15 dq Theory

Embed Size (px)

Citation preview

  • 7/22/2019 15 dq Theory

    1/61

    Synchronous Machine

  • 7/22/2019 15 dq Theory

    2/61

    Relevance to Synchronous Machine

    dq means direct and quadrature. Direct axis is aligned with

    the rotors pole. Quadrature axis refers to the axis whose

    electrical angle is orthogonal to the electric angle of direct

    axis.

    a axis

    daxisqaxis

    baxis

    caxis

    ma

    d

    mq

    22

    2

    memqr

    mme

    P

    Pming

    max,orr

    min,orrmaxg

    isr

    d

    a axis

    m

    a

    q axis

    mq

  • 7/22/2019 15 dq Theory

    3/61

    Parks Transformation

    Stator quantities (Sabc) of current, voltage, or flux can be

    converted to quantities (Sdq0) referenced to the rotor.

    This conversion comes through the K matrix.

    0

    1

    0

    dqabc

    abcdq

    SKS

    KSS

    13/2sin3/2cos

    13/2sin3/2cos

    1sincos

    2/12/12/1

    3/2sin3/2sinsin

    3/2cos3/2coscos

    3

    2

    1

    meme

    meme

    meme

    mememe

    mememe

    K

    K

    13/2cos3/2sin13/2cos3/2sin

    1cossin

    2/12/12/1

    3/2cos3/2coscos

    3/2sin3/2sinsin

    3

    2

    1

    rr

    rr

    rr

    rrr

    rrr

    K

    K

    where

    or

    (MITs notation)

    (Purdues notation)

  • 7/22/2019 15 dq Theory

    4/61

    Voltage Equations (1)

    abcabcSabcdtd iRv

    010101 dqdqSdqdt

    dKiKRvK

    010101 dqdqSdq dtd KKiKKRvKK

    0

    1

    0

    1

    0

    1

    0 dqdqdqSdqdt

    d

    dt

    dKKKKiKKRv

    0

    1

    000 dqdqdqSdqdt

    d

    dt

    dKKiRv

    100

    010001

    sS RR

    For stator windings

    For field winding:

    ffff dt

    diRv

    Under motor reference convention for currents

    (i.e. the positive reference direction for currents is into the machine):

  • 7/22/2019 15 dq Theory

    5/61

    Voltage Equations (2)

    We derive the derivative of K-1:

    Then, we get

    000

    00

    001

    r

    r

    dt

    d

    KK

    fff

    s

    rdqqs

    rqdds

    f

    q

    d

    dtdiR

    dt

    diR

    dt

    diR

    dt

    diR

    v

    v

    vv

    000

    03/2sin3/2cos

    03/2sin3/2cos

    0sincos

    03/2cos3/2sin

    03/2cos3/2sin

    0cossin1

    rr

    rr

    rr

    r

    meme

    meme

    meme

    me

    dt

    dK

    dt

    d meme

    And for voltage, we get

    2

    P

    dt

    dmme

    rr

  • 7/22/2019 15 dq Theory

    6/61

    Dynamical Equations for Flux Linkage

    fff

    s

    rdqsq

    rqdsd

    f

    q

    d

    iRviRv

    iRv

    iRv

    dt

    d

    000

    The derivations so far are valid for both linear and nonlinear models.

    f

    q

    d

    dqf

    0

    fff

    s

    rdqsq

    rqdsd

    iRv

    iRv

    iRv

    iRv

    00

    V

    Let

    we haveV

    dt

    d dqf

  • 7/22/2019 15 dq Theory

    7/61

    Flux Linkage vs. Current (1)

    The next step is to relate current to flux linkage through

    inductances. For salient pole rotor, the inductances can

    be approximately expressed as

    cf

    bf

    af

    sf

    L

    L

    L

    L

    3

    22cos

    322cos

    2cos

    meBAlscc

    meBAlsbb

    meBAlsaa

    LLLL

    LLLL

    LLLL

    or:

