA Soluiile sistemului linear de ecuaii (7) pentru triada RP-RP-PR sunt:

    APPENDIX The solutions of the equations system (7) for RP-RP-PP triad are:

    2 1

    BC1

    BE

    CE

    ( 2d 2d cos( )l (sin( ) sin( 2 2 ))

    s /( 2 sin( ))l (sin sin( 2 2 )( d l sin( ))( 2 cos( )

    (A1)

    1 2

    BC2

    BE

    CE

    2d 2d cos( ) 2d cos( )l sin 2( )

    s /( 2 sin( ))l (sin sin( 2 2 ))2l cos( )sin( )

    (A2)

    1

    3 BE

    23

    BC

    E CE

    F F

    ( 2d cos( )cos( ) 2d cos( )2d sin( ) l (cos( )sin2 cos cos sin ) cos( )( 2d

    sl (sin( ) sin( 2 2 )l sin( 2 2 ) l sin 2( )2 sin( )( y cos x sin

    /( 2 sin( )cos )

    (A3)

    1 2

    BC

    4 BE

    CE 3

    F F

    ( 4d sin 4d sin 2 sin ( 2d cos( )l (sin( ) sin( 2 2 ))

    s l (sin sin( 2 2 )) /( 4 sin( )cos )l sin 2( ) 4 sin( )( d sin2 y cos( ) x sin( ))

    (A4)

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    21

    CERCETAREA EXPERIMENTAL A SARCINILOR CARE

    ACIONEAZ N FLANA ROII MACARALEI DE POD

    N CAZ DE CUTREMUR

    Dr. Radlov KALIN* Dr. Kartcelin EVTIM ** Iliev JIVKO,

    eng**

    *Universitatea de arhitectur, inginerie civil i geodezie Sofia, Hristo

    Smirnenski str. Nr.1 **Universitatea de minerit i geologie

    "Sf. Ivan Rilski"- 1700 Sofia Rezumat: Acest document prezint o cercetare experimental a sarcinii care acioneaz n flana roii macaralei de pod n caz de cutremur, prin folosirea unui model miniatural de macara de pod i a unei mese oscilante pentru agitarea vibraiilor seismice. Se fac, pentru un test de rezonan, analiza armonic i testarea dinamic prin folosirea unei accelerograme pentru punctul sistemului de construire a macaralei de pod care este localizat la nivelul inei macaralei pentru dou condiii diferite de sistem macara fr ncrctur i macara cu ncrctur nominal. Fora flanei este msurat folosind un sistem potrivit de msurare. Concluziile obinute n urma analizei rezultatelor pot fi foarte folositoare n practica de schiare a macaralei de pod prin pregtirea calificrilor seismice ale unei macarale de pod. Cuvinte cheie: Macara de pod, flana roii alergtoare, cercetare experimental, ncrcturi seismice. 1.INTRODUCERE n conformitate cu noul standard european [1], toate ncrcturile cauzate de rsucirea macaralei de pod n plan orizontal, numite ncrcturi laterale, sunt luate de flana roii alergtoare a podului. De asemenea, se tie c vibraiile seismice sunt transferate de la construcia cldirilor la construcia macaralei de pod prin ina, prin forele de frecare dintre suprafaa de rotire a roilor i

    EXPERIMENTAL RESEARCH OF LOADS

    ACTING IN BRIDGE CRANE WHEEL FLANGE

    IN CASE OF EARTHQUAKE

    Radlov KALIN, PhD* Kartcelin EVTIM, PhD** Iliev JIVKO,

    eng**

    *University of Architecture, Civil Engineering and Geodesy Sofia,

    Hristo Smirnenski str. 1 **University of Mining and Geology

    "St.Ivan Rilski"- 1700 Sofia Abstract: The present paper presents an experimental research of the load, that is acting in bridge crane wheel flange in case of earthquake, by using a bridge crane miniature model and a shaking table for seismic vibrations excitation. There are performed a resonance test, harmonic analysis and dynamic test by using an accelerogram for point of the system "bridge crane- building", which is located at the crane railroad level, for two different system conditions- crane without load and crane with rated load. The flange force is measured by using a suitable created measuring system. The obtained conclusions following the result analysis can be very useful in bridge crane designing practice by preparing a bridge crane's seismic qualifications. Keywords: Bridge crane, travelling wheel flange, experimental research, seismic loads 1.INTRODUCTION

    In accordance to the new european standard [1], all the loads which are caused by crane bridge twist in horizontal plane, called "lateral loads", are taken by the bridge travelling wheel flange. There is known also, that the seismal vibrations are trnsfered from the building construction to the bridge crane construction through the rail, by the frictional forces caused between the wheel rolling surface and the rail top surface. In this case, it is possible to be evoked such a twist or sliding of the crane bridge, which inevitably

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    22

    suprafaa de vrf a inei. n acest caz, este posibil s fie evocat o rotire sau o alunecare a podului ridictor care va cauza n mod inevitabil ncrcturi n flana roii alergtoare. Chiar i aa, din cauza dificultilor de determinare a valorii corecte a forelor, la lucrrile de schiare a macaralelor de pod nu exist calcule specifice de putere pentru roile alergtoare i pentru flane, dar dimensiunile i nomenclatura lor sunt standardizate [2]. Acestea sunt selectate din tabelul n conformitate cu rata lucrrii macaralei, viteza podului ridictor alergtor i fora vertical care este luat de fiecare roat alergtoare. Dup selecia gata pregtit a diametrului roii alergtoare i a formei seciunii, are loc numai o verificare a presiunii de contact dintre suprafaa de rotire a roii i suprafaa de vrf a inei. Aceasta este fcut de tratarea cu cldur a roii alergtoare i de selecia tipului de material [2] folosind ecuaia (1) pentru presiunea de contact la contactul liniar.

    is going to cause loads in the travelling wheel flange. Even so, because of dificulties by detrmining the correct value of that forces, in bridge cranes design works there are no specific strength calculations performed for the travelling wheels and flanges, but their dimensions and nomenclature are standartized [2]. They are selected from table in accordance to the crane work rate, crane bridge travelling velocity and the vertical force which is taken by each travelling wheel. After the beforehand selection of the travelling wheel diameter and section shape there is performed only a check by contact stress between the wheel rolling surface and the rail top surface. This is performed for travelling wheel heat treatment and material type selection [2] by using equation (1) for contact stress at the linear contact.

    ][.

    *10*9,1 5 KKK

    K rb

    F (1)

    Unde ][NF este ncrctura vertical echivalent per roat alergtoare;

    ][mrK raza roii alergtoare; ][mbK limea suprafeei de lucru (contact

    a roii alergtoare; ][ K valoarea permis a presiunii de

    contact. n ciuda dezvoltrii intensive a computerelor i a noilor metode de simulare a computerelor, ca unealt a analizei comportamentului dinamic al sistemelor mecanice, este evident c rezultatele cele mai realistice referitoare la ncrctura real care acioneaz n flana roii alergtoare n caz de cutremur vor fi obinute de ctre o cercetare experimental. Scopul documentului prezent este de a dezvolta i consolida o metodologie pentru cercetarea experimental a forei flanei roii alergtoare i apoi de o analiza i interpreta

    where ][NF is the equivalent vertical load per travelling wheel;

    ][mrK travelling wheel radius; ][mbK width of the travelling wheel work

    (contact) surface; ][ K allowed value of the contact stresses.

