14 1 Pomponi

  • Upload
    rmayaf

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

  • 8/11/2019 14 1 Pomponi

    1/10

    REGU L R SSU E

    T h e R o g e r R e v e l l e C o m m em o r a t i v e L e c t u r e ~

    T h e O c e a n s a n d H u m a n H e a l t h :

    T h e D i s c o v e r y a n d D e v e l o p m e n t

    o f M a r i n e - D e r i v e d D r u g s

    S h i r l e y A . P o m p o n i

    H a r b o r B r a n c h O c e a n o g r a p h i c I n s t i t u t i o n F o r t P i e r c e , F l o r id a U S A

    I n t r o d u c t i o n

    I am honored to have been invited to present the

    Second Annual Roger Revelle Commemorative

    Lecture. Althou gh I never had the opportu nity to meet

    or work with Dr. Revelle, his depth and breadth of

    knowledge and scientific investigations have inspired

    and challenged oceanographers to interpret the results

    of their research in the context of systems, rather than

    as isolated phenomena. It is with this challenge in mind

    that I will discuss the role of the oceans in human

    health, and specifically, challenges in realizing the

    potential for the discovery of new, marine-derived

    drugs to treat hum an diseases.

    N a t u r e a s a S o u r c e o f D r u g s

    For thousands of years, man has taken advantage of

    nature's ability to produce remedies to treat infection,

    inflammation, pain, and many other diseases and ail-

    ments. In some parts of the world, natural medicines

    are still the only t reatments available.

    Scientific research on these eth-

    nomedicinal preparations led to the

    discovery of purified chemicals,

    whose beneficial properties provided

    the foundat ion of the current pharma-

    ceutical industry. Today, over 50% of

    the marketed drug s are either extract-

    ed from natural sources or pro duced by synthesis using

    natural products as templates or starting materials.

    Drugs such as morphine, Taxol', aspirin, penicillin,

    vincristine, and cyclosporin are but a few examples of

    drugs derived from terrestrial plants and soil microor-

    ganisms (Balandrin et al., 1985). The recent emphas is on

    alternative medicines by the National Institutes of

    Health acknowledges both the history and importance

    of natural products in the treatment of diseases.

    Based on the success of Bergmann and colleagues in

    the late 1950's (Bergmarm and Burke, 1955), which led

    d l 'ugs are e ither ex t rac te d f ro m

    n a t u r a l s o u r c e s o r p r o d u c e d b y

    s y n t h e s i s u s i n g n a t u r a l p r o d u c t s

    as t empla te s or s ta r t ing ma ter ia l s .

    t o the development of two drugs based on marine

    sponge nucleosides (Ara-A for herpes infections and

    Ara-C for leukemia) (Baker and Murphy, 1981), as well

    as the pioneering research in marine natural products

    drug discovery by the Roche Research Institute of

    Marine Pharmacology during the mid-19'70s

    (McConnell et al., 1994), scientists began to explore the

    chemical diversity found in marine organisms and the

    potential for discovery of new drugs from the marine

    environment. What has become an intense effort in

    marine natural products drug discovery by academic,

    government, and indus try laboratories, especially in the

    past 15 years, is based on a number of facts. The oceans

    are a rich source of both biological and chemical diver-

    sity. They cover more than 70% of the earth's surface

    and contain more than 200,000 described species of

    invertebrates and algae (Winston, 1988). It is estimated

    that this number is only a small percentage of the total

    number of species that are yet to be discovered and

    described (Malakoff, 1997). Marine

    To d a y, o ve r 50% o f th e m a r ke t e d microorganisms represent the greatest

    percentage of undescribed marine

    species (Colwell, 1996). A relatively

    small number of marine organisms-

    primarily algae and invertebrates-has

    already yielded thousands of novel

    chemical compounds (Ireland et al.,

    1993), yet only a small percentage of

    these chemicals has been studied for their potential as

    useful products. Finally, although there is a major effort

    by pharmaceut ical companies in the design of synthetic

    chemicals for drug discovery, marine natural products

    still provide unusual and unique chemical structures

    upon which molecular modeling and chemical synthe-

    sis of new drugs can be based.

    Presented at the U.S. National Academy qfSciences, Washington D.C on

    9 November 2000.

    7 8 O ce o n o g ro p h y V o L 1 4 No . 1 /2 6 ,0 1

  • 8/11/2019 14 1 Pomponi

    2/10

    Why do marine plants, animals, and microbes pro-

    duce chemicals that are useful as pharmaceuticals?

    Many of them are sessile-attached to the bottom-and

    they live in densely populated habitats where competi-

    tion for resources, such as space and food, is intense. As

    a result, they have evolved a unique inventory of

    metabolites used for their defense, reproduction, and

    communication (Paul, 1992; Pawlik, 1993; Morse and

    Morse, 1991). These metabolites also interact with

    receptors and enzymes involved in human disease pro-

    cesses. If, for example, a sponge is trying to prevent

    another sponge from invading its space, it may produce

    a chemical to prevent the other sponge's cells from

    growing and dividing. It is not unusual, therefore, that

    these same chemicals may also be effective in inhibiting

    the uncontrol led growth of cancer cells.

    In fact, a major emphasis has been on the discovery of

    marine-derived anticancer compounds, due in large part

    T A B L E I

    A n t i - t u m o r a g e n t s f r o m m a r i n e s o u r c es t h a t a r e c u r r e n t l y l ic e n se d f o r d e v e l o p m e n t

    O r g a n i s m M e t a b o l i t e L o c a t io n D i s c o v er e r

    Bryozoan: Bryostatin I Gu l f of Cal i fornia Pett it ,

    Bugu/a

    neritina

    Arizona State Univ.

    C u r r e n t S t a tu s

    In Ph ase 1/11 clinical tria ls in

    US/Europe; NC I sponsored t rials.