    3

    22cos

    3

    22cos

    2cos

    rBAlscc

    rBAlsbb

    rBAlsaa

    LLLL

    LLLL

    LLLL

    2

    mer

    f

    T

    sf

    sfss

    abcf LL

    LLL

    cccbca

    bcbbba

    acabaa

    ss

    LLL

    LLL

    LLL

    L

  • 7/22/2019 15 dq Theory

    8/61

  • 7/22/2019 15 dq Theory

    9/61

    Flux Linkage vs. Current (3)

    This matrix can be transformed into dq0 form and used to

    find flux linkage.

    abcfabcfabcf iL

    fsfdqssdq iLiKLK

    0

    1

    0

    1

    dqfdqfdqf iL

    fsfdqssdq iKLiKKL

    0

    1

    0

    fTsf

    sfss

    abcf LL

    LLL

    f

    abc

    abcf

    f

    abc

    abcf i

    ii

    fsfabcssabc iLiL

    ffabc

    T

    sff iL iL ffdqT

    sff iL

    0

    1iKL

    f

    T

    sf

    sfss

    dqf

    L1

    1

    KL

    KLKKLL

    f

    dq

    dqf

    0

    f

    dq

    dqf

    i

    0ii

    From with

    where

  • 7/22/2019 15 dq Theory

    10/61

  • 7/22/2019 15 dq Theory

    11/61

    Dynamical Equation in terms of Current

    V

    dt

    d dqf

    For linear model

    from

    VLi

    1 dqfdqf

    dt

    d dynamical equationin terms of current

    dqfdqfdqf iL

    fff

    s

    rdqsq

    rqdsd

    iRv

    iRv

    iRv

    iRv

    00

    V

    and

    where

    qqq

    fsfddd

    iL

    iLiL

  • 7/22/2019 15 dq Theory

    12/61

    Power

    Electrical instantaneous Input Power on Stator can also be

    expressed through dq0 theory.

    0

    11

    0 )( dqTT

    dqabc

    T

    abcccbbaain ivivivp iKKviv

    00223 ivivivp qqddin

    200010

    001

    2

    3

    )( 11

    KK

    T

  • 7/22/2019 15 dq Theory

    13/61

    Torque

    0022

    3ivivivp qqddin

    00

    0

    dt

    diRdt

    diR

    dt

    diR

    v

    v

    v

    s

    rdqqs

    rqdds

    q

    d

    From

    we have

    )(223

    22

    3

    22

    3 00

    2

    0

    22

    dqqdm

    q

    q

    d

    dqdsin ii

    P

    dt

    d

    idt

    d

    idt

    d

    iiiiRp

    Copper Loss Mechanical PowerMagnetic Power inWindings

    Therefore, electromagnetic torque on rotor

    )(22

    3dqqd

    m

    meche iiPp

    T

    mechp

  • 7/22/2019 15 dq Theory

    14/61

    Equivalent Circuits (1)

    fff

    s

    rdqqs

    rqdds

    f

    q

    d

    dt

    diR

    dt

    diRdt

    diR

    dt

    diR

    v

    vv

    v

    000

    dsffff

    ls

    qqq

    fsfddd

    iLiL

    iL

    iL

    iLiL

    2

    3

    00

    d axisdt

    diL

    dt

    diLiRv

    f

    sfd

    drqdsd

  • 7/22/2019 15 dq Theory

    15/61

    Equivalent Circuits (2)

    q axisdt

    diLiRv

    q

    qrdqsq

    0 axisdt

    diLiRv s

    0000

    This circuit is not necessaryfor Y connected windingssince i0=0.

  • 7/22/2019 15 dq Theory

    16/61

  • 7/22/2019 15 dq Theory

    17/61

    Combined Equivalent Circuit on d Axis (1)

    dt

    iid

    Ldt

    di

    LiR

    dt

    diL

    dt

    diLiRv

    fd

    md

    d

    lsrqds

    f

    sfd

    drqdsd

    )( '

    d axis equivalent circuit and field winding equivalent circuit can be combined:

    mdlsd LLL

    mflff LLL

    mf

    sf

    sf

    md

    f

    a

    L

    L

    L

    L

    N

    NN

    3

    2

    N

    ii

    L

    Li

    f

    f

    md

    sf

    f

    3

    2'

    fadsf

    fdmf

    admd

    NNCL

    NCL

    NCL

    2

    3

    2

    2

    )2

    1(8

    2

    0 g

    av

    dPg

    DlC

    From

    (Details @ InductanceSM.ppt)

    Let

    aN fNand are effective number ofturns of armature andfield windings.