    Despite the intensive development of the computers and the new computer simulation methods, as a tool for dynamic behavior analysis of mechanical systems, it is obviously that the most realistic results about the real load, that is acting in the travelling wheel flange in case of eartquake, shall be obtained by an experimental research. The purpose of the present paper is to be developed and enforced a methodology for experimental research of travelling wheel flange force, and after that the obtained experimental results to be analyzes and correct interpreted.

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    23

    corecta rezultatele experimentale obinute. 2. PREGTIREA CERCETRII EXPERIMENTALE Standul experimental (model miniatural al sistemului de construire a macaralei de pod) care este folosit pentru prezenta cercetare experimental este prezentat n fig. 1 i este creat n conformitate cu metodologia [3] dezvoltat pentru sistemul cercetrii experimentale de construire a macaralei de pod n caz de cutremur. Oscilaia frecvenei pentru cercetarea experimental prezent este de Hz501 . Se creeaz un sistem potrivit pentru msurarea forei care acioneaz n flana roii alergtoare (fig.2). Principiul su de funcionare se bazeaz pe un etalon de for n direcia tensiune-presiune, modelul HBM (Hotinger Baumachine Messtechnic)- fig.2.

    2. EXPERIMENTAL RESEARCH PREPARATION The experimental stand (miniature model of the system "bridge crane- building") which is used for the present experimantal research is shown on fig.1. and is created in accordance with developed in [3] methodolody for system "bridge crane- building" experimantal research in case of earthquake. The frequency range for the present experimantal research is Hz501 . There is created a suitable system for measuring the force which is acting in the travelling wheel flange (fig.2). Its work principle is based on a force gauge in "tension- pressure" direction, model HBM (Hotinger Baumachine Messtechnic)- fig.2.

    Figura 1. Stand experimental model miniatural

    Figure.1. Experimental stand- miniature model Tipul etalonului este U 9. Etalonul maxim care msoar oscilaia este 50kN 1mV/V. Pentru msurarea acceleraiilor micro-vibraiilor, n direcia inei macaralei, se folosesc accelerometre de tip inductiv, modelul Hotinger B12/200, care sunt localizate uniform de-a lungul nlimii cldirii, n concordan cu schem prezentat n fig. 1, unde accelerometrele sunt numerotate cu 5,4,3,2,1,0 .

    The gauge type is U 9. The maximal gauge measutring range is 50kN 1mV/V. For measuring the accelerations of the micro-vibrations, in direction across the crane railroad, are used accelerometers of induction type, model Hotinger B12/200, which are located uniformly along the building height, in accordance to the scheme schown on fig.1, where the accelerometers are numbered with 5,4,3,2,1,0 .

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    24

    Figura 2. Sistem pentru msurarea forei n flane schem i vizualizare obinuit Figure 2. System for measuring the force in flanges scheme and common view

    3. TESTAREA REZONANEI I DETERMINAREA CARACTERISTICILOR DE AMPLITUDINE-FRECVEN A PUNCTELOR LOCALIZATE LA NIVELUL INEI DE MACARA

    Ca rezultat al testrii rezonanei care a avut loc n cazul macaralei fr ncrctur i cu o agitare extern n direcia inei de macara, se obin urmtoarele caracteristici de amplitudine-frecven a punctelor localizate la nivelul inei de macara - fig.3.

    3. RESONANCE TESTING AND DETERMINING THE AMPLITUDE- FREQUENCY CHARACTERISTIC OF POINTS LOCATED AT THE CRANE RAILROAD LEVEL

    As a result from performed resonance testing in case of crane without load and an external excitation in across the crane railroad direction is obtained the following amplitude- frequency characteristic of points located at the crane railroad level - fig.3.

    Figura.3. Caracteristicile de amplitudine-frecven localizate la nivelul inei de macara n

    cazul macaralei fr ncrctur Figure.3. Amplitude- frequency characteristic of point located at the crane railroad level in

    case of crane without load n conformitate cu fig.3. se stabilete c prima frecven natural a construciei, prin

    In accordance to fig.3. is established, that the first natural frequency of the construction, by

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    25

    care se realizeaz cea mai mare consolidare a semnalului de intrare este de 8Hz. Forma corect care este realizat de aceast frecven este prezentat n fig.4.

    which is realized the highest reinforcement of the input signal is 8Hz. The proper form, which is realized by this frequency is shown on fig.4.

    Figura.4. Prima form corect de sistem n cazul macaralei fr ncrctur

    Figure.4. First sistem proper form in case of crane without load Ca rezultat al testrii rezonanei care a avut loc n cazul macaralei cu ncrctur nominal i cu o agitare extern n direcia inei de macara, se obin urmtoarele caracteristici de amplitudine-frecven a punctelor localizate la nivelul inei de macara - fig.5.

    As a result from performed resonance testing in case of crane with rated load and an external excitation in across the crane railroad direction is obtained the following amplitude- frequency characteristic of points located at the crane railroad level - fig.5.

    Figura.5. Caracteristicile de amplitudine-frecven ale punctului localizat la nivelul inei de

    macara n cazul macaralei cu ncrctur nominal Figure.5. Amplitude- frequency characteristic of point located at the crane railroad level in

    case of crane with rated load n conformitate cu fig.5. se stabilete c prima frecven natural a construciei, prin care se realizeaz cea mai mare consolidare a semnalului de intrare este de 8,8 Hz. Forma corect care este realizat de aceast frecven este prezentat n fig. 6.

    In accordance to fig.5. is established, that the first natural frequency of the construction, by which is realized the highest reinforcement of the input signal is 8,8Hz. The proper form, which is realized by this frequency is shown on fig.6.

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    26

    Figura.6. Prima form corect de sistem n cazul macaralei cu ncrctur nominal

    Figure.6. First sistem proper form in case of crane with rated load 4. MSURAREA FOREI FLANEI I COMPORTAMENTUL DINAMIC N CAZ DE AGITAIE ARMONIC Prima cercetare are loc n cazul unei macarale fr ncrctur. n direcia inei de macara prin masa oscilant se conduc consecutiv vibraii armonice cu frecven constant, egal cu prima frecven natural n cazul unei macarale fr ncrctur - 8Hz. Se schimb numai valoarea amplitudinii acceleraiilor mesei oscilante cu pai mici n oscilaia g1,00 , dar frecvena rmne o valoare constant 8Hz. Pe graficul prezentat n fig.7 sunt punctele experimentale obinute cu axa - x acceleraia inei de macara -

    ]/[ 2smaK , i axa y fora din flanele roilor alergtoare ][kNS .

    4. MEASUREMENT OF FLANGE FORCE AND DINAMIC BEHAVIOUR IN CASE OF HARMONIC EXCITATION

    The first research is performed in case of crane without load. In across the crane railroad direction by the shaking table are drived consecutively harmonic vibrations with constant frequensy, equal to the first natural frequency in case of crane without load- 8Hz. It is changed onlu the amplitude value of the shaking table accelerations in little steps in range g1,00 , but the frequency is kept constant value 8Hz. On the graphic, shown on fig.7. are layed on the experimental obtained points with x-axis- the crane railroad acceleration- ]/[ 2smaK , and y-axis- the force in the travelling wheels flanges ][kNS .

