14
arXiv:1507.06587v2 [math.CO] 11 Aug 2015 Chromatic functors of graphs Masahiko Yoshinaga August 12, 2015 Abstract Finite graphs that have a common chromatic polynomial have the same number of regular n-colorings. A natural question is whether there exists a natural bijection between regular n-colorings. We ad- dress this question using a functorial formulation. Let G be a simple graph. Then for each set X we can associate a set of X-colorings. This defines a functor, “chromatic functor” from the category of sets with injections to itself. The first main result verifies that two finite graphs determine isomorphic chromatic functors if and only if they have the same chromatic polynomial. Chromatic functors can be defined for arbitrary, possibly infinite, graphs. This fact enables us to investigate functorial chromatic the- ory for infinite graphs. We prove that chromatic functors satisfy the Cantor-Bernstein-Schr¨ oder property. We also prove that countable connected trees determine isomorphic chromatic functors. Finally, we present a pair of infinite graphs that determine non-isomorphic chro- matic functors. 1 Introduction A simple graph G =(V,E) consists of a set of vertices V and a set of unoriented edges E 2 V that connect two vertices. A regular n-coloring of G is a map c : V −→ [n]= {1, 2,...,n} such that {v,v }∈ E implies c(v) = c(v ). It is known that, for a finite graph G =(V,E), there exists a polynomial χ(G,t) Z[t] such that the number of regular n-colorings equals χ(G,n) ([2, 5]), where χ(G,t) is called the chromatic polynomial of G. The minimum * Department of Mathematics, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, JAPAN E-mail: [email protected] 1

150

Embed Size (px)