  • 7/22/2019 15 dq Theory

    18/61

    Combined Equivalent Circuit on d Axis (2)

    dt

    diL

    dt

    diLiRv dsf

    f

    ffff2

    3 '

    2

    3ff Nii

    dt

    di

    NLdt

    di

    NLdt

    di

    NLiNRNv d

    sf

    f

    mf

    f

    lffff2

    3

    mf

    sf

    sf

    md

    L

    L

    L

    L

    N 3

    2

    dt

    diL

    dt

    diL

    dt

    diLNiRNNv dmd

    f

    sf

    f

    lffff

    '

    2'2

    2

    3

    2

    3

    dt

    iidL

    dt

    diLiRv

    fd

    md

    f

    lffff

    )( ''''''

    lflf

    ff

    ff

    LNL

    RNR

    Nvv

    2'

    2'

    '

    2

    3

    2

    3

  • 7/22/2019 15 dq Theory

    19/61

    Combined Equivalent Circuit on d Axis (3)

    dt

    iidL

    dt

    diLiRv

    fd

    mdd

    lsrqdsd

    )( '

    dt

    iidL

    dt

    diLiRv

    fd

    md

    f

    lffff

    )( ''''''

    From

    ff Nvv '

    '

    2

    3ff Nii

    we get

    mdmddls

    fsfddd

    iLiL

    iLiL

    'fdmd iii

  • 7/22/2019 15 dq Theory

    20/61

    dq Theory for Permanent Magnet

    Synchronous Machine (PMSM)

  • 7/22/2019 15 dq Theory

    21/61

    Parks Transformation

    Stator quantities (Sabc) of current, voltage, or flux can be

    converted to quantities (Sdq0) referenced to the rotor.

    This conversion comes through the K matrix.

    0

    1

    0

    dqabc

    abcdq

    SKS

    KSS

    13/2sin3/2cos

    13/2sin3/2cos

    1sincos

    2/12/12/1

    3/2sin3/2sinsin

    3/2cos3/2coscos

    3

    2

    1

    meme

    meme

    meme

    mememe

    mememe

    K

    K

    13/2cos3/2sin

    13/2cos3/2sin

    1cossin

    2/12/12/1

    3/2cos3/2coscos

    3/2sin3/2sinsin

    3

    2

    1

    rr

    rr

    rr

    rrr

    rrr

    K

    K

    where

    or

    (MITs notation)

    (Purdues notation)

  • 7/22/2019 15 dq Theory

    22/61

    Voltage Equations (1)

    abcabcSabcdtd iRv

    010101 dqdqSdqdt

    dKiKRvK

    01

    0

    1

    0

    1

    dqdqSdqdt

    dKKiKKRvKK

    0

    1

    0

    1

    0

    1

    0 dqdqdqSdqdt

    d

    dt

    dKKKKiKKRv

    0

    1

    000 dqdqdqSdqdt

    d

    dt

    dKKiRv

    100

    010001

    sS RR

    For stator winding

    Under motor reference convention for currents

    (i.e. the positive reference direction for currents is into the machine):

  • 7/22/2019 15 dq Theory

    23/61

    Voltage Equations (2)

    We derive the derivative of K-1:

    Then, we get

    000

    00

    001

    r

    r

    dtd

    KK

    00

    0

    dt

    diR

    dt

    diR

    dt

    diR

    v

    v

    v

    s

    rdqqs

    rqdds

    q

    d

    03/2sin3/2cos

    03/2sin3/2cos

    0sincos

    03/2cos3/2sin

    03/2cos3/2sin

    0cossin1

    rr

    rr

    rr

    r

    meme

    meme

    meme

    medt

    dK

    dt

    d meme

    And for voltage, we get

    2

    P

    dt

    dmme

    rr

  • 7/22/2019 15 dq Theory

    24/61

    Dynamical Equations for Flux Linkage

    000 iRv

    iRv

    iRv

    dt

    d

    s

    rdqsq

    rqdsd

    q

    d

    The derivations so far are valid for both linear and nonlinear models.