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    27

    Figura.7. Dependena grafic dintre fora din flane i acceleraia inei de macara n cazul

    macaralei fr ncrctur Figure.7. Graphic dependence between the force in flanges and the crane railroad acceleration

    in case of crane without load Folosind fig.7, dup analiza regresiei ajungem la concluzia c variaia forei flanelor ca funcie a acceleraiei inei de macara, n cazul macaralei fr ncrctur, poate fi stabilit ca linie dreapt, cu urmtoarea dependen funcional (2)

    By using fig.7, after regression analysis is obtained, that the flanges force variation as a function of the crane railroad acceleration, in case of crane without load, can be established as a straight line, with the following functional dependence (2)

    ][0 kNS at ]/[04.1 2smak and ])[04,1(*0826,0 kNaS k at ]/[04.1 2smak (2)

    Aceeai cercetare are loc n cazul macaralei cu ncrctur nominal, iar rezultatele obinute sunt prezentate n fig.8

    The same research is performed in case of crane with rated load, and the obtained results are shown on fig.8

    Figura.8. Dependena grafic dintre fora din flane i acceleraia inei de macara n cazul

    macaralei cu ncrctur nominal Figure.8. Graphic dependence between the force in flanges and the crane railroad acceleration

    in case of crane with rated load Folosind fig.8, dup analiza regresiei ajungem la concluzia c variaia forei flanelor ca funcie a acceleraiei inei de macara, n cazul macaralei fr ncrctur, poate fi stabilit ca linie dreapt, cu

    By using fig.8, after regression analysis is obtained, that the flanges force variation as a function of the crane railroad acceleration, in case of crane with rated load, can be established as a straight line, with the

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    28

    urmtoarea dependen funcional (3)

    following functional dependence (3)

    ][0 kNS at ]/[51.3 2smak and ])[51,3(*0829,0 kNaS k at ]/[51.3 2smak (3)

    Pentru a obine valoarea limit a acceleraiei inei de macara - ka , prin care valoarea forelor flanelor n cazul macaralei cu ncrctur nominal ar trebui s fie mai mare dect valoarea forei flanelor n cazul macaralei fr ncrctur, are loc o egalitate ntre ecuaiile (2) i (3)

    )04,1(*0826,0)51,3(*0829,0 kk aa Astfel se obine valoarea limit a inei de macara ]/[66,666 2smak , dar aceasta este o valoare exorbitant de mare i este imposibil s fie realizat ntr-o situaie real.

    5. TESTAREA DINAMIC PRIN FOLOSIREA UNEI ACCELEROGRAME

    Msurarea comportamentului dinamic i a forei flanelor n caz de agitaie de intrare accelerogram, n direcia inei de macara are loc numai n situaia ncrcrii flanelor mai rele macara fr ncrctur, care se obine la punctual anterior. Aa cum se folosesc o agitaie seismic de intrare, o accelerogram i spectrul su de amplitudine, care sunt artate n fig.9.

    In order to obtain the limit value for the crane railroad acceleration- ka , by which the value of the flanges force in case of crane with rated load should be bigger than the value of the flanges force in case of crane without load, there is performed an equality between equations (2) and (3)

    )04,1(*0826,0)51,3(*0829,0 kk aa In that way is obtained the limit value for the crane railroad ]/[66,666 2smak , but that is exorbitantly big value, and it is impossible to be realized in a real situation. 5. DYNAMIC TESTING BY USING AN ACCELEROGRAM Dynamic behaviour and flanges force measurement in case of input excitation- accelerogram, in across the crane railroad direction, are performed only for the situation of worse flanges loading- crane without load, which is obtained at the previous point. As an input seismic excitation is used a scaled accelerogram and its amplitude spectrum, which are shown on fig.9.

    Figura.9.Accelerogram msurat i spectru de amplitudine

    Figure.9.Scaled accelerogram and amplitude spectrum

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    29

    n fig. 9 este evident c componentele armonice ale accelerogramei de intrare sunt multe, dar valorile maxime sunt localizate n oscilaia frecvenei de la 18 la 27 Hz. nregistrrile din timpul msurtorilor acceleraiei inei de macara i a spectrului su de amplitudine sunt prezentate n fig.10.

    On fig.9 is obvious, that the harmonic components of the input accelerogram are many, but the maximal values are located in the frequency range from 18 to 27 Hz. The recorded during the measurements crane railroad acceleration and its amplitude spectrum are shown on fig.10.

    Figura.10. Accelerograma i spectrul de amplitudine la nivelul inei de macara

    Figure.10. Accelerogram and amplitude spectrum at crane railroad level n fig.10, evident, componentele armonice ale accelerograme la nivelul inei de tren sunt multe, dar valorile maxime sunt localizate n jurul frecvenei de 8Hz i de 21Hz. nregistrrile din timpul msurtorilor forei flanelor i spectrului su de amplitudine sunt prezentate n fig.11. n fig.11, evident, componentele armonice ale accelerograme la nivelul inei de tren sunt multe, dar valorile maxime sunt localizate n jurul frecvenei de 8Hz i de 21Hz.

    On fig.10 is obvious, that the harmonic components of the accelerogram at crane railroad level are many, but the maximal values are located around the frequency 8Hz and frequency 21Hz. The recorded during the measurements flanges force and its amplitude spectrum are shown on fig.11. On fig.11 is obvious, that the harmonic components of the flanges force are many, but the maximal values are located around the frequency 8Hz and frequency 21Hz.

    Figura.11. Fora flanei i spectrul su de amplitudine Figure.11. Flange's force and its amplitude spectrum

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    30

    6.CONCLUZIE n documentul prezent, se dezvolt o metodologie pentru cercetarea experimental a sarcinii care acioneaz n flana roii macaralei de pod n caz de cutremur. Din rezultatele obinute, analiza poate formula urmtoarele concluzii: - ncrctura din flana roii macaralei de pod care este cauzat de cutremur este ntotdeauna mai mare atunci cnd macaraua de pod este fr ncrctur; - ncrcturile maxime din flane sunt cauzate de armonia agitaiei de intrare care este egal sau aproape egal cu prima frecven natural de construcie. BIBLIOGRAFIE 1. BDS EN 13001-2:2004. Macarale. Proiectare general. Partea 2: ncrcturi; ; 2005, (Bulgaria) 2. Kolarov I., .Prodanov, P.araivanov. Ridicarea proiectelor de mainrii, Technica Sofia,1986, (Bulgaria) 3. Radlov. ., Sistemul comun "de construire a macaralei cu grinzi " care susine cercetarea structural experimental n caz de cutremur, Mecanica mainriilor, TUVarna, Nr. 85, an XVIII , cartea 1, 2010, (Bulgaria)

    6.CONCLUSION In the present paper is developed a methodology for experimental research of the load, that is acting in bridge crane wheel flange in case of earthquake. From obtained results analysis can be made the following conclusions:

    - the load in bridge crane wheel flange, that is caused by earthquake is always bigger when the bridge crane is without load; - maximal loads in flanges are caused by input excitation harmonics, that are equal or almost equal to the building first natural frequency.