DESCRIPTION

Chr Graph 52369D2BL

Citation preview

arXiv:1507.06587v2 [math.CO] 11 Aug 2015ChromaticfunctorsofgraphsMasahikoYoshinagaAugust12,2015AbstractFinitegraphsthathaveacommonchromaticpolynomialhavethesamenumber of regular n-colorings. Anatural questionis whetherthereexistsanatural bijectionbetweenregular n-colorings. Wead-dressthisquestionusingafunctorial formulation. LetGbeasimplegraph. Thenfor eachset Xwe canassociate aset of X-colorings.Thisdenesafunctor,chromaticfunctorfromthecategoryofsetswithinjectionstoitself. Therstmainresultveriesthattwonitegraphs determineisomorphicchromatic functors if andonlyif theyhavethesamechromaticpolynomial.Chromaticfunctorscanbedenedforarbitrary, possiblyinnite,graphs. Thisfactenablesustoinvestigatefunctorial chromaticthe-oryforinnitegraphs. WeprovethatchromaticfunctorssatisfytheCantor-Bernstein-Schr oder property. We alsoprove that countableconnectedtreesdetermineisomorphicchromaticfunctors. Finally,wepresentapairofinnitegraphsthatdeterminenon-isomorphicchro-maticfunctors.1 IntroductionAsimple graphG=(V, E) consists of aset of vertices V andaset ofunorientededgesE2Vthatconnect twovertices. Aregularn-coloringof Gisamapc: V [n] ={1, 2, . . . , n}suchthat{v, v}Eimpliesc(v) = c(v).It isknownthat, for anitegraph G = (V, E),thereexistsapolynomial(G, t) Z[t] suchthat thenumber of regular n-coloringsequals (G, n)([2, 5]), where (G, t) is called the chromatic polynomial of G. The minimumDepartment of Mathematics, Hokkaido University, North 10, West 8, Kita-ku, Sapporo060-0810,JAPANE-mail: [email protected] integer n satisfying(G, n) = 0 is called the chromatic number of Ganddenotedby(G).TwonitegraphsG1andG2aresaidtobechromaticallyequivalentif(G1, t) = (G2, t) ([2]). Non-isomorphic graphs may be chromatically equiv-alent, forexample, if G=(V, E)isaniteconnectedtree, then(G, t)=t(t 1)#V 1. Thus, connectedtreesthathavetheprescribed#V arechro-matically equivalent. Therefore, it is a natural question to ask whether thereexistsacertainbijectionbetweenthesetsofregularn-coloringsofchromat-icallyequivalentgraphs.To address the above question, we introduce a functorial formulation. LetXbe a set. We considerXto be a set of colors, and dene the set of regularX-coloringby(G, X) := {c : V X| {v1, v2} E= c(v1) = c(v2)}. (1)LetG1andG2begraphs. If#(G1, X)=#(G2, X), thenthereexistsabijectionXX: (G1, X) (G2, X).However, if weconsider(G1, X)asafunctorwithrespecttoX, wemayimposefunctoriality. Thenatural bijectionshouldbeformulatedasaniso-morphism : (G1, ) (G2, ) (2)of functors(chromaticfunctors). If thechromaticfunctorsareisomorphicinthe sense of (2), thenbysubstitutingX=[n], we canconclude thatthegraphsarechromaticallyequivalent. Themainresultassertsthattheconversealsoholds.Theorem1.1. (Theorem2.1)Let G1and G2be nite graphs. Then they are chromatically equivalent if andonlyifassociatedchromaticfunctorsareisomorphicasfunctors(2).The advantage of chromatic functors over polynomials is that we candene chromatic functors also for graphs with innite vertices. We say graphsG1andG2, whicharepossiblyinnitegraphs, arechromaticallyequivalentifassociatedchromaticfunctorsareisomorphicinthesenseof(2). Wewillshow several results on chromatic functors for innite graphs in 3. The rstresultisthefollowingCantor-Bernstein-Schr oderproperty.Theorem1.2. (Theorem3.3)LetG1andG2begraphs. SupposethereexistsurjectivegraphhomomorphismsG1 G2andG2 G1. ThenG1andG2arechromaticallyequivalent.2Asacorollarytotheabovetheorem, wecanshowthatconnectedun-bounded countable trees determine isomorphic chromatic functors, which canbeconsideredasageneralizationoftheresultonthechromaticpolynomialofconnectednitetrees.In3.3, wewill characterizeisomorphismclasses of chromaticfunctorsfor innite graphs withnitechromatic numbers. Roughlyspeaking, theisomorphismclassof thefunctor(G, )ischaracterizedbythechromaticnumber (G) and cardinality #(G, [(G)]) if G is a countable innite graphwith(G) < (Theorem3.10).If(G) = ,thechromaticfunctorsdetectmoresubtleinformation. In3.4,weexhibittwographsG1andG2whichsatisfy(G1) = (G2),#(G1, [(G1)]) = #(G2, [(G2)]),however,G1andG2arenotchromaticallyequivalent.2 Chromaticfunctors2.1 DenitionsandthemainresultLetG1=(V1, E1)andG2=(V2, E2)besimplegraphs. Ahomomorphism : G1G2is a map : V1V2suchthat {v1, v2} E1={(v1), (v2)}E2. Ahomomorphism: G1G2issaidtobesur-jectiveif themapof vertices : V1V2is surjective. Wedenotethecategoryof graphsandhomomorphisms, orsurjectivehomomorphisms, byGraph,orGraphsurj.Let G = (V, E) be a graph and Xa set. Dene the set (G, X) XVby(G, X) := {c : V X| {v1, v2} E= c(v1) = c(v2)}. (3)Thisdenesabi-functor : GraphSetinjSet, (G, X) (G, X), (4)whereSet(resp. Setinj)isthecategoryofsetsandmaps(resp. injections).Notethat (G, X) is covariant withrespect toXandcontravariant withrespect toG. If werestrict thefunctor toGraphsurj, thenwehaveabi-functor : GraphsurjSetinj Setinj.3These functors canalsobeformulatedinterms of graphhomomorphisms([4]). LetusdenotethecompletegraphwiththesetofverticesXbyKX.Then,thereisanaturalisomorphism(G, X) HomGraph(G, KX).LetGbeasimplegraph. ThenGdeterminesafunctor(G, ) : SetinjSetinj,whichwecallthechromaticfunctorassociatedtoG. Ifwerestrictthe chro-maticfunctortothecategorySetbijofsetsandbijections,weobtain(G, ) : Setbij Setbij.Hence, thecardinality#(G, X)dependsonlyonthecardinality#X. Asmentioned in 1, for a nite graph G, there exists a polynomial (G, t) Z[t]suchthat#(G, [n]) = (G, n),for n>0, whichis calledthechromaticpolynomial of G. If (G1, ) (G2, ) as functors SetinjSetinj, then obviously, (G1, [n]) = (G2, [n]).In particular, they have the same chromatic polynomial. The following resultassertsthattheconverseisalsotrue.Theorem2.1.Let G1and G2be nite graphs. Then the following are equiv-alent.(i) (G1, t) = (G2, t).(ii) (G1, ) (G2, )asfunctorsSetinj Setinj.Theorem2.1willbeprovedlaterin2.2.Denition2.2. Let G1and G2be (possibly innite) graphs. G1and G2aresaidtobechromaticallyequivalent if(G1, ) (G2, ),asfunctorsSetinjSetinj.Notethatfornitegraphs,byTheorem2.1,thisdenitionisequivalenttotheclassicaldenitionofchromaticequivalence[2].Remark2.3. Thefunctorialformulationinthispaperisrelatedtotheno-tion of combinatorial species[3, 1], which considers a combinatorial objectas afunctor SetbijSetbij. However, we consider thecategorySetinjinsteadof Setbij. This requires stronger functorialitythancombinatorialspecies.42.2 StablepartitionsofchromaticfunctorsLetG = (V, E)beasimplegraph.Denition2.4. = {| }iscalledastablepartitionofGif :=