    0

    0

    q

    d

    dq

    00 iRv

    iRviRv

    s

    rdqsq

    rqdsd

    V

    Let

    we haveV

    dt

    d dq0

  • 7/22/2019 15 dq Theory

    25/61

    Flux Linkage vs. Current (1)

    The next step is to relate current to flux linkage through

    inductances. For salient pole rotor, the inductances can

    be approximately expressed as

    cccbca

    bcbbba

    acabaa

    abc

    LLL

    LLL

    LLL

    L

    3

    22cos

    322cos

    2cos

    meBAlscc

    meBAlsbb

    meBAlsaa

    LLLL

    LLLL

    LLLL

    Note: Higher order harmonics are neglected.

    or:

    3

    22cos

    322cos

    2cos

    rBAlscc

    rBAlsbb

    rBAlsaa

    LLLL

    LLLL

    LLLL

    2

    mer

  • 7/22/2019 15 dq Theory

    26/61

    Flux Linkage vs. Current (2)

    3

    22cos

    2

    1

    2cos21

    3

    22cos

    2

    1

    meBAcaac

    meBAcbbc

    meBAbaab

    LLLL

    LLLL

    LLLL

    Note: Higher order harmonics are neglected.

    or:

    3

    22cos

    2

    1

    2cos21

    3

    22cos

    2

    1

    rBAcaac

    rBAcbbc

    rBAbaab

    LLLL

    LLLL

    LLLL

    2

    mer

    Ref: 1. A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery,6th Edition, pages 660-661.

    2. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff,Analysis of Electric Machinery and Drive Systems, 2nd Edition, page 52,

    also pages 264-265.

  • 7/22/2019 15 dq Theory

    27/61

    Flux Linkage vs. Current (4)

    This matrix can be transformed into dq0 form and used to

    find flux linkage.

    PMabcabcabcabc iL

    PMabcdqabcfdq iKLK 0101

    PMabcdqabcdq KiKKLKK 0101

    0000 PMdqdqdqdq iL

    PMabcdqabcdq KiKKL

    0

    1

    0

    where

    )3/2cos(

    )3/2cos(

    )cos(

    me

    me

    me

    PMPMabc

    or:

    2

    mer

    )3/2sin(

    )3/2sin(

    )sin(

    r

    r

    r

    PMPMabc

  • 7/22/2019 15 dq Theory

    28/61

    Inductance Matrix in dq0 Frame

    Therefore, we get the following inductance matrix in dq0

    frame:

    0

    1

    0

    0000

    00

    LL

    L

    q

    d

    abcdq KKLL

    where

    )(2

    3

    )(2

    3

    BAmq

    BAmd

    LLL

    LLL

    ls

    mqlsq

    mdlsd

    LL

    LLL

    LLL

    0

    and

    From

    00 iL

    iL

    iL

    ls

    qqq

    PMddd

    0000 PMdqdqdqdq iL

    000

    PM

    PMabcPMdq

    K

  • 7/22/2019 15 dq Theory

    29/61

    Dynamical Equation in terms of Current

    V

    dt

    d dq0For linear model from

    VLi

    1

    0

    0 dq

    dq

    dt

    d dynamical equation

    in terms of current

    00 iRv

    iRv

    iRv

    s

    rdqsq

    rqdsd

    V

    and

    where

    qqq

    PMddd

    iL

    iL

    0000 PMdqdqdqdq iL

    0

    0

    00

    00

    00

    L

    L

    L

    q

    d

    dqL

    0000 /)(/)(

    /)(

    LiRvLiLiRv

    LiLiRv

    ii

    i

    dt

    d

    s

    qPMrddrqsq

    dqqrdsd

    q

    d

    For Y connected winding, since , only need to considerthe first two equations for idand iq.

    0)(

    3

    10 cba iiii

  • 7/22/2019 15 dq Theory

    30/61

    Power

    Electrical instantaneous Input Power on Stator can also be

    expressed through dq0 theory.