    Sea hare: Do lasta tin 10 Indian Ocea n Pettit,

    Dolabella auricularia

    Arizona State Univ.

    Phase I clinical tr ials in US;

    NC I sponsored t rials.

    Tunicate: Ecteinascidin 743 Caribbean

    Ecteinascidia turbinata

    Rinehart, Univ. I l linois Licensed to PharmaM ar S.A.

    In Pha se II cl inical tr ials in

    Europe and in US.

    Tunicate: Dehydro-d idemnin

    Aplidium albicans

    B [Apl id ine]

    Mediterranean

    Rinehart, Un iv I ll inois Licensed to PharmaMar S.A.

    Gastropod:

    Elysia rubefescens

    Kahalal ide F Hawai i Scheuer, Univ. Hawai i Licensed to PharmaMar S.A.

    Sponge: Discod ermol ide Car ibbean

    Discodermia dissoluta

    Gunasekera Longley, Licensed to Novar t i s .

    H B O I

    Sponge: Isohomo-

    Lissodendoryx sp. halichondrin B

    New Zea land

    Mu nro Blunt ; Licensed to PharmaMar S.A.

    Univ. Canterbury, N Z

    Act inomycete: Thiocoral ine

    Micromonospora marina

    Mozambique Strait Canedo, Spain Licensed to PharmaMar S.A.

    Tunicate: Isogranulatimide

    Didemnum granulatum

    Atlan t ic [Brazil ] And ersen Bjer inck,

    Univ, B ritish

    Columbia Brazi l

    Licensed to Kinet ik, Canada.

    Sponge: Beng amide Fiji

    Jaspis sp

    Crew s et al . Univ. Synthet ic der ivat ive l icensed

    Cal i fornia, Santa Cru z to Nov art is.

    Sponge: Hemiasterelins Papua Ne w Guinea Andersen, Univ.

    Cymbastella sp. A B Br i tish Co lumb ia

    Licensed to Wyeth-Ayerst .

    Sponge: Giro l l ine Ne w

    Caled onia Pot ier, France

    Pseudaxinyssa cantha rella

    Licensed to Rhone Poulenc.

    Courtesy of Dr. DavidJ. New man ,National nstitutes of Health,National Canc er nstitute, Natural Products Branch.

    i i , i i , 1 1 1 , i i , i p i i , ,

    Oceanography VoL 14 No. 1/2001

    ii

    79

  • 8/11/2019 14 1 Pomponi

    3/10

    to the availability of funding to support marine-derived

    cancer drug discovery. The National Cancer Institute

    (NCI) has led this effort through its programs to support

    both single-investigator and multi-institutional natural

    products-based, cancer drug discovery research. As a

    result, several marine-derived compounds are in pre-

    clinical or clinical trials for the treatment of cancer as

    shown in Table 1. I will highl ight just a couple.

    Ecteinascidin 743, a complex alkaloid derived from

    the mangrove tunicate

    E c t e i n a s c i d i a t u r b i n a t e

    (Wright et

    al., 1990; Rinehart et al., 1990) shown in Figure 1 and

    licensed by the University of Illinois to PharmaMar

    S.A., is in Phase II clinical trials in the U.S. and Europe

    for the treatment of cancer. Discodermolide, a polyke-

    tide isolated from deep-water sponges of the genus

    D i s c o d e r m i a sho wn in Figure 2, inhibits the proliferation

    of cancer cells by interfering with the cell's microtubu le

    network (ter Haar et al., 1996) as shown in Figure 3.

    This compound has been licensed by Harbor Branch

    Oceanographic Institution (HBOI) to Novartis

    Pharmaceutical Corporation, and is in advanced pre-

    clinical trials.

    Figure 1. The tunicate, Ecteinascidia urbinata,source of ecteinascidin

    743 , is a common inhabitant o f mangrove roots throughout the tropical

    western Atlantic region (photo by John Reed, Harbor Branch

    Oceanograp hic Institution).

    Despite the emphasis on identify ing new anticancer

    compounds, marine natural products have also been

    found to have other biological activities, including

    mediation of the inflammatory response. The pseu-

    dopterosins are glycosides derived from the Caribbean

    soft coral P s e u d o p t e r o g o r g i a e l i s a b e t h a e (Roussis et al.,

    1990). These are in advanced preclinical trials as anti-

    inflammat ory and analgesic drugs, and purified

    extracts of this soft coral are available commercially as

    additives in skin care products. Other marine-derived

    compounds, such as the prostaglandins, palytoxin,

    calyculin, okadaic acid, and manoalide, to name just a

    few, are available commercially as biomedical research

    probes that give us valuable insights into understand-

    ing and treating human diseases.

    There are more than 10,000 scientific publications

    related to marine natural products (Munro et al., 1999).

    This fact serves to underscore the vast potential of the

    oceans as a source of novel chemicals with potential no t

    only as pharmaceuticals, but also as nutritional supple-

    ments, cosmetics, agrichemicals, molecular probes,

    enzymes and fine chemicals shown in Table 2. Algal

    products alone form the basis for a multi-billion dollar

    industry (Radmer, 1996). Recognizing this potential,

    U.S. President Clinton issued a directive to the Secretary

    of Commerce on June 12, 2000, requesting recommen-

    dations for a national ocean exploration strategy. The

    President emphasized consideration of the full array of

    benefits the oceans provide, with mechanisms to

    ensure that newly discovered organisms or other

    resources with medicinal or commercial potential are

    identified for possible research and development .