= V ,and{v1, v2} E, v11, v22=1=2. (Inother words,v1, v2 = {v1, v2}/ E.)WedenotethesetofallstablepartitionsbySt(G) = { | isastablepartitionofG}.Example 2.5. Let Xbe aset. There are twoextremal partitions: thetrivial partition {X} and the nest partition X:= {{x} | x X} into singleelements. The stable partition St(KX) of the complete graph KXconsists ofasinglepartitionSt(KX) = {

X}.Proposition2.6. LetG = (V, E)bea(possiblyinnite)graph. Then(G, )

St(G)(K, ). (5)Proof. LetXbeasetand c : V XaregularX-coloring. Thecoloringcdeterminesastablepartitionc:= {c1(x) | x X, c1(x) = },ofG. Thispartitiondeterminesasurjectivegraphhomomorphismc: G Kc, (6)which sends v Vto c1(c(v)) c. By construction, the coloring c : G KXfactorsthrough(6). Therefore,wehaveamap(G, X)

St(G)(K, X).Conversely, foranypartitionSt(G), thereisasurjectivegraphhomo-morphism G K. Because is contravariant with respect to the graphs,wehave(G, X) (K, X). Thisinduces(G, X)

St(G)(K, X).Itisapparentthatthesemapsareinversetoeachother.5Now,letusprove(i)=(ii)ofTheorem2.1. LetG = (V, E)beanitegraph. Thenthereareonlynitelymanystablepartitions. WedecomposeSt(G)asSt(G) =

k1Stk(G),where,Stk(G) = { St(G) | # = k}.UsingProposition2.6,wehave(G, )

k1(Kk, )#Stk(G). (7)Thisimplies(G, t) =

k1#Stk(G) (Kk, t). (8)Recall that (Kk, t) =t(t1) . . . (tk+1). Hence, the polynomials(Kk, t), (k1)arelinearlyindependent. Therefore, from(8), thenum-ber#Stk(G)isuniquelydeterminedbythechromaticpolynomial(G, t).NowassumethattwographsG1andG2satisfy(G1, t)=(G2, t). Itfollows that #Stk(G1) =#Stk(G2) for anyk 1. Thenusing(7), wemayconcludethattheassociatedchromaticfunctorsareisomorphic. ThiscompletestheproofofTheorem2.1.2.3 UniquenessofstablepartitionsWeprovetheuniquenessofthestablepartition. ThefollowingisessentiallytheYonedalemma.Lemma2.7. LetXandY besets. Supposethat : (KX, ) (KY, )isanisomorphism of functors. Thenisinducedfromabijection: YX,thatis, = .Proof. We denote the image of idX (KX, X) by the mapX: (KX, X)(KY, X)by:=X(idX). Similarly, set:=1Y(idY )(KX, Y ). Letc(KX, Z) be an arbitrary coloring. By denition, c : X Zis an injection.Bythecommutativityofthefollowingdiagram,(KX, X) X(KY, X)c

c(KX, Z) Z(KY, Z),6wehave Z(c) =Z(c(idX)) = c( X(idX)) = c() = c = (c).Similarly, we have1= . Using the same diagram with Z= Yand c = ,we have = idY . Similarly, = idX. Thus,and are bijective.LetX={x| xX}andY ={y| yY }bepartitionsof