    0

    11

    0 )( dqTT

    dqabc

    T

    abcccbbaain ivivivp iKKviv

    00223 ivivivp qqddin

    200010

    001

    2

    3

    )(

    11KK

    T

  • 7/22/2019 15 dq Theory

    31/61

  • 7/22/2019 15 dq Theory

    32/61

    Dynamical Equations of Motion

    mm

    dampLem

    dt

    d

    TTTdt

    dJ

    where

    qTqdqdqPMe iKiiLLiP

    T )(22

    3

    For round rotor machine, qd LL qPMe iPT 43

    mmdamp DT Dm is combined damping coefficient of rotorand load.

    dqdPMq

    eT iLL

    P

    i

    TK )(

    4

    3 torque constant

    PMTPK 43

  • 7/22/2019 15 dq Theory

    33/61

  • 7/22/2019 15 dq Theory

    34/61

  • 7/22/2019 15 dq Theory

    35/61

    Parks Transformation

    Stator quantities (Sabc) of current, voltage, or flux can be

    converted to quantities (Sdq0) referenced to the rotor.

    This conversion comes through the K matrix.

    0

    1

    0

    dqabc

    abcdq

    SKS

    KSS

    13/2sin3/2cos

    13/2sin3/2cos

    1sincos2/12/12/1

    3/2sin3/2sinsin

    3/2cos3/2coscos

    3

    2

    1

    meme

    meme

    meme

    mememe

    mememe

    K

    K

    13/2cos3/2sin

    13/2cos3/2sin

    1cossin

    2/12/12/1

    3/2cos3/2coscos3/2sin3/2sinsin

    3

    2

    1

    rr

    rr

    rr

    rrr

    rrr

    K

    K

    where

    or

    (MITs notation)

    (Purdues notation)

  • 7/22/2019 15 dq Theory

    36/61

  • 7/22/2019 15 dq Theory

    37/61

    Voltage Equations (2)

    We derive the derivative of K-1:

    Then, we get

    000

    00

    00

    1r

    r

    dtd

    KK

    00

    0

    dt

    diR

    dt

    diR

    dt

    diR

    v

    vv

    s

    rdqqs

    rqdds

    q

    d

    03/2sin3/2cos

    03/2sin3/2cos

    0sincos

    03/2cos3/2sin

    03/2cos3/2sin

    0cossin1

    rr

    rr

    rr

    r

    meme

    meme

    meme

    medt

    dK

    dt

    d meme

    And for stator voltage, we

    get

    2

    P

    dt

    dmme

    rr

  • 7/22/2019 15 dq Theory

    38/61

    Voltage Equations (3)

    For rotor windings:

    We assume the rotor has field winding (magnetic field along d axis),one damper with magnetic field along d axis and one damper

    with magnetic field along q axis.

    qdqdqd kfkkfkrkfk dt

    diRv

    q

    d

    k

    k

    f

    r

    R

    R

    R

    00

    00

    00

    R

    0

    0

    f

    kfk

    v

    qdv

    q

    dqd

    k

    k

    f

    kfk

  • 7/22/2019 15 dq Theory

    39/61

    Voltage Equations (4)

    qqq

    ddd

    kkk

    kkk

    fff

    s

    qrdqs

    drqds

    f

    q

    d

    dt

    diR

    dt

    diR

    dt

    diR

    dt

    diR

    dt

    diR

    dt

    diR

    v

    v

    v

    v

    000

    0

    0

    In summary:

  • 7/22/2019 15 dq Theory

    40/61

    Dynamical Equations for Flux Linkage

    qq

    dd

    q

    d

    kk

    kk

    fff

    s

    rdqsq

    rqdsd

    k

    k

    f

    q

    d

    iR

    iRiRv

    iRv

    iRv

    iRv

    dt

    d 000

    The derivations so far are valid for both linear and nonlinear models.