    I will, therefore, focus the rest of my lecture on the

    challenges facing discovery and development of ne w

    marine organisms wi th medicinal potential. These chal-

    lenges are t e c h n i c a l , such as exploring new environ-

    ments an d developing new platforms, tools, and assays

    to discover and test organisms never before studied;

    f i n a n c i a l , such as obtaining adequate support for both

    exploration and early-phase, high risk discovery

    research; and p o l i t i c a l , such as complying with regula-

    tions related to the rights of a country to its natural

    resources, as well as fair and equitable sharing of tech-

    nologies and revenues resulting from commercializa-

    tion of produc ts f rom marine resources. Successful dis-

    covery and development of marine-derived pharma-

    ceuticals will depend, of course, on our ability to

    address a number of scientific questions. What organ-

    ism produces the bioactive compound, and why? Can

    we apply this knowledge to our rapidly increasing

    understanding of the human genome and human dis-

    ease processes? Are there viable alternatives to prevent

    overTexploitation and ensure sustainable use of marine

    resources for drug development? Let's examine each of

    these challenges.

    Figure 2. The sponge, Discodermia dissoluta, ource of discodermolide,

    rarely occurs in shallow water, and is more commonly found at depths of

    150-250m throughout the tropical western A tlantic region (photo courtesy

    of Harbor Branch Oceanographic Institution).

    80 Oceanography Vo l. 14 No . 1 /2 001

  • 8/11/2019 14 1 Pomponi

    4/10

    T A B L E 2

    S o m e e x a m p l e s o f c o m m e r c i a l l y a v a il a b le m a r i n e b i o p r o d u c t s a d a p t e d fr o m P o m p o n i , 1 99 9 ).

    P r o d u c t

    A ra -A

    A ra -C

    okadaic acid

    manoalide

    VentD N A

    polymerase

    Formulaid

    (Martek Biosciences,

    Columbia , MD)

    A equo r i n

    Green Fluorescent

    Protein (GFP)

    phycoery thr in

    Resilience (Estae Lauder)

    p p l i c a t i o n O r i g i n a l

    S o u rce

    antiv i ral drug marine sponge,

    Cryptotethya cryta

    anticancer drug marine sponge,

    Cryptotethya cryta

    molecular probe:

    phosphatase i nh ib i to r

    molecular probe:

    phospholipase A2 inh ib i to r

    polymerase chain

    reaction enzyme

    fatty acids used as addi t ive

    in infant formula nutr i t ional

    supplement

    bioluminescent

    calcium

    indicator

    repo r te r

    gene

    conjugated antibodies

    used in ELISAs and

    f l ow cy tome t ry

    marine extract

    additive in cosmetics

    dinoflagellate

    marine sponge,

    Luffariella variabilis

    deep sea hydro thermal

    vent bacter ium

    marine microalga

    bioluminescent jel lyfish,

    Aequora victoria

    bioluminescent jel lyfish,

    Aequora victoria

    red algae

    Caribbean gorgonian,

    Pseudopterogorgia elisabethae

    M e t h o d o f P r o d u c ti o n

    microbial fermentation

    o f analog

    chemical synthesis of analog

    cel l cul ture

    wi ld harvest of sponge

    recombinant protein

    cel l cul ture

    recombinant p ro te in

    recombinant p ro te in

    cell cul ture

    w i ld harvest of gorgonian

    E x p l o r i n g t h e U n k n o w n

    Mo s t o f t h e e n v i r o n me n t s e x p l o r e d f o r n o v e l o r g a n -

    i s ms c o n t a i n i n g u n i q u e c h e mi c a l s h a v e b e e n t h o s e

    a c c e s s i b l e b y S C U B A . A l t h o u g h b i o a c t i v e c o m p o u n d s

    h a v e b e e n i d e n t i f i e d f r o m h i g h e r l a t i t u d e s , s u c h a s t h e

    f j o r d s o f B r i ti s h Co l u m b i a a n d u n d e r t h e A n t a r c ti c i c e,

    t h e g e o g r a p h i c f o c u s o f " b i o d i v e r s i t y p r o s p e c t i n g " h a s

    b e e n p r i ma r i l y t h e t r o p ic s . A s i d e f r o m t h e f a c t t h a t i t 's

    j u s t mo r e c o mf o r t a b l e t o d i v e i n w a r m w a t e r , t r o p i c a l

    s e a s a r e w e l l k n o w n t o b e a r e a s o f h i g h b i o l o g i c a l d i v e r -

    s i ty and , t herefo re , l og ica l t a rge t s fo r h igh chemica l

    d i v e r si t y . M a r i n e b i o d i v e r s i t y p r o s p e c t o r s h a v e f o c u s e d

    o n s h a l l o w w a t e r b e n t h i c e n v i r o n m e n t s - a r e a s t h a t c a n

    b e a c c e s s e d w i t h r e l a t iv e e a s e b y s n o r k e l l i n g a n d

    S C U B A d iv i n g . C o l l e c ti o n o f s a m p l e s f r o m d e e p e r e n v i-

    r o n me n t s h a s b e e n a c c o mp l i s h e d u s i n g c l o s e d - c i r c u i t

    r e b r e a t h e r d i v i n g , d r e d g i n g a n d t r a w l i n g , a n d s u b -

    me r s i b l e s . T h e f o c u s o f o u r d r u g d i s c o v e r y e x p l o r a t i o n

    p r o g r a m a t H a r b o r B r a n ch i s d e e p w a t e r o r g a n i s m s t h a t

    l i v e o n t h e c o n t i n e n t a l s h e l v e s a n d s l o p e s a t d e p t h s

    f r o m 1 30 to 1 00 0 me t e r s , i .e ., b e y o n d S CU BA d e p t h s ,

    u s i n g o u r

    Johnson-Sea-Link

    m a n n e d s u b m e r s i b l e s .