X:=

xX xand

Y:=

yYyrespectively. ThenXdeterminesafunctorFX:=

xX(Kx, ) : Setinj Setinj.Supposethereexistsabijection :

X

Y thatpreservespartitions,thatis,therestriction|xinducesabijection|x: x yforsomey Y .Thenclearlyinducesanisomorphismoffunctors : FX FY.Thenextresultassertsthattheconversealsoholds.Proposition2.8. Let : FX FYbeanisomorphismoffunctors. Thenthereexistsabijection :

X

Y thatpreservespartitions.Proof. Letx0 X. Considertheidentitymapidx0: x0 x0asacoloringidx0(Kx0, x0). Thenthereexistsauniquey0Y suchthat(idx0)(Ky0, x0).Letc(Kx0, Z)beanarbitrarycoloringofKx0. Sincec:x0Zisaninjection,wemayconsiderthefollowingcommutativediagram.(Kx0, x0) x0 yY(Ky, x0)c

c(Kx0, Z) Z yY(Ky, Z)By the commutativityof the diagram, wehaveZ(c) = c((idx0)), whichiscontained in (Ky0, Z). Hence, induces a homomorphism : (Kx0, ) (Ky0, ). Itisanisomorphism, hencebyLemma2.7, inducedfromabi-jectionx0y0. ThisenablesustoconcludethattheisomorphismisinducedfromtheisomorphismofpartitionsX Y .73 Chromatictheoryforinnitegraphs3.1 RelativeCantor-Bernstein-SchrodertheoremIn this section, we prove the following relative version of the Cantor-Bernstein-Schr oder(CBS)theorem.Theorem3.1. Let f: X1X2andg: Y1Y2bemapsof sets. Leti1, i2, j1,andj2beinjectionsthatmakethefollowingdiagramcommutative.X1i1Y1f

gX2i2Y2X1j1Y1f

gX2j2Y2(9)AssumethatforanysubsetZ X2andW Y2,itholdsthatg1(i2(Z)) = i1(f1(Z)), f1(j2(W)) = j1(g1(W)). (10)Thenthereexistbijectionsr: X Y( = 1, 2)suchthatthefollowingdiagramiscommutative.X1r1Y1f

gX2r2Y2(11)Remark3.2. Theconditions(10)aresatisedifthediagrams(9)areberproducts.Proof. DenethesubsetCn( = 1, 2andn 0)byC0:= X \ j(Y),Cn+1:= j(i(Cn)),andsetC:=

n=0Cn. Letusdenethemapr: X Y( = 1, 2)asfollows.r(x) =i(x), ifx C,j1(x), ifx/ C.Itiswellknownthatr: X Yisbijective. Itremainsforustoprovecommutativityr2 f= g r1. (12)8First,letusprovef1(Cn2) = Cn1byinductiononn. Inthecasen = 0,sinceX2= C02 j2(Y2),wehaveX1= f1(X2) = f1(C02) f1(j2(Y2))= f1(C02) j1(g1(Y2))= f1(C02) j1(Y1).Hence,f1(C02) = C01. Furthermore,f1(Cn+12) = f1(j2(i2(Cn2)))= j1(g1(i2(Cn2)))= j1(i1(f1(Cn2)))= j1(i1(Cn1))= Cn+11.Thus, weobtainf1(C2)=C1. Itfollowsthecommutativityrelation(12)fromthatof(9).3.2 CBSpropertyforchromaticfunctorsInthissection,weprovethatchromaticfunctorssatisfytheCBSproperty.Theorem3.3. Let G1andG2be(possiblyinnite)graphs. Supposethatthere exist surjective graph homomorphisms : G1G2, and: G2G1.ThenG1andG2arechromaticallyequivalent.Proof. Letf:XY beaninjectionofsets. Thenwehavethefollowingcommutativediagrams.(G1, X)(G2, X)f