    REFERENCES 1. BDS EN 13001-2:2004. Cranes. General designing. Part 2: Loads; ; 2005, (bulgaria) 2. Kolarov I., .Prodanov, P.araivanov. Hoisting machines designing, Technica Sofia,1986, (Bulgaria) 3. Radlov. ., Common system "girder crane- building" bearing structure experimental research in case of earthquake, Mechanic of machines, TUVarna, 85, year XVIII , book 1, 2010, (Bulgaria)

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    31

    CALCULAREA MOMENTULUI DE INERIE AL

    CONTAINERULUI DE BASCULARE PENTRU UN

    DISPOZITIV DE RIDICARE MINIER

    Kartcelin EVTIM*,PhD Iliev JIVKO*,eng Radlov

    KALIN**,PhD Istalianov RUMEN*,PhD

    * Universitatea de Minerit i Geologie "St.Ivan Rilski"- 1700 Sofia

    ** Universitatea de Arhitetur, Inginerie Civil i Geodezie Sofia,

    Hristo Smirnenski str. Nr. 1 Rezumat: Prezenta lucrare prezint o metodologie pentru calcularea momentului ineriei containerului de basculare pentru un dispozitiv de ridicare minier Keywords: mining lifting gear, container de basculare skip, momentul ineriei Rezultatele cercetrii nregistreaz c operaia normal, stabil i sigur a dispozitivului de ridicare minier n principal depinde de selecia corect a parametrilor principali i relaia lor n sistemul "armtur- ridicare containere" [1,2]. Pentru determinarea acestor condiii, este necesar calcularea momentelor de ineriei preliminar a roii de ridicare a containerului. (ben). n fig.1 este aratat schema de calculare pentru determinarea caracteristicilor geometrice i ineriei containerului de basculare (skip) pentru roata de ridicare. Construcia este mprita n urmtoarele componente de baz: flan 1-top; flan 2-jos (cadru); 3- prghii verticale; 4- cuv; 5-carcas; 6- materialul cuvei cu seciune constant; 7- materialul cuvei cu seciune variabil; Datele necesare de intrare pentru calcularea momentelor de inerie sunt determinate de

    INERTIA MOMENT CALCULATION OF

    OVERTURNING HOISTING CONTAINER FOR MINING

    LIFTING GEAR

    Kartcelin EVTIM*,PhD Iliev JIVKO*,eng Radlov

    KALIN**,PhD Istalianov RUMEN*,PhD

    * University of Mining and Geology "St.Ivan Rilski"- 1700 Sofia

    ** University of Architecture, Civil Engineering and Geodesy Sofia,

    Hristo Smirnenski str. 1 Abstract: The present paper presents a methodology for inertia moment calculation of hoisting container (skip) for mining lifting gear Keywords: mining lifting gear, hoisting container skip, inertia moment The research results register that the normal, steady and safety operation of mining lifting gear principally depends on the correct selection of its main parameters and their relationship in the system "armature- hoisting container" [1,2]. For these conditions determination, there is necessary inertia moments preliminary calculation of lifting gear's hoisting container (skip). On fig.1 is shown the calculation scheme for determining the geometrical and inertia characteristic of hoisting container (skip) for mining lifting gear. The skip construction is divided into the following basic components: 1-top flange; 2-bottom flange (frame); 3- vertical beams of skip; 4- bucket of skip; 5-housing; 6- material in the skip's bucket with constant section; 7- material in the skip's bucket with variable section; The necessary input data for skip inertia moments calculation are determined by the

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    32

    desenul constructiv i n conformitate cu cele notate la fig.2.:

    1m masa de flanei de top cu gard inclus, acoperi, diagonale, dispozitive de agat i role de ghidare superioare, kg;

    2m masa de flanei de jos cu gard inclus, acoperi, diagonale, dispozitive de agat i role de ghidare superioare, kg;

    3m masa prghiilor verticale ale cadrului ce include elemente de rapiditate i dispositive de ghidare, kg;

    4m masa cuvei cu sector de nchidere, kg; 5m masa carcasei, kg; LODm masa ncrcturii din ben (marf

    vrac), kg; m masa benei pline: LODmmmmmmm 54321

    Dimensiunile i distanele principale ,,,,( 143 hLLL

    ),,,,,,,,,, 21765432 NNNMhhhhhh ale construciei sunt prezentate n fig.2: mhhhLOD ,76

    constructive drawing and in accordance to the approved denotations on fig.2.:

    1m mass of the skip's top flange with included fence, roof, facing, diagonals, hanging device elements and skip's upper guiding rollers, kg;

    2m mass of the skip's bottom flange with included fence, facing, hanging device elements and skip's upper guiding rollers, kg;

    3m mass of the vertical beams of the skip's frame with included the fastener elements and skip's guiding devices, kg;

    4m mass of the bucket with included sector shutter, kg;

    5m mass of the housing, kg; LODm mass of the load in the skip (bulk

    cargo), kg; m mass of the full skip: LODmmmmmmm 54321

    The main dimensions and distances ,,,,( 143 hLLL

    ),,,,,,,,,, 21765432 NNNMhhhhhh of skip's construction are shown on fig.2, as:

    mhhhLOD ,76

    Figure 1.Schema calculrii pentru determinarea caracteristicilor geometrice i ineriei

    containerelor de basculare Figure 1.Calculation scheme for determining the geometrical and inertia characteristics of

    overturning hoisting container6=m6(L4+h4+0,5.h6),kgm; 7=m5(L4+0,67.h7),kgm;

    6=m6(L4+h4+0,5.h6),kgm; 7=m5(L4+0,67.h7),kgm;

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    33

    Determinarea coordonatelor iz centrului maselor de la centrul benei la centrul elementelor sale:

    ci

    ii zm

    Az , )7,....,2,1( im

    Determinarea maselor elementelor 6 i 7:

    5.28. Determinarea produselor: 1=m1(h3-0,5.h1),kgm; 2=0,5.m2.h2,kgm; 3=0,5.m3.h3,kgm; 4=m4(L4-0,5.h4),kgm; 5=m5(L4+h4+0,5.h5),kgm; 5.30. Determinarea coordonatelor cz ale centrului benei:

    5.31. Determinarea distanelor A i B : A=Zc-L3,; B=L-A,m unde: A- distana de la centrul masei benei de la capt pn la captul dispozitivului de ghidare. 2. Determinarea momentelor ineriei centrale ale elementelor benei 5.33. Flana de sus: J1=m1[0,083( M2)+ ],kgm2; J1=m1[0,083( )+ ],kgm2; J1=0,083m1[M2+ ),kgm2; 5.34.Flana de jos: J2=m2[0,083( M2)+ ],kgm2; J2=m2[0,083( )+ ],kgm2; J2=0,083m1[M2+ ),kgm2; 5.35. Cadrele verticale:

    J3=m3[0,083( M2)+ ],kgm2; J3=m3[0,083( )+ ],kgm2;

    Determination of coordinates iz from skip's center of mass to its elements's centers of mass:

    ci

    ii zm

    Az , )7,....,2,1( im

    Determining mass of elements 6 and 7:

    5.28. Determination of products: 1=m1(h3-0,5.h1),kgm; 2=0,5.m2.h2,kgm; 3=0,5.m3.h3,kgm; 4=m4(L4-0,5.h4),kgm; 5=m5(L4+h4+0,5.h5),kgm; 5.30. Determination of coordinate cz of skip's center of mass:

    5.31. Determination of distances A and B : A=Zc-L3,; B=L-A,m where: A- distance from skip's center of mass due to top and bottom guiding device of skip. 2.Detrmination of central inertia moments of skip's elements 5.33. Top flange:

    J1=m1[0,083( M2)+ ],kgm2; J1=m1[0,083( )+ ],kgm2; J1=0,083m1[M2+ ),kgm2; 5.34.Bottom flange:

    J2=m2[0,083( M2)+ ],kgm2; J2=m2[0,083( )+ ],kgm2; J2=0,083m1[M2+ ),kgm2; 5.35. Vertical frame stands:

    J3=m3[0,083( M2)+ ],kgm2; J3=m3[0,083( )+ ],kgm2; J3=0,25m3.M2,kgm2; 5.36. Skip's bucket

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    34

    J3=0,25m3.M2,kgm2; 5.36. containerul benei

    =

    =

    = Carcasa benei

    =

    =

    = 5. Material (ncrctura vrac) plasat n seciunea constant a containerului benei J6=m6[0,083( M2)+ ],kgm2; J6=m6[0,083( )+ ],kgm2; J6=0,083m6[M2+ ),kgm2 Material (ncrctura vrac) plasat n seciunea variabil a containerului benei J7=m7[0,083.M2+0,056. + ],kgm2; J7=m7[0,083 + ],kgm2; J7=0,083m7[M2+ ),kgm2; Determinarea momentelor de inerie: n conformitate cu axa OX:

    J =J1+J2+J3+J4+J5+J6+J7 n conformitate cu axa OY:

    J =J1+J2+J3+J4+J5+J6+J7 n conformitate cu axa OZ: J=J1+J2+J3+J4+J5+J6+J7 Valorile obinute pentru rsturnarea containerului n momentele de inerie absolut satisfac cerinele practicii de inginerie. n [5] este o metodologie experimental dezvoltat pentru determinarea caracteristicilor ineriei containerului de basculare. BIBLIOGRAFIE 1. Dvornikov V. I., Kartcelin E. R., Bazele teoretice ale dinamicii de basculare cu ax, C. MONT,1997 , (Russia)

    =

    =

    = Skip's housing

    =

    =

    = 5. Material (bulk cargo) placed in a constant section part of skip's bucket

    J6=m6[0,083( M2)+ ],kgm2; J6=m6[0,083( )+ ],kgm2; J6=0,083m6[M2+ ),kgm2 Material (bulk cargo) placed in a variable section part of skip's bucket

    J7=m7[0,083.M2+0,056. + ],kgm2; J7=m7[0,083 + ],kgm2; J7=0,083m7[M2+ ),kgm2; Determination of full skip's inertia moments: in accordance to OX- axis:

    J =J1+J2+J3+J4+J5+J6+J7 in accordance to OY- axis:

    J =J1+J2+J3+J4+J5+J6+J7 in accordance to OZ- axis: J=J1+J2+J3+J4+J5+J6+J7 The obtained values for overturning hoisting container inertia moments absolutely satisfy the correction recuirements of engineer practice. In [5] there is an experimental methodology developed for inertia characteristic determination of overturning hoisting container. REFERENCES 1. Dvornikov V. I., Kartcelin E. R.,

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    35

    2. Kovachev V. , Glabadanidis T., Momentele ineriei de mas ale containerelor de basculare, Annual of VMGI, Sofia, Part XXXI, sv.1 (1984- 1985), p. 41-49, (Bulgaria) 3. Favorin M. V., Momentele de inerie, tel. M., Mashinostroenie, 1977 , (Russia) 4. Arbore de staionare i poziionare, n ediia lui B. F. Bratchenko, M., Nedra, 1977 , (russia) 5. Kartcelin E. R., Iliev J., Determinarea experimental a ineriei containerului de basculare caracteristic pentru dispozitivul de ridicare., Anuar al MGU "St. Ivan Rilski", partea 52, sv. 1, 2010, (Bulgaria)

    Theoretical basis of shaft hoist dynamics, C. MONT,1997 , (russia) 2. Kovachev V. , Glabadanidis T., Mass inertia moments of hoisting containers, Annual of VMGI, Sofia, Part XXXI, sv.1 (1984- 1985), p. 41-49, (bulgaria) 3. Favorin M. V., Inertia moments, tel. M., Mashinostroenie, 1977 , (russia) 4. Stationary shaft positioning, under edition of B. F. Bratchenko, M., Nedra, 1977 , (russia) 5. Kartcelin E. R., Iliev J., Experimental determination of hoisting container's inertia characteristic for mining lifting gear., Annual of MGU "St. Ivan Rilski", part 52, sv. 1, 2010, (bulgaria)

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    36

    MODELAREA I CONTROLUL

    ROBOTULUI DIDACTIC CU SOFTWARE CATIA I RIOS

    Ovidiu ANTONESCU, POLITEHNICA

    University of Bucharest, [email protected]

    Pun ANTONESCU, POLITEHNICA University of Bucharest; [email protected]

    Rezumat: n prima parte se prezint etapele de modelare constructiv i simulare a unui robot didactic tip serial cu configuraia geometric RRRR. n prima parte se modeleaz n 3D piesele componente ale fiecrui element cinemtic din componena robotului serial. n continuare se asambleaz componentele n elemente cinemtice distincte, dup care se realizeaz asamblarea acestora n configuraia final a robotului. n partea a doua a lucrrii se realizeaz simularea cinematic a robotului didactic, cu ajutorul unui meniu DMU Kinematics, apoi cu ajutorul opiunii Generate an animation File se obine animaia robotului.. Partea a doua a lucrrii se refer la controlul i comanda unui manipulator robot didactic, cu ajutorul unui soft specializat, care permite acestuia s execute operaiunile dorite de operator. Bratul - robot se leag printr-un cablu la PC pe portul paralel. Acest ansamblu permite comunicarea dintre cele dou subsisteme (dispozitive): dispozitivul de comand, care este reprezentat de computer, i mecanismul terminal, care efectueaz anumite sarcini. Cu ajutorul meniului sistemului de acionare, operatorul parcurge principalele etape de comand i control privind configurarea robotului didactic (de tip serial) prevzut cu patru actuatoare (de tip motoare electrice).

    1. Modelarea 3D a componentelor

    manipulatorului - robot

    Modelarea componentelor se face mai nti n modulul sketcher dup care li se dau forme n part design.

    Modulul Sketcher din Catia ofer un set variat de comenzi care permit crearea i modificarea (editarea) elementelor (entitilor) unei schie (permit generarea rapid a unui model 2D). Editarea unei dimensiuni a unei schie nu numai c modific geometria schiei, dar modific totodat i corpul tridimensional care se obine pe baza schiei respective.

    MODELING AND CONTROL OF DIDACTIC ROBOT

    BY CATIA AND RIOS SOFTWARE

    Ovidiu ANTONESCU,

    POLITEHNICA University of Bucharest, [email protected]

    Pun ANTONESCU, POLITEHNICA University of

    Bucharest; [email protected]

    Abstract: The first part of paper it presents the stages of constructive modeling and simulation of a didactic robot type serial. We look at the 3D modeling of the component pieces of each of the kinematical elements in the make-up of a serial robot. Then the components are assembled in distinct kinematical elements, next the assembly of these in the final configuration of the robot is done. Is realized the kinematic simulation of the didactic robot, with the help of a DMU Kinematics menu, then with the help of the option Generate an animation File the robot animation is obtained.

    The second part of paper it refers to the control of a manipulator didactic robot, with the help of a special soft, which allows the robot to execute moves programmed by the operator. The robot arm is connected by a cable to PC on the parallel port. This assembly allows the communication between the two subsystems (devices): the control dispositive, which is represented by the computer, and the terminal mechanism, which performs the same tasks. With the help of systems menu of actions, the operator goes through the principal control steps regarding robot configuration.

    1. The 3D modeling of the manipulator -

    robot components

    First in the sketcher module [4] the component modeling is made, and then the forms are obtained in part design.