    Su b me r s i b l e s p r o v i d e p l a t f o r ms t h a t e n a b l e u s t o g o

    d e e p e r , s t a y l o n g e r, a c c e s s u n u s u a l s i te s t h a t c a n n o t b e

    a c c e s s e d u s i n g c o n v e n t i o n a l me t h o d s ( e . g . s t e e p w a l l s ,

    r o c k y b o t t o m s , a n d v e n t c o m m u n i t i e s ) , a n d b e m o r e

    p r e c i s e a n d s e l e c t i v e i n o u r s a m p l i n g t h a n c o n v e n t i o n a l

    d e e p - w a t e r c o l l ec t io n m e t h o d s p e r m i t.

    T h e r e i s s ti ll mo s t o f t h e d e e p s e a y e t t o b e e x p l o r e d .

    Wi th ra re excep t ions (e .g . t he ana lys i s o f deep sea co res

    t o id e n t i f y u n u s u a l m i c r o b e s ) , t h e d e e p s e a b o t t o m, m i d -

    w a t e r h a b i t a ts , a n d m o s t o f t h e w o r l d ' s o c e a n s a t d e p t h s

    g r e a t e r t h a n t h o s e a c c e s s ib l e b y SC U BA , h a v e n o t y e t

    b e e n e x p l o r e d . T h e r e a s o n f o r t hi s d e f i c i e n c y is p r i ma r i -

    ly f inanc ia l : oceanograph ic exped i t ions a re expens ive ,

    a n d f e d e r a l f u n d i n g t o s u p p o r t s h i p o p e r a t i o n s ( e . g .

    U n i v e r s it y - N a t io n a l O c e a n o g r a p h i c L a b o r a t o r y S y s t e m

    f lee t sup por t ) i s genera l ly no t a va i l ab le i f t he fo cus o f the

    r e s e a r c h i s d r u g d i s c o v e r y . T h e N a t i o n a l S c i e n c e

    Fo u n d a t i o n d o e s n o t s p e c if i c a ll y s u p p o r t d r u g d i s c o v -

    e r y, a n d t h e N a t i o n a l I n s t i t u te s o f H e a l t h d o e s n o t s u p -

    p o r t s h i p o p e r a t i o n s . T h e N a t i o n a l O c e a n i c a n d

    A t m o s p h e r i c A d m i n i s t r a t i o n / N a t i o n a l U n d e r s e a

    Re s e a r c h P r o g r a m h a s b e e n t h e s i n g l e e x c e p t i o n , h o w -

    e v e r , b u d g e t c u t s t o t h a t p r o g r a m d u r i n g t h e p a s t f e w

    y e a r s h a v e s e r i o u s l y c u r t a i l e d f u n d i n g f o r o c e a n - g o i n g

    r e s e a r c h . I n d u s t r y s u p p o r t f o r o c e a n o g r a p h i c e x p e d i -

    t i on s a n d e a r l y - p h a s e d i s c o v e r y r e s e a r c h h a s b e e n l a c k-

    Oceanography * VoL 24 No. 1/2001 81

  • 8/11/2019 14 1 Pomponi

    5/10

    Figure 3. M CF- 7 hum an breast adenocarcinoma cel ls, v iewed by confocal

    microscopy, nuclei (black arrow s); hair-like structures (m icrotubules) w hich

    comprise the cytoskeleton (w hi te arrows). A. Untreated canc er cel ls. B.

    Fol lowing treatment w i th the ant i-cancer drug, pacl i taxel, nuclei become rag-

    mented and the microtubules orm abnormal bundled f i laments. These cel ls

    w ill eventually d ie. C. After treatmen t w ith discoderm olide, effects are simi-

    lar to pacl itaxel but are much more pronounced. Nuclei are fragmented and

    microtubu les are formed into severe needle-like bundled filaments. These

    ef fects induce ra pid cel l death (photomicrographs provided by Dr. R oss E.

    Longley, H arbor B ranch Oceanographic Inst itut ion) .

    ing; some pharmaceutical companies provide matching

    funds for less expensive SCUBA collections, but none

    provides suppor t for oceanographic expeditions.

    The President's Panel on Ocean Exploration, in

    responding to the President's directive for a national

    ocean exploration strategy (cited above), recommended

    the following: R e l e v a n t federal agencies must ensure

    support for early phase research by establishing new

    programs specifically targeted for research for discov-

    eries from the Ocean Exploration Program. In addi tion

    to the programs that currently exist to support short-

    term, high risk research on the living and non-living

    product s of exploration, federal agencies need to

    emphasize, prioritize, and fast-track research initia-

    tives on these product s of the Ocean Exploration

    Program. Private sector involvement is critical.

    Although mechanisms exist to support and encourage

    partnerships be tween industry, academia, and govern-

    ment (e.g. SBIR and STTR programs), these programs

    are not oriented to support the early phase research

    that is necessary to identify discoveries with commer-

    cial potential. Incentives should be provided to

    industrial sponsors of high risk, early phase, research.

    These incentives should include, but not be limited to,

    tax credits, grants and favorable licensing terms

    (NOAA, 2000).

    P o l i t i c a l C o n s i d e r a t i o n s

    The exploration of new geographic areas will

    und oub ted ly focus on areas outside of U.S. jurisdiction.

    Indeed, since most of the tropical seas-the areas of focus

    of most biodiversity prospecting-are under the jurisdic-

    tion of other countries, compliance with national and

    international regulations regarding access, extraction of

    natural resources, and exporting materials has been an

    essential element of marine natural products drug dis-

    covery to date. Working in a country's territorial waters,

    collecting samples and exporting those samples

    involves obtaining permits from and coordinating the

    interaction of several national and state agencies, e.g.

    defense, fisheries, and national parks, to name a few. It

    is often a lengthy process, and plans for foreign collec-

    tions must be made several months or even years in

    advance of the expedition.