    Let

    we have V

    dt

    d dqf

    q

    d

    k

    k

    f

    q

    d

    dqf

    0

    qq

    dd

    kk

    kk

    fff

    s

    rdqsq

    rqdsd

    iR

    iR

    iRv

    iRv

    iRv

    iRv

    00

    V

  • 7/22/2019 15 dq Theory

    41/61

    Flux Linkage vs. Current (1)

    The next step is to relate current to flux linkage through

    inductances. For salient pole rotor, the inductances can

    be approximately expressed as

    3

    22cos

    322cos

    2cos

    meBAlscc

    meBAlsbb

    meBAlsaa

    LLLL

    LLLL

    LLLL

    or:

    3

    22cos

    322cos

    2cos

    rBAlscc

    rBAlsbb

    rBAlsaa

    LLLL

    LLLL

    LLLL

    2

    mer

    rr

    T

    sr

    srss

    abcfLL

    LLL

    cccbca

    bcbbba

    acabaa

    ss

    LLL

    LLL

    LLL

    L

    qd

    qd

    qd

    ckckcf

    bkbkbf

    akakaf

    sr

    LLL

    LLL

    LLL

    L

    qdqq

    qddd

    qd

    kkkfk

    kkkfk

    fkfkf

    rr

    LLL

    LLL

    LLL

    L

  • 7/22/2019 15 dq Theory

    42/61

    Fl Li k C t (3)

  • 7/22/2019 15 dq Theory

    43/61

    Flux Linkage vs. Current (3)

    3

    2cos

    3

    2

    cos

    cos

    meskckck

    meskbkbk

    meskakak

    ddd

    ddd

    ddd

    LLL

    LLL

    LLL

    or:

    3

    2sin

    3

    2

    sin

    sin

    rskckck

    rskbkbk

    rskakak

    ddd

    ddd

    ddd

    LLL

    LLL

    LLL

    2

    mer

    3

    2sin

    3

    2sin

    sin

    meskckck

    meskbkbk

    meskakak

    qqq

    qqq

    qqq

    LLL

    LLL

    LLL

    3

    2cos

    3

    2cos

    cos

    rskckck

    rskbkbk

    rskakak

    qqq

    qqq

    qqq

    LLL

    LLL

    LLL

  • 7/22/2019 15 dq Theory

    44/61

    Fl Li k C t (5)

  • 7/22/2019 15 dq Theory

    45/61

    Flux Linkage vs. Current (5)

    This matrix can be transformed into dq form and used to

    find flux linkage.

    abcfabcfabcf iL

    qdkfksrdqssdq iLiKLK 01

    0

    1

    dqfdqfdqf iL

    qdkfksrdqssdq

    iKLiKKL 0

    1

    0

    r

    T

    sr

    srss

    abcf

    LL

    LLL

    qdkfk

    abc

    abcf

    qdkfk

    abc

    abcfi

    ii

    qdkfksrabcssabc iLiL

    qdqd kfkrrabc

    T

    srkfk iLiL qdqd kfkrrdqT

    srkfk iLiKL

    0

    1

    rr

    T

    sr

    srss

    dqfLKL

    KLKKLL

    1

    1

    qdkfk

    dq

    dqf

    0

    qdkfk

    dq

    dqfi

    ii

    0

    From with

    where

    Inductance Matrix in dq Frame

  • 7/22/2019 15 dq Theory

    46/61

    Inductance Matrix in dq Frame

    qq

    ddd

    d

    q

    d

    ksk

    kfksk

    fkfsf

    skq

    sksfd

    dqf

    LL

    LLL

    LLL

    L

    LL

    LLL

    000230

    0002

    3

    0002

    300000

    0000

    000

    0

    L

    where

    )(2

    3

    )(2

    3

    BAmq

    BAmd

    LLL

    LLL

    mqlsq

    mdlsd

    LLL

    LLL

    and

    dqfdqfdqf iL From

    qskkkk

    ffkdskkkk

    kfkdsffff

    kskqqq

    kskfsfddd

    iLiL

    iLiLiL

    iLiLiL

    iL

    iLiL

    iLiLiL

    qqqq

    ddddd

    dd

    qq

    dd

    2

    32

    32

    3000

    Through derivations, we have

    rrTsr

    srss

    dqf LKL

    KLKKLL

    1

    1

    lsLL 0

  • 7/22/2019 15 dq Theory

    47/61

    Power

  • 7/22/2019 15 dq Theory

    48/61

    Power

    Electrical instantaneous Input Power on Stator can also be

    expressed through dq0 theory.