    Sketcher module from CATIA [4, 5] offers a variable set of commands which allow the creation and modification of elements (entities) of schema (allows the rapid generation of a 2D model).

    The publishing of the dimension of a scheme modifies the scheme geometry,

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    37

    Modulul conine instrumente care asigur reprezentarea rapid a profilelor utilizate ca suport pentru generarea unui corp 3D, dar i instrumente ce permit stabilirea dimensiunilor i constrngerilor schiei 2D, atenionnd utilizatorul cu privire la omiterea unor cote, la apariia supracotrii, sau la un posibil conflict ntre anumite dimensiuni.

    Prima component important pentru ansamblul nostru o constitue baza (suportul) mecanismului - robot (fig. 1).

    concomitantly modifying also the three-dimensional body which is obtained with the help of the respective scheme.

    The module contains the instruments which ensure the rapid representation of the user profiles as the support for the generation of a 3D body [3, 4], but also the instruments which allow the establishing of the dimensions and constraints of the 2D scheme [5].

    The user is informed it is necessary to omit some dimension figure, on the appearance of the supplementary dimension figure, or because of a possible conflict between some dimensions.

    The first important component for this assembly is the base (support) of manipulator - robot (fig. 1).

    Fig. 1. Baza suport a robotului Fig. 2. Flana mobil pivotant a robotului Fig. 1. Base support of robot Fig. 2. Mobile flange as pivot

    Aceasta prezint pe suprafaa superioar nite

    bile care permit robotului s se mite cu uurin i s reduc fora de frecare.

    A doua component este reprezentat de flana mobil care se rotete pe baza-suport i de care sunt ataate motoraele i prima articulaie (fig. 2).

    Dup cum putem observa (fig. 2), aceast flan prezint un ax cilindric care intr n suportul - baz i la captul cruia se afl un motora care efectueaz rotirea ei la 180 grade.

    Deasupra se pot observa dou urechi de prindere cu dou axe orizontale coliniare care simbolizeaz cuplele motoare. Mobilitea de rotire fa de cele dou axe este asigurat de dou motorae electrice tip HS-645 nefigurate pe

    On the upper surface of the base there are some balls which allow the robot to move with facility and to reduce the friction force.

    The second component is represented by a mobile flange which is turned on base-support and to which the motors and the first joint are attached (fig. 2).

    According to figure 2, this flange presents a cylindrical axle which penetrates the support - base and at the end there is a motor which him turn with 180 degree.

    Above one can see two clamping tabs with two collinear horizontal axles which signify the motor joints. Mobility [1, 6] of the turn around the two axles is performed

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    38

    desen. De flana mobil (fig. 2) se leag braul robotului (fig. 3), realizat sub forma unei tije cilindrice prevzut la capete cu cte o furc cu axele paralele.

    by two electric motors (type HS-645) which are not presented in the drawing. To the mobile flange (fig. 2) is connected the robot arm (fig. 3), having the shape of a cylindrical rod which is fitted at ends with a fork with the parallel axles.

    Fig. 3. Braul robotului Fig. 4. Tije cilindric prevzut la capete cu cleme

    Fig. 3. Robot arm Fig. 4. Cylindrical rod with clamps at ends

    Urmtoarea component este antebraul robotului (fig. 4) care este alctuit dintr-o tij cilindric legat la capete cu dou cleme, prin care se prind pe cele dou motorae. O imagine de ansamblu a antebraului cu motoaele ataate se prezint ca n figura urmtoare (fig. 5):

    The following component is the robot forearm (fig. 4) which consists of a cylindrical rod connected at ends with two clams, for attaching it to the two motors [6].

    An assembly image of the forearm with attached motors is presented in the following figure (fig. 5):

    Fig. 5. Antebraul robotului

    Fig. 5. Robot forearm

    Componenta final din ansamblu care este reprezentat de sistemul / mecanismul de prehensiune, mai pe scurt griperul (fig. 6) care se prezint sub forma unui subansamblu cu dou bacuri translante acionate de un motora amplasat sub acesta. Griperul ca element 3D se fixeaz ntr-un element cinematic distinct articulat la antebra (fig. 8, 9):

    The final component of the assembly is the gripper system / grab (prehension) mechanism [2, 6], named the gripper (fig. 6).

    The gripper-mechanism has the form of a subassembly, with two translation dies which are actuated by a motor placed under gripper.

    The gripper as the 3D element is fixed in a distinct kinematic link articulated to the forearm (fig. 8, 9):

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    39

    Fig. 6. Mecanismul de prehensiune (griper) Fig. 6. Grab (prehension) mechanism

    2. ASAMBLAREA 3D A COMPONENTELOR ROBOTULUI

    Asamblarea 3D a componentelor s-a efectuat cu ajutorul modulului din Catia numit Assembly Design. Urmtoarele capturi sunt destul de sugestive pentru operaiunile desfurate n cadrul acestui process de asamblare a tuturor componentelor create anterior (fig. 7).

    2. THE 3D ASSEMBLY OF THE ROBOT COMPONENTS

    The 3D assembly of the components is

    done with help of the module Assembly Design from CATIA soft [4]. The following captures are eloquent enough for the operations developed in this assembly process by all the components which were previously created (fig. 7).

    Fig. 7. Asamblul lanului cinematic Fig. 8. Robotul serial i subansamblul

    principal griperului Fig. 7. Assembly of the principal kinematic chain Fig. 8. Serial robot and gripper subassembly

    Observm ansamblul robot n stadiul incipient (fig. 8) fr motoraul din fa, fr furca ce fixeaz gripperul i fr gripper.

    Se remarc n imaginea de mai sus (fig. 9) procedura de mbinare a componentelor robotului i putem observa c asamblarea componentelor se face cu ajutorul unor constrngeri [4] care pot fi : - de coinciden

    We observe the robot assembly in incipient stage (fig. 8) without the front motor, without the fork which fixes the gripper and without the gripper.

    We notice in the image of serial robot (fig. 9) the procedure of assembly of the robot components and can observe that the component assembly with help some

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    40

    - de suprafa - de contact - de unghi Asamblarea gripperului de antebraul robotului se poate urmrii n reprezentarea 3D de mai jos (fig. 9)

    constringes [4] make up which can be: - of coincidence - of surface - of contact - of angle

    The assembly of the gripper of the robot forearm can be seen in 3D projection the below (fig. 9)

    Fig. 9. Subansamblul antebraului i griperul Fig. 9. Subassembly of forearm and gripper

    Ansamblul final poate fi urmrit n figura

    urmtoare (fig. 10) observand pe marginea din stanga paginii toate componentele si constrangerile ce fac parte din acesta:

    The final assembly can be follows in the figure below (fig. 10), where all components and constringes which belong to this system can be observed on the left edge of page.

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    41

    Fig. 10. Modelarea robotului didactic asamblat

    Fig. 10. Modeling of the didactic robot assembly 3. SIMULAREA CINEMATIC A ROBOTULUI

    Simularea mecanismului robot se face prin

    accesarea meniului Start->Digital Mockup->DMU Kinematics (fig. 11).

    3. KINEMATIC SIMULATION OF ROBOT

    The simulation of the robot mechanism

    is performed from the access [4] of menu Start->Digital Mockup->DMU Kinematics (fig. 11).