    Balancing the responsibilities of the stewards of

    marine resources with the requests of marine bio-

    prospectors is indeed a challenge. Environmental

    resource managers are charged with protecting their

    resources from overexploitation. Legislators and policy-

    makers must decide whether bioprospecting is consis-

    tent with their plans for resource management. If they

    decide it is, they must draf t and implement policies for

    access, use, and deve lopment of the resources.

    Still unresolved, for the most part, are issues dealing

    with fair and equitable sharing of technologies and rev-

    enues related to the discovery and commercialization

    of products from marine resources. As a result of the

    recommendations of the United Nations Convention

    82 Oceanography , , VoL 14 No . 1 /2 001

  • 8/11/2019 14 1 Pomponi

    6/10

    on Biological Diversity, legislators, bioprospectors, and

    environmental resource managers have begun to dis-

    cuss what actually does constitute a fair and equitable

    sharing. How does one place a value on a resource? If,

    for example, a drug was developed based on a chemi-

    cal from an organism that is endemic to the country in

    which it was collected, should the revenue sharing be

    greater than if the organi sm occurs (and was collected)

    throughout a geographic region and across jurisdic-

    tional boundaries? If the organism is harvested to

    provide the materials for clinical development and

    commercialization, should the revenue sharing be

    greater than if only a few samples were collected to

    identify the active compound and subsequent supply

    was based on alternative methods? Since the answers

    to these questions are usually not known at the time an

    agreement must be negotiated to access the resources,

    the approach taken to date has been simply to agree

    upon a royalty to be paid by the bioprospector to the

    country. Expectations for the amount of such a royalty

    may sometimes be unrealistic, especially in view of the

    fact that pharmaceutical companies will generally

    agree to pay royalties of less than 5% of net sales to the

    licensor of the chemical. This is (perhaps unfairly)

    based on the i ndustry average of $50 to $200 million to

    develop a drug, compared with the licensor's costs of

    perhaps less than $1 million to collect the organism,

    test it for medicinal potential, add value to the com-

    pound by characterizing its physical, chemical, and

    biological properties, and protect its proprietary value

    by pa tenti ng the discovery. Undoub tedly, these consid-

    erations arise during nego tiations to determine fair and

    equitable sharing between the bioprospector and the

    coun try of orig in of the source organism. To be fair, nei-

    ther party should be unreasonable in its expectations.

    Each party must recognize both the value added to the

    resource (and the revenue stream as a result of the

    value added), as well as the original, continuing, and

    perhaps intangible value of the resource as part of an

    ecosystem.

    Of course, the chances of a drug being commercial-

    ized are very low, and the payoff could be several years

    from the original discovery. In the spirit of respect for,

    and acknowledgment of the scientific capabilities and

    contributions of the source country, alternative scenar-

    ios to revenue sharing may include more near-term

    benefits, such as support for development of the scien-

    tific infrastructure (particularly for developing nations),

    training of students, scientist exchange programs, and

    technology transfer. These are often key elements in a

    revenue- and technology-sharing agreement.

    N e w T o o ls fo r D i s c o v e r y

    To optimize our chances for identification of marine

    resources with medicinal potential, we must use the

    best tools for discovery at all stages: exploration of new

    locations, collection of organisms never before sampled,

    and identification of chemicals with pharmaceutical

    potential. Increased sophistication in the tools available

    to explore the deep sea has expanded the habitats that

    can be sampled and has greatly improved the opportu-

    nities for discovery of new species and the chemical

    compounds they produce. New and improved

    platforms (such as autonomous, remote, and human-

    occupied underwater vehicles) to take us farther and

    deeper are in development. These platforms need to be

    equipped with even more sophisticated and sensitive

    tools (e.g. cameras, sensors, and manipulators) to

    enable us to identify an organism as new, to assess its

    potential for novel chemical constituents, and if possi-

    ble, to non-dest ructively remove a sample of the organ-

    ism. Tools and sensors that have been developed both

    for space exploration and for diagnostic medicine need

    to be applied to the study of the inhabitants of our last

    frontier on Earth.

    Although there exist some specialized tools and

    chambers that allow deep water organisms to be main-

    tained und er ambient conditions, i.e. high pressure and

    low temperature, there is still a need for the develop-

    ment of versatile bioreactors that can be deployed and

    operated in extreme environments (e.g. hypersaline,

    vent, anoxic, and deep sea habitats). Such bioreactors

    could be used for collection, at-sea maintenance, and

    evaluation of both macroorganisms and microorgan-

    isms so that their metabolites could be studied under

    physiological conditions that are as similar as possible

    to ambient conditions.

    Another approach to the identification of new

    products is the incorporation of miniaturized biosen-

    sors into both collecting tools and bioreactors for rapid,

    i n s i t u analysis of marine organisms for bioactive

    molecules. A number of miniaturized biosensors and

    probes to study human disease processes are in devel-

    opment. Adaptation or development of new biosensors

    and probes for rapid, in situ screening of marine organ-

    isms would involve specialized tools, ideally for non-

    destructive sampling and analyses of the target

    organisms (Pomponi, 1999). Development of i n s i t u

    biosensors would enhance our ability to probe the

    expression of metabolites in response to various stimuli,

    lead to a better understanding of the role of the sec-

    ondary metabolites in nature, and perhaps provide

    clues to the potential biomedical utility of these

    compounds.