    0

    11

    0 )( dqTT

    dqabc

    T

    abcccbbaain ivivivp iKKviv

    00223 ivivivp qqddin

    200

    010

    001

    2

    3)( 11 KK T

    Torque

  • 7/22/2019 15 dq Theory

    49/61

    Torque

    0022

    3ivivivp qqddin

    00

    0

    dtdiR

    dt

    diR

    dt

    diR

    v

    v

    v

    s

    rdqqs

    rqdds

    q

    d

    From

    we have

    )(22

    32

    2

    32

    2

    3 00

    2

    0

    22

    dqqdm

    q

    qd

    dqdsin iiP

    dt

    di

    dt

    di

    dt

    diiiiRp

    Copper LossMechanical PowerMagnetic Power inWindings

    Therefore, electromagnetic torque on rotor

    )(22

    3

    dqqdm

    mech

    e ii

    Pp

    T

    mechp

    Equivalent Circuit on d Axis (1)

  • 7/22/2019 15 dq Theory

    50/61

    Equivalent Circuit on d Axis (1)

    d axis of stator, field winding and d axis damper of rotor can form an equivalentcircuit.

    Let mdlsd LLL

    mflff LLL

    ddd mklkk LLL

    dd

    dd

    dd

    kfdfk

    kadsk

    kdmk

    fadsf

    fdmf

    admd

    NNCL

    NNCL

    NCL

    NNCL

    NCL

    NCL

    2

    3

    2

    2

    2

    )21(8

    2

    0 g

    av

    dPg

    DlC

    From

    (Details @ Inductance for SM.ppt)

    , aN fN and are effective number of turns of

    armature, field and d axis

    damper windings, respectively.

    dkN

    Equivalent Circuit on d Axis (2)

  • 7/22/2019 15 dq Theory

    51/61

    Equivalent Circuit on d Axis (2)

    dt

    iiidL

    dt

    diLiR

    dt

    diL

    dt

    diL

    dt

    diLiRv

    d

    d

    d

    kfd

    mdd

    lsrqds

    k

    sk

    f

    sfd

    drqdsd

    )( ''

    f

    a

    f

    f

    md

    sf

    f iN

    Ni

    L

    Li

    3

    2' Define

    d

    d

    d

    d

    d k

    a

    k

    k

    md

    sk

    k iN

    Ni

    L

    Li

    3

    2' and

    dt

    diL

    dt

    diL

    dt

    diLiRv d

    d

    k

    fkd

    sf

    f

    ffff 2

    3

    dtdiNL

    dtdiNL

    dtdiNL

    dtdiNLiNRNv d

    d

    kfk

    dsf

    fmf

    flffff 2

    3

    dt

    diL

    N

    N

    N

    N

    dt

    diL

    dt

    diL

    dt

    diLNiRNNv d

    d

    d

    k

    fk

    k

    a

    f

    admd

    f

    sf

    f

    lffff

    ''

    2'2

    2

    3

    2

    3

    2

    3

    Define

    ff Nvv '

    a

    f

    NN

    Nand

    Equivalent Circuit on d Axis (3)

  • 7/22/2019 15 dq Theory

    52/61

    Equivalent Circuit on d Axis (3)

    dt

    iiidL

    dt

    diLiRv d

    kfd

    md

    f

    lffff

    )( '''''''

    lf

    f

    alf

    ff

    a

    f

    LN

    NL

    RN

    N

    R

    2

    '

    2

    '

    2

    3

    2

    3

    where

    2

    32

    a

    kf

    md

    fk

    N

    NNLL dd

    dt

    di

    Ldt

    di

    Ldt

    di

    Ldt

    di

    LiR

    dt

    diL

    dt

    diL

    dt

    diLiR

    f

    fk

    d

    sk

    k

    mk

    k

    lkkk

    f

    fkd

    sk

    k

    kkk

    dd

    d

    d

    d

    ddd

    dd

    d

    ddd

    2

    3

    2

    30From

    above

    3

    2

    dd k

    a

    sk

    md

    N

    N

    L

    L

    next page

    Equivalent Circuit on d Axis (4)