f(G1, Y )(G2, Y )(G1, X)(G2, X)f

f(G1, Y )(G2, Y )(13)Note that all maps in (13) are injective. It is easyto see that both diagramsareberproducts. ApplyingTheorem3.1(seealsoRemark 3.2),thereexistbijectionsrXandrYsuchthatthefollowingdiagramiscommutative.(G1, X)rX(G2, X)f

f(G1, Y )rY(G2, Y )(14)9Thesystemofbijections{rX}determinesanisomorphismoffunctorsr: (G1, ) (G2, ).Thiscompletestheproof.Remark3.4. Wecan alsoprovethepreviousresultusingstablepartitions.Namely, agraphsurjectivehomomorphismG1G2induces aninjectionSt(G1) St(G2)foranycardinality. Similarly, G1 G2inducesaninjectionSt(G1) St(G2). Then the CBS Theorem concludesthat thereexists a bijection St(G1) St(G2) for any cardinality . Then it followsfromProposition2.6thatG1andG2arechromaticallyequivalent.Denition3.5. Thenatural treeTN= (V, E)(Figure1)isdenedbyV=N = {0, 1, 2, . . . , n, . . . },andE= {{n, n + 1} | n N}.s s s s s s q q q0 1 2 3 4 5Figure1: ThenaturaltreeTNProposition3.6. LetG=(V, E)beaconnectedcountablegraph. Thenthereexistsasurjectivegraphhomomorphism : TNG.Proof. Since V is countable andGis connected, there exists asequence{vi0, vi1, . . . , }of verticessuchthat{vis, vis+1}Eand{vis}sNcovers V .ThenN s vis Vinduces a surjective graph homomorphism : TNG.LetG = (V, E)beaconnectedgraph. ThenthesetVofverticesadmitstheadjacencymetric,denotedbydG(, ). ThediameterofGisdenedbysupx,yVdG(x, y).ThegraphGissaidtobeunboundedifthediameteris.Theorem3.7. Let G=(V, E) beaconnectedcountableunboundedgraphthat has nocycle of oddlength(inother words, (G) =2). ThenGischromaticallyequivalenttothenatural treeTN.10Proof. Let p V . Thenbythe assumptionthat there are nocycles ofoddlength, themapdG(p, ) : V Ninduces agraphhomomorphismdG(p, ): GTN. Theunboundednessof Gimpliesthatthehomomor-phism dG(p, ) : G TNis surjective. Proposition 3.6 and CBS-type result(Theorem3.3)concludethatGandTNarechromaticallyequivalent.Corollary 3.8.Connected countable unbounded trees are chromatically equiv-alenttoTN.3.3 InnitegraphswithnitechromaticnumbersDenition3.9. Thenatural wheel WN= (V, E)(Figure2)isdenedbyV=N = {0, 1, 2, . . . , n, . . . },andE= {{0, n} | n > 0}.s s s s s s q q q0 1 2 3 4 5Figure2: ThenaturalwheelWNThegraphWNisacountableconnectedtreewithdiameter2. SinceWNhasanitediameter,wecannotuseCorollary3.8. However,inthissection,wewillprovethatWNisalsochromaticallyequivalenttoTN.Let G = (V, E) be a countable innite graph (we do not make any assump-tionsaboutdiameterandconnectivity). Wealsoassumethatthechromaticnumber(G)isnite. Forinstance,thegraphWnsatisestheseconditions((Wn)=2). Thenweprovethattheisomorphismclassof thechromaticfunctor(G, )isdeterminedbythecardinality#(G, [(G)]).Theorem3.10. LetG1=(V1, E1)andG2=(V2, E2)becountableinnitegraphswiththesamenitechromaticnumber(G1) = (G2) = n. Supposethat#(G1, [n]) = #(G2, [n]),(possiblyinnitecardinality). ThenG1andG2arechromaticallyequivalent.11Proof. We shall use stable partitions of chromatic functors (Proposition 2.6).Itissucienttoshowthat#Stk(G1) = #Stk(G2), (15)forallk 0. Since#(G, [k]) =k