    N e w M o d e ls N e w P a r ad i g m s

    The biological evaluation of marine-derived extracts

    and pure compounds for pharmaceutical development

    has been based on assays developed by the pharma-

    ceutical industry for high-throughput screening of

    large libraries of synthetic compo unds. They measure a

    number of end points, such as activation or inhibition

    of enzymes or receptors involved in human disease

    processes, inhibition of growth of human pathogenic

    microorganisms, and toxicity against human cancer

    cells (McConnell et al., 1994; Ireland e t al., 1993; Munro

    Oceanography VoL 14 No. 1 /200 1 83

  • 8/11/2019 14 1 Pomponi

    7/10

    et al., 1999). As our understanding of the biochemistry

    behind a variety of diseases has improved, better meth-

    ods have been developed for rapidly determining the

    biomedical potential of the metabolites produced by

    marine organisms. None of the assays used in major

    pharmaceutical drug discovery programs, however,

    takes into account the role of marine-derived

    compounds in nature, i.e. the i n s i t u biochemical func-

    tions of the metabolites, and how

    those functions may be applied to the

    discovery of new drugs an d probes to

    stud y hu man disease processes.

    Marine organisms as model sys-

    tems offer the potential to understa nd

    and develop treatments for disease

    based on the normal physiological

    role of their secondary metabolites.

    For example, the mechanisms of action of the toxins of

    C o n u s , the poisonous snail, are well -known (Hopkins et

    al., 1995), and are currently being applied to the devel-

    opment of new classes of drugs to treat diseases such as

    epilepsy.

    Marine organisms have already demonstrated their

    utility as biomedical models, the results of which have

    been applied to understanding normal and disease

    processes in human s (Ocean Studies Board, 1999). Can

    we continue to apply this knowledge to our rapidly

    increasing understanding of the human genome and

    hum an disease processes? Or perhaps a more relevant

    question is this: can we use our rapidly increasing

    understanding of the human genome and human dis-

    ease processes to guide our discovery of novel marine-

    derived chemicals that can be used against newly

    discovered disease targets? Considering the evolution-

    ary conservation of molecular signaling pathways, one

    can hypothesize that our understanding of molecular

    pathways and disease targets in mammalian systems

    can help us not on ly to elucidate the ecological roles of

    marine-derived metabolites, but can also provide a

    more rational approach to the discovery of drugs to

    treat a variety of diseases. How does a simple organ-

    ism, like a sponge, through which seawater and associ-

    ated bacteria, fungi, and viruses constantly flow,

    defend itself against microbial infections? How does it

    signal its cells to divide rapidly enough to heal a dam-

    aged surface in a few hours, or spread out over a

    substrate in a matter of days or weeks, yet control this

    proliferation so that the sponge itself does not get can-

    cer? How, with only a primitive immune system, does

    it recognize an invading organism as non-self and

    send out chemicals to kill the invading cells, without

    killing its own cells? We know so little about these pro-

    cesses in the organisms from which we have identified

    literally thousands of chemicals with biomedical

    potential. Molecular tools and approaches that have

    been developed to understand similar processes in

    mammalian systems must be applied to understanding

    these processes in marine organisms. A multidisci-

    plinary approach-involving molecular biologists, phar-

    macologists, and chemical ecologists-to discovery of

    marine-derived drugs will likely result in the discovery

    of unique bioactive chemicals and new ways to address

    the treatment of huma n disease.

    S u s t a i n a b l e U s e o f M a r i n e R e s o u r c e s

    w i t h C o m m e r c i a l P o t e n t i a l

    With the enormous potential

    C a n w e l~ s e o u r r a p i d l y

    i n c r e a s i n g u n d e r s t a n d i n g

    o f t h e h u m a n g e n o m e a n d

    human d i s e a s e p r o c e s s e s t o

    g u i d e o u r d i s c o ve r y o f

    n o v e l m a r i n e - d e r i v e d c h e m i c a ls ?

    for discovery, development, and mar-

    keting of novel marine bioproducts

    comes the obligation to develop meth-

    ods by which these products can be

    supplied in a way that will not disrupt

    the ecosystem or deplete the resource.

    Supply of most marine-derived com-

    pounds is a major limiting factor 15or

    further pharmaceutical development. Often, the

    metabolite occurs in trace amounts in the organism, and

    a st eady source of supply from wi ld ha rvest cannot p~:o-

    vide enough of the target compound for preclinical

    studies. In general, the natura l abundance of the source

    organisms will not support production based on wild

    harvest. Unless there is a feasible alternative to harvest-

    ing, promising chemicals will remain undeveloped.

    Some options for sustainable use of marine resources

    are chemical synthesis, controlled harvesting, aquacul-

    ture of the source organism, in vitro production through

    cell culture of the macroorganism or microorganism

    source, and transgenic production. Each of these

    options has its advantages and limitations, not all

    methods will be applicable to supply of every marine

    bioproduct, and most of the biological supply methods

    are still in development (Pomponi, 1999). The approach

    to be used will be based on a numbe r of factors:

    1 . C o m p l e x i t y o f t h e m o l e c u l e: c a n i t b e s y n t h e s i z e d

    u s i n g a n i n d u s t r i a l l y f e a s i b l e p r o c e s s ? Chemical

    synthesis of a compound gives the pharmaceutical

    company ultimat e control in the s upply of materials

    for clinical development and eventual marketing of

    the drug. Synthetic processes have been published

    for many marine bioproducts in development as

    pharmaceuticals (Corey et al., 1996; Harried et all.,

    1997). Unfortunately, most of these are multi-step

    processes that are not amenable to economic, indus-

    trial scale synthesis. To overcome this problem,

    major research programs are undertaken by the

    pharmaceutical industry to identify structurally

    similar compounds that are easier to synthesize,

    and perhaps even more potent, less toxic, and more

    bioavailable than the parent molecule.