    Fig. 11. Meniul de simulare a robotului

    Fig. 11. Simulation menu of robot

    Se ncarc apoi ansamblul realizat cu opiunea Open File dup care se acceseaz butonaul din bara din dreapta a display-ului

    Next, the assembly realized with option Open File is loaded, after which the button from the right bar of the Simulation display

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    42

    numit Simulation, iar rezultatul este cel reprezentat mai jos (fig. 12):

    is accessed, while the result is represented below (fig. 12):

    Fig. 12. Meniul de simulare a robotului asamblat Fig. 12. Simulation menu of the assembly robot

    Poziia asamblului robot se modific prin

    deplasarea butonaelor tip mixer care reprezint comenzile ce pot fi date cuplelor cinematice (fig. 12). Pentru ca rezultatul s fie bun i micarea obinut s fie una ct mai realist este indicat s se acceseze insert la fiecare dou click-uri de mouse.

    Se repet aceast operaiune pn cnd ansamblul robot execut un set complet de micri dorite, dup care se trece la urmtorul pas, mai exact la exportul acestei simulri n format avi, ceea ce va permite replay-ul simulrii cu ajutorul unui player folosit la vizualizarea filmelor.

    In imaginea de mai jos (fig. 13) se poate vedea practic aceast procedur, care este foarte simpl i care genereaz o simulare n format avi, putnd fi deschis mai apoi cu un player.

    The robot assembly position is modified from moving of buttons type mixer which represent the commands which can be given to the kinematic joints (fig. 12). In order for the result to be obtained and the obtained moving be one as realistic, it is indicated to access insert at every two clicks of the mouse.

    This operation is repeated until the robot assembly performs a complete set of desired moves, after which one can move to the next step, precisely at the export this simulation in the format avi, that allows the replay of the simulation with the help of player which is used to watch films.

    The image below (fig. 13) shows this practical procedure, which is very simple and can generate a simulation in format avi, which is then opened with a player.

    The corresponding steps of this operation

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    43

    Paii corespunztori acestei operaiuni sunt urmtorii: -se bifeaz acea opiune Generate an animation File -se d numele animaiei -se alege calea, dup care se acceseaz OK

    Fereastra de mai jos (fig. 13) ilustreaz procedura descris anterior, oferind posibilitatea de a vedea practic opiunile prefaate de acest modul.

    are as follows: - access the option Generate an animation File; - give the animation name; - select the way, after which access OK.

    The following window (fig. 13) illustrates the procedure described above, which offers the possibility to see practically the options prefaced of this module.

    Fig. 13. Fereastra de simulare / animaie a robotului Fig. 13. Simulation / animation windows of robot

    Mai jos se prezint o imagine (fig. 14) care

    comparat cu prima imagine a robotului (fig. 12) inaintea simulrii sugereaz micrile induse acestuia de operator.

    Below is presented an image (fig. 14) which, compared with the first image of the robot (fig. 12) before the simulation suggests the movements induced by the operator.

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    44

    Fig. 14. Ecranul calculatorului cu simularea robotului ntr-o poziie specific Fig. 14. Computer screen with robot simulation in specific position

    Fa de imaginea anterioar a robotului (fig.

    12) se observ modificarea de poziie la prima articulaie, a mesei rotative (fig. 14), dar mai ales micarea gripperui prin cele dou bacuri translante.

    4. ASPECTE GENERALE PRIVIND CONTROLUL ROBOTULUI

    n cele ce urmeaz vom ncerca s expunem

    pe scurt ce nseamn acest soft pentru control i cum anume este el conceput n ceea ce privete structurarea utilitilor.

    La nceput se prezint interfaa robotului n ansamblu (Lynxmotion RIOS), aceasta poate fi observat n meniul din figura de mai jos (fig. 15).

    In comparison with the previous image of the robot (fig. 12) it can be observed the modification of position at the first joint, of the rotating table (fig. 14), but especially the gripper movement from the two the translate dies.

    4. GENERAL ASPECTS REFERRING TO ROBOT CONTROL

    In the following section we will try to

    present briefly what the RIOS soft means for robot control and how it is conceived with respect to the structuring of utilities

    First the robot interface is presented in assembly (Lynxmotion RIOS); this can be observed in the menu in the figure below (fig. 15).

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    45

    Fig. 15. Meniul sistemului de operare interactiv al robotului Lynxmotion RIOS Fig. 15. Systems menu of interactive operation of the Lynxmotion RIOS robot

    n centrul panoului (fig. 15) se afl

    fotografia unui robot didactic de tip serial, acesta fiind acionat cu motoare electrice prin intermediul unei plci interfa situat n spate (partea dreapt a postamentului).

    Se observ c interfaa grafic a acestui soft este una destul de accesibil, fiind structurat pe un meniu simplu care confer un confort sporit la accesare.

    n partea stng sus a ecranului (fig. 15) se afl panoul Configuraie cu urmtoarele butoane:

    II1-5S, prin accesarea cruia se deschide fereastra de accesare a motoraelor;

    SSC-32, prin care se deschide fereastra cu contolere;

    Arm, care permite configurarea braului robotului Lynx;

    Project, cu dou submodule denumite export i import.

    Schema constructiv simplificat a manipulatorului robot (fig. 16) este realizat cu softul CATIA i evideniaz patru mobiliti, dintre care trei mobiliti corespund mecanismului de poziionare MPz format din coloana pivotant 1 (micare n plan orizontal), braul articulat 2 i antebraul articulat 3 (cu micare n plan vertical).

    In the panel in the centre (fig. 15) is the photo of the serial type didactic robot, which is actuated by the electric motor via an interface plate which is situated in the back (in the right part of pedestal).

    It is observed that the grafic interface of this soft is very accesible, being structured on a simple menu which ensures an increased comfort on accessing.

    In the above left part of the screen (fig. 15) is the Configuration panel with the following buttons:

    II1-5S, for opening the window for motor accessing;

    SSC-32, which opens the window with controllers;

    Arm, which allows the configuration of robot arm Lynx;

    Project, with two sub-modules named export and import.

    The simplified constructive schema of the

    robot (fig. 16) with CATIA soft is done having four distinctive mobilities.

    2

    3

    4

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    46

    Fig. 16. Modelarea constructiv a robotului LGA-KT

    Fig. 16. Constructive modeling of robot LGA-KT

    Mecanismul de orientare MOr permite o singur rotaie n plan vertical, fiind format din bara 4 articulat la antebraul 3. n captul barei 4 se afl mecanismul de apucare cu dou bacuri (fig. 16).

    5. ACCESAREA BUTOANELOR DE

    COMAND DIN MENIUL LYNX Vom lua pe rnd meniul Lynx Motion

    RIOS (fig. 1) i vom descrie pe scurt utilitile lui n cele ce urmeaz. Prima opiune din meniu este butonul de comand All-1,5S, prin accesarea cruia apare o ferestr (fig. 3).

    Aceast opiune este recomandat imediat dup ce am configurat braul robot, deoarece aceasta ne permite s verificm dac, ntr-adevr, am lucrat corect i dac robotul respect poziia

    These three mobilities correspond to the Position Mechanism (PsM) formed from pivot column 1 (movement in the horizontal plane), articulated arm 2 and articulated forearm 3 (with movement in vertical plane).

    Orientation Mechanism (OrM) allows a single rotation in vertical plane, being formed from rod 4 which is articulated to forearm 3. At the end of rod 4 is a gripper as a grasp mechanism with two dies (fig. 2).