i=1

ki

i! #Sti(G),#Stk(G1)=#Stk(G2)holdsforkn. Letc(G1, [n])beanelement.Since#V1=0, thereexists i0[n] suchthat #c1(i0) =0. ForanysubsetX c1(i0),letusdenethemap c : V [n + 1]byc(v) =c(v) ifc(v) = i0c(i0) ifc(v) = i0andv Xn + 1 ifc(v) = i0andv/ X.Then c(G1, [n + 1]). Themap cchangesaccordingtothechoiceofthesubsetX c1(i0). Hence,wehave#Stn+1(G1) = 20. Similarly,wehave#Stk(G1) = #Stk(G2) = 20forn < k 0. Thiscompletestheproof.Remark3.11. WecanalsoproveTheorem3.7usingTheorem3.10.Example 3.12. Let G1, G2, andG3be graphs of Figure 3. Thentheyhavethesamechromaticnumber, (G1)=(G2)=(G3)=3. Notethat#(G1, [3])=20and#(G2, [3])=#(G3, [3])=6. Hence, byTheorem3.10,G2andG3arechromaticallyequivalent,however,G1isnot.3.4 ExamplesofnonchromaticallyequivalentgraphsAs presentedinthe previous section, the isomorphismclass of the func-tor (G, ) is determinedbythe chromatic number (G) andcardinality#(G, [(G)]), whenever (G) < . However, this is not the case for graphswithinnitechromaticnumber(G),twoofwhicharepresentedhere.Example3.13. LetXbeaninniteset. Recall thatKX=(V, E)isthecompletegraphwithverticesX. Namely, V=XandE= {e2X|#e=2}. Lete0={x0, x1}Ebeanedge, anddeneE:=E \ {e0}. Considerthe graph KX= (V, E) obtained from KXby deleting an edge e0. Then KXandKXsatisfythefollowing.12G1q q q s s s s s s s s s s ss s s s s s s s s s

G2q q q s s s s s s s s s s ss s s s s s s s s s

q q q q q qG3s s s s s s s s s s ss s s s s s s s s s ss s s s s s s s s s ss s s s s s s s s s s

Figure3: G1, G2andG3(i) (KX) = (KX) = #X.(ii) #(KX, X) = #(KX, X) = 2#X.(iii) KXandKXarenotchromaticallyequivalent.Itiseasilyseenthat(i)and(ii)hold. Letusprove(iii). First,considerthestable partition of KX. St(KX) consists of two partitions, 1:= X:= {{x} |x X}and2:= {{x} | x X, x = x0, x1} {{x0, x1}}.Both have the same cardinality #1= #2= #X. Therefore, the chromaticfunctorisisomorphicto(KX, ) (KX, ) (KX, ).However, bytheuniquenessofstablepartitions(Proposition2.8),itcannotbeisomorphicto(KX, ).Acknowledgements. The main part of this work was conducted during theauthors stay at Hiroshima University in June 2015. The author thanks Pro-fessorsIchiroShimada, Shun-ichi Kimura, MakotoMatsumoto, NobuyoshiTakahashi, AkiraIshii, andYuyaKodafor manyinspiringcomments. Inparticular, the ideas of considering Setinjinstead of Setbijand the distinctionbetweenbounded and unbounded treeswererealized duringour discussions.Theauthorisalsograteful toProfessorTakahiroHasebeformanysugges-tions(2.3,Remarks3.4and3.11). ThisworkwaspartiallysupportedbyaGrant-in-AidforScienticResearch(C)25400060, JSPS.13References[1] F. Bergeron, G. Labelle, P. Leroux, Combinatorial species andtree-likestructures. Encyclopediaof MathematicsanditsApplications, 67.CambridgeUniversityPress,Cambridge,1998.xx+457pp.[2] Birkho, G. D.; Lewis, D. C. Chromatic polynomials. Trans. Amer.Math.Soc.60,(1946). 355-451.[3] A. Joyal, Unetheoriecombinatoiredesseriesformelles. Adv. inMath.42(1981),no.1,1-82.[4] D. Kozlov, Combinatorial algebraictopology. AlgorithmsandCompu-tationinMathematics,21.Springer,Berlin,2008.xx+389pp.[5] R. C. Read, An introduction to chromatic polynomials. J. CombinatorialTheory4(1968)52-71.[6] R. P. Stanley, Asymmetric functiongeneralizationof the chromaticpolynomialofagraph.Adv.Math.111(1995),no.1,166-194.14