    2 . A b u n d a n c e o f th e o r g a n i s m i n n at u re : w h a t d o w e

    k n o w a b o u t t h e im p a c t o f c o l le c t io n s o n t h e e n v i-

    r o n m e n t ? Prior to large-scale wild harvest of an

    organism for recovery of a bioproduct, harvesting

    feasibility studies should be conducted. These

    84 Oceanography VoL 14 No . 1 /200 1

  • 8/11/2019 14 1 Pomponi

    8/10

    s h o u l d d e f i n e f a c t o r s s u c h a s t h e s t a n d i n g s t o c k o f

    t h e o r g a n i s m, i t s g r o w t h r a t e a n d t h e f a c t o r s t h a t

    a f f e c t g r o w t h , a n d t h e e f f e c t s o f h a r v e s t i n g a n d

    p o s t - h a r v e s t i n g r e c o v e r y o f t h e t a r g e t o r g a n i s m.

    T h e s e i mp a c t d a t a s h o u l d t h e n b e u s e d t o a s s e s s t h e

    p o t e n ti a l o f s u p p l y f r o m w i l d h a r v e s t , a n d m a y a l s o

    b e u s e f u l i n d e v e l o p i n g m o d e l s f o r a q u a c u l t u r e o f

    t h e s o u r c e o r g a n i s m. U n f o r t u n a t e l y , t h i s i s r a r e l y

    d o n e . O n e n o t a b l e e x c e p t i o n i s t h e s u r v e y o f t h e

    N e w Z e a l a n d s p o n g e,

    Lissodendoryx

    s p . , w h i c h p r o -

    d u c e s t h e h a l i c h o n d r i n s , p o t e n t a n t i t u m o r c o m -

    pounds in p rec l in i ca l t r i a l s . The sponge i s res t r i c t ed

    i n o c c u r r e n c e t o o n e l o c a l i ty o f f t h e K a i k o u r a

    P e n i n s u l a . R e s e a r c h c o n d u c t e d b y B a t t e r sh i ll

    ( 19 9 8) , d e m o n s t r a t e d t h a t h a r v e s t i n g b y d r e d g i n g

    s i g n i f ic a n t l y r e d u c e d t h e s t a n d i n g s t o c k o f t h e

    s p o n g e , b u t t h a t t h e p o p u l a t i o n m a y r e c o v e r r a p id -

    l y a s a r e s u l t o f a s e x u a l p r o p a g a t i o n o f s p o n g e f r a g -

    me n t s d i s p e r s e d a s a r e s u l t o f t h e d r e d g i n g . T h i s

    s t u d y s u g g e s t e d t h a t h a r v e s t i n g i s o n l y f e a s i b l e f o r

    s ma l l e r q u a n t i t i e s o f t h e s p o n g e .

    3 . S o u rce o f t h e co m p o u n d : i s i t m i c r o b i a l l y p r o d u ced ?

    A s ig n i fi c an t n u m b e r o f m a r i n e b i o p r o d u c t s w i t h

    p h a r ma c e u t i c a l p o t e n t i a l h a v e b e e n i d e n t i f i e d f r o m

    h e t e r o tr o p h i c m a r i n e m i c r o o r g a n is m s i s o la t e d f r o m

    c o a s t a l s e d i m e n t s ( Fe n ic a l, 1 9 9 3 ; D a v i d s o n , 1 9 9 5 ;

    K o b a y a s h i a n d I s h i ba s h i , 1 9 9 3 ) . I n a d d i t io n , s o m e

    m a r i n e b i o p r o d u c t s o r i g i n a l l y i s o l a t e d f r o m

    m a c r o o r g a n i s m s , s u c h a s s p o n g e s , h a v e b e e n s u b s e -

    q u e n t l y d i s c o v e r e d t o b e l o c a l i z e d i n mi c r o b i a l

    as soc ia t es (Be wley e t a l ., 1996 ; Senn et t , 2000) . I f

    t h e s e mi c r o o r g a n i s ms c a n b e i s o l a t e d a n d c u l t i v a t -

    e d , o p t i m i z a t i o n o f p r o d u c t i o n i n ma r i n e m i c r o b i a l

    b i o r e a c t o r s c o u l d l e a d t o a n i n d u s t r i a l l y - f e a s i b l e

    s u p p l y o p t io n .

    I f t h e s o u r c e o f t h e c o m p o u n d i s t h e m a c r o o r -

    g a n i s m i t s e l f , d e v e l o p m e n t o f i n v i t ro p r o d u c t i o n

    m e t h o d s c o u l d p r o v i d e b u l k s u p p l y o f th e c o m -

    p o u n d . R e s e a r c h i n p r o g r e s s i n o u r l a b o r a t o r y

    f o c u s e s o n e s t a b l i s h i n g c e l l li n e s o f b i o a c t i v e ma r i n e

    i n v e r t e b ra t e s t h a t c a n b e u s e d a s m o d e l s t o s t u d y in

    vi tro p r o d u c t i o n o f b i o a c t iv e m e t a b o l it e s a n d t h e

    f a c to r s w h i c h c o n t r o l e x p r e s si o n o f p r o d u c t i o n

    ( Po mp o n i a n d W i l l o u g h b y , 2 0 0 0 ) . T h i s c o u l d u l t i -

    m a t e l y l e a d t o

    i n v i t r o

    p r o d u c t i o n o f m a r i n e

    b i o p r o d u c t s . M o r e i m p o r t a n t l y , a n u n d e r s t a n d i n g

    o f t h e c e l l u l a r a n d mo l e c u l a r p r o c e s s e s t h a t c o n t r o l

    p r o d u c t i o n o f th e s e m e t a b o l i te s c o u l d b e u s e d t o

    e n h a n c e c u l t u r e o p t i m i z a t i o n o r t o s t i m u l a t e

    p r o d u c t i o n o f " u n n a t u r a l " n a t u r a l p r o d u c t s , i. e.

    c h e m i c a l s t h a t t h e o r g a n i s m w o u l d n o t p r o d u c e

    u n d e r n o r m a l c o n d i t i o n s , b u t w h i c h m a y b e m o r e

    p o t e n t t h a n t h e " n a t u r a l" p r o d u c t .