  • 7/22/2019 15 dq Theory

    53/61

    Equivalent Circuit on d Axis (4)

    dt

    diL

    NN

    N

    dt

    diL

    dt

    diL

    N

    N

    dt

    diL

    N

    NiR

    N

    N ffk

    kf

    admd

    k

    mk

    k

    ak

    lk

    k

    akk

    k

    a

    d

    d

    d

    d

    d

    d

    d

    d

    dd

    d

    '2'2

    '2

    '

    2

    2

    3

    2

    3

    2

    3

    2

    30

    dt

    iiid

    Ldt

    di

    LiR dd

    ddd

    kfd

    md

    k

    lkkk

    )(

    0

    '''

    '''

    where

    d

    d

    d

    d

    d

    d

    lk

    k

    alk

    k

    k

    ak

    LN

    NL

    R

    N

    NR

    2

    '

    2

    '

    2

    3

    2

    3

    dd

    dd

    kf

    a

    fk

    md

    k

    a

    mk

    md

    NN

    N

    L

    L

    N

    N

    L

    L

    2

    3

    2

    3

    2

    2

    Equivalent Circuit on d Axis (5)

  • 7/22/2019 15 dq Theory

    54/61

    Equivalent Circuit on d Axis (5)

    From

    we get

    mdmddls

    kskfsfddd

    iLiL

    iLiLiLdd

    ''

    dkfdmd iiii

    dt

    iiidLdt

    diLiRv dkfd

    mdd

    lsrqdsd)(

    ''

    dt

    iiidL

    dt

    diLiRv d

    kfd

    md

    f

    lffff

    )( '''''''

    dtiiidL

    dtdiLiR dd

    ddd

    kfdmd

    klkkk )(0

    '''

    '''

    '

    dki

    Equivalent Circuit on q Axis (1)

  • 7/22/2019 15 dq Theory

    55/61

    Equivalent Circuit on q Axis (1)

    q axis equivalent circuit and q axis damper equivalent circuitcan be combined:

    Letmqlsq LLL

    qqq mklkk LLL

    qq

    qq

    kaqsk

    kqmk

    aqmq

    NNCL

    NCL

    NCL

    23

    2

    2

    )2

    1(8

    2

    0

    Pg

    DlC

    av

    q

    From

    (Details @ Inductance for SM.ppt)

    sN and are effective number of turns of

    stator and q axis damperwindings, respectively.

    dkN

    Equivalent Circuit on q Axis (2)

  • 7/22/2019 15 dq Theory

    56/61

    q q ( )

    dt

    iidL

    dt

    diLiR

    dt

    diL

    dt

    diL

    dt

    diLiR

    dt

    diL

    dt

    diLiRv

    q

    q

    q

    q

    q

    kq

    mq

    q

    lqrdqs

    k

    sk

    q

    mq

    q

    lqrdqs

    k

    sk

    q

    qrdqsq

    )(

    '

    q

    q

    q

    q

    d k

    a

    k

    k

    md

    sk

    k i

    N

    Ni

    L

    Li

    3

    2'

    where

    dt

    di

    Ldt

    di

    Ldt

    di

    LiR

    dt

    diL

    dt

    diLiR

    q

    sk

    k

    mk

    k

    lkkk

    q

    sk

    k

    kkk

    q

    q

    q

    q

    qqq

    q

    q

    qqq

    2

    3

    2

    30

    From

    above

    3

    2

    qq k

    a

    sk

    mq

    N

    N

    L

    L

    next page

  • 7/22/2019 15 dq Theory

    57/61

    Equivalent Circuit on q Axis (4)

  • 7/22/2019 15 dq Theory

    58/61

    q q ( )

    From

    we get

    mqmqqls

    kskqqq

    iLiL

    iLiLqq

    '

    qkqmq iii

    dt

    iidLdt

    diLiRv qkq

    mq

    q

    lqrdqsq)(

    '

    dt

    iidL

    dt

    diLiR

    qq

    qqq

    kq

    mq

    k

    lkkk

    )(0

    ''

    '''

    '

    qki

    Equivalent Circuit on 0 Axis

  • 7/22/2019 15 dq Theory

    59/61

    0 axisdt

    diLiRv s

    0000

    This circuit is not necessaryfor Y connected windingssince i0=0.

  • 7/22/2019 15 dq Theory

    60/61

  • 7/22/2019 15 dq Theory

    61/61