    5. ACCESSING OF CONTROL DIES

    FROM LYNX MENU

    In this section we present the utilities of the menu Lynx Motion RIOS (fig. 15). The first option on the menu is control button All-1,5S, which opens a window (fig. 17).

    1

    2

    3

    4

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    47

    precizat n figur. Fereastra ce rezult dup accesarea butonului AII-5S are urmtoarea configuraie (fig. 17).

    This option is recommended directly after we have configured the robot arm, because it allows to verify if, indeed, we work correctly and if the robot respects the position which is specified in the figure.

    The window which results after the accessing of button AII-5S has the following configuration (fig. 17).

    Fig. 17. Schema constructiv a robotului n dou proiecii ortogonale

    Fig. 17. The constructive schema of the robot in two orthogonal projections

    n figura 17 se prezint schema constructiv a robotului n dou proiecii ortogonale (orizontal i vertical), dup cum se observ motoraele se vor activa i vor modifica poziia manipulatorului robot Lynx.

    A doua optiune SSC-32 prezent n interfaa de comand a acestui soft (fig. 15) este una mai special deoarece ne permite un control separat pe fiecare motora n parte. n felul acesta putem s efectum micri independente pentru fiecare articulaie i n felul acesta se poate testa dac s-au conectat corect motoraele pe conectorii situai pe placa de baz a mecanismului-robot.

    Aceast opiune poart denumirea SSC-32, iar fereastra care apare la activarea acestei opiuni se prezint ca n figura urmtoare (fig. 18):

    In figure 17 is presented the constructive schema of the robot in two orthogonal projections (horizontal and vertical), which shows that the motors will become active and the position of robot Lynx will be modified.

    A second option SSC-32 present in the control interface of this soft (fig. 15) is a special one because it allows a separate control on each motor in part. In this mode we can carry out an independent movement for each articulation and we can test whether the motors were correctly attached to the connection situated on the base plate of the mechanism-robot. This option is named SSC-32, while the window which appears by actuating this option is presented in the following figure (fig. 18).

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    48

    Fig. 18. Controlul separate al motoraelor

    Fig. 18. Separate control of motors as actuators

    Dup cum se observ, aceste controlere tip mixer pot fi activate printr-o simpl bif cu mouse-ul n csua de deasupra, iar prin micarea pe vertical se induce micarea la motoraul corespunztor.

    A treia opiune poart denumirea Arm, iar fereastra care se deschide la activarea acestei opiuni din meniu (fig. 18) se intituleaz sugestiv Lynx Arm Config i se refer la o configurare a braului robot bazat pe coordonatele carteziene ale punctelor caracteristice (X,Y,Z).

    Aceast configurare se face prin micri de translaie ale butonaelor aflate pe marginea acelui chenar din partea stng a paginii; acesta ne ofer un preview a pozitiei pe care o va lua manipulatorul-robot n urma modificrilor efectuate de operator.

    Imaginea urmtoare (fig. 19) ofer o privire de ansamblu a parametrilor geometrici i cinematici caracteristici robotului studiat (fig. 18).

    As can be observed, these mixer type controls can be actuated through a simple pressure of the mouse in the above box, while by the vertical movement is induced the movement of the corresponding motor.

    The third option is named Arm, while the window which opens on activating this option from the menu (fig. 18) is suggestively named Lynx Arm Config and refers to the robot arm configuration with the help of the Cartesian coordinates of the characteristic points (X,Y, Z).

    This configuration is made through translation moves of the buttons situated on the left edge of the page; this offers a preview of the position which the manipulator-robot will take after modifications performed by the operator. The folowing image (fig. 19) offers an overview of the geometric and kinematic parameters which are characteristic of the studied robot (fig. 18).

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    49

    Fig. 19. Panou cu coordonatele carteziene ale cuplelor cinematice

    Fig. 19. Panel with Cartesian coordinates of kinematic joints

    Dup cum se observ, simularea se face pe anumite criterii care sunt legate de coordonatele carteziene i de distanele i unghiurile dintre braele componente.

    O alt component foarte important a meniului de pe interfaa aceasta o reprezint opiunea Play, care simuleaz anumite micri predefinite sau a unui proiect, avnd posibilitatea de a rula aceste micri i de a urmri log-urile lor de-a lungul ntregii simulri.

    Dac este s o comparm cu o aplicaie folosit zilnic, am putea-o compara cu un player ce ne permite vizualizarea de surse media gen filme numai ca aici filmul este un ansamblu de secvene ce se execut consecutiv, rezultand o micare uniform care este transpus n practic de manipulatorul - robot.

    In imaginea urmtoare (fig. 20) putem observa n detaliu acest modul care are o interfa destul de prietenoas, permind utilizatorului s deduc practic opiunile ce se prefaeaz n acest modul.

    It can be observed that the simulation is made according to some criteria which are linked to Cartesian coordinates and by the distances and the angles between the component arms.

    Another very important component of the menu of this interface is the option Play, which simulated some predefined movements or of a project, having the possibility to rule these moves and to follow log-s along the whole simulation.

    If we were to make a comparison with an application used daily, it can be compared with a player which allows the visualization of media sources like films, but here the film is a sequential assembly which is executed consecutively, resulting in a uniform movement which is put to practice by the manipulator - robot.

    In the following image (fig. 20) we can observe in detail this module which has an interface friendly enough to allow the user to deduce the practical options which are prefaced in this module.

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    50

    Fig. 20. Panou cu configurarea diagramelor de variaie a vitezelor celor patru motoare de

    acionare Fig. 20. Panel with configuration of variation diagram of motor velocities

    n continuare (fig. 21) putem observa fereastra cu log-urile care reprezint fiecare secven n execuie:

    In what follows (fig. 21) we can observe the window with log-s which represent each sequence in execution:

    Fig. 21. Fereastr cu secvenele de micare ale robotului

    Fig. 21. Window with the moving sequences of robot

    Dup cum putem observa n aceast fereastr (fig. 21), micrile sunt coordonate dup

    We can observe in this window (fig. 21) that the moves are coordinated according to

  • Analele Universitii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 4/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 4/2010

    51

    secvene care corespund unor anumii pai, ntre aceste secvene exist o pauz de 0.250 sec.

    Dac pn acum am prezentat anumite module care pot rula proiecte sau ansambluri de micri predefinite, n modulele de mai jos (fig. 22, 23) se pot urmri exportul i importul acestor proiecte.

    S considerm o serie de Mp-RI care desfoar aceeai activitate; putem configura unul dintre aceste manipulatoare-roboi pentru a efectua un set de micri specifice activitii pentru care au fost achiziionai.

    Atunci avem posibilitatea s exportm aceste setri i celorlalte manipulatoare-roboi pentru aceasta ne vom folosi de Modulul Project.

    Acest modul are la baz dou submodule denumite export i import, acestea fiind descrise de cte o fereastr cu comenzi explicite pentru fiecare sens de rotaie ale celor patru motoare (fig. 22, 23):

    sequences which correspond to some steps, while between these sequences there is a pause of 0.250 sec.

    While until now we have presented some modules which can rule projects or assemblies of predefined moves, in the modules below (fig. 22, 23) we can follow the export and import those projects. We consider a series of Mp-RI which develops the same activity; we can configure one through these manipulators-robots to perform a set of the specific moves for which it was purchased.

    Then we have the possibility to export these sets to the other manipulator-robots too, by using the Module Project. This module is based on two sub-modules called export and import, e