    4 . In s i tu gr ow th cond i t ions : i s aquacu l ture an op t ion

    f o r d e e p - w a t e r o r g a n i s m s ? Bo t h i n - t h e - s e a a n d

    l a n d - b a s e d a q u a c u l t u r e m e t h o d s h a v e b e e n d e v e l -

    o p e d f o r p r o d u c t i o n o f b i o p r o d u c t s f r o m s h a l l o w

    w a t e r o r g a n i s m s . C a l B i o M a r i n e T e c h n o l o g i e s

    ( Ca r l s b a d , Ca l i f o r n i a ) h a s s u c c e s s f u l l y a q u a c u l -

    t u r e d t h e b r y o z o a n ,

    Bugula ner i t ina ,

    t h e s o u r c e o f

    t h e a n t i t u m o r c o m p o u n d b r y o s t a t in , a n d

    Ecteinascidia turbinata, t h e a s c i d i a n f r o m w h i c h t h e

    a n t i t u m o r c o m p o u n d , e c t e i n a s c i d i n 7 4 3 h a s b e e n

    i s o l a t e d ( F i g u re 1 ). T h e s e a r e b o t h c o m mo n , s h a l -

    l o w - w a t e r o r g a n i s m s f o r w h i c h r e p r o d u c t i o n a n d

    g r o w t h h a v e b e e n s t u d i e d , b u t t h e f a c t o r s c o n t r o l -

    l in g p r o d u c t i o n o f t h e c o m p o u n d s a r e n o t y e t

    c o m p l e t el y k n o w n . T h e N e w Z e a l a n d d e e p w a t e r

    s p o n g e ,

    Lissodendoryx

    sp . , i s t he source o f the an t i -

    t u m o r c o m p o u n d s , c a l le d ha l ic h o n d r i ns . T h e

    s p o n g e o c c u r s a t 8 5 - 1 0 5 me t e r s d e p t h , b u t h a s b e e n

    c u l t u r e d s u c c e s s f u l l y f r o m c u t t i n g s o n l a n t e r n

    a r r a y s i n s h a l l o w e r w a t e r , ma i n t a i n i n g p r o d u c t i o n

    of the b ioac t ive ha l i chondr ins (Bat t e rsh i l l e t a l . ,

    1 9 99 ). T h i s i n d i c a te s t h a t a q u a c u l t u r e o f s o me d e e p

    w a t e r s p o n g e s i s f e a s i b l e , h o w e v e r , s p e c i e s f r o m

    d e e p e r w a t e r m a y h a v e m o r e c r i t i c a l g r o w t h

    r e q u i r e m e n t s , s u c h a s h i g h p r e s s u r e a n d l o w

    t e mp e r a t u r e . I n - t h e - s e a a q u a c u l t u r e i s a c o s t e f f e c -

    t iv e m e t h o d o f p r o d u c t i o n w i t h o p p o r t u n i t i e s f o r

    t e c h n o l o g y t r a n s f e r a n d e c o n o m i c d e v e l o p m e n t i n

    t h e s o u r c e c o u n t r y , h o w e v e r , i t ma y n o t a f f o r d t h e

    o p p o r t u n i t y f o r c o m p l e t e c o n tr o l o f e n v i ro n m e n t a l

    p a r a m e t e r s o r t h e o v e r -e x p r e s s io n o f p r o d u c t i o n o f

    t h e c o m p o u n d s . D e v e l o p m e n t o f c l o s e d - sy s t e m

    b i o r e a c to r s f o r a q u a c u l tu r e o f b o t h s h a l l o w w a t e r

    a n d d e e p w a t e r o r g a n i s ms i s a p a r t i c u l a r l y c h a l -

    l e n g i n g o p p o r t u n i t y .

    5 . B i o s yn t h e t i c p a t h w a y : i s gen e t ic en g i n eer in g

    real

    ist ic f o r t h e co m p o u n d ? I f t h e b i o s y n t h e s i s o f t h e

    t a r g e t c o m p o u n d i s u n d e r s t o o d , i t m a y b e p o s s i b le

    to iden t i fy , i so l a t e , c lone , and express the genes

    r e s p o n s i b l e f o r p r o d u c t i o n o f t h e me t a b o l i t e in

    a n o t h e r h o s t . I n ma n y c a s e s , o f c o u r s e , b i o s y n t h e s i s

    o f t h e p r o d u c t i s n o t k n o w n , o r i t i s a mu l t i - s t e p

    p r o c e s s i n v o l v i n g s e v e r a l e n z y ma t i c r e a c t i o n s . Fo r

    t h e s e c a s e s , t r a n s g e n i c p r o d u c t i o n i s n o t a t r i v i a l

    p r o c e s s . A l t e r n a t i v e l y , c h e mo e n z y ma t i c s y n t h e s i s ,

    b y w h i c h m a r i n e b i o p r o d u c t s a r e s y n t h e s i z e d i n

    c e l l - f r e e , e n z y me - b a s e d s y s t e ms , o f f e r s a c o mp l e -

    m e n t a r y t e c h n i q u e t o

    i n v i t ro

    a n d t r a n s g e n i c p r o -

    d u c t i o n m e t h o d s f o r m a r i n e b i o p r o d u c t s ( K e r r e t

    al., 1996).

    Summary

    T h e O c e a n S t u d i e s B o a r d o f th e U . S . N a t i o n a l

    Re s e a r c h Co u n c i l , i n i t s r e v i e w o f t h e o c e a n ' s r o l e i n

    h u m a n h e a l t h ( O c e a n S t u d i e s B o a r d , 1 9 9 9 ) , r e c

    o m m e n d e d a g r e a t e r f o c u s o n m a r i n e o r g a n i s m s a s

    s o u r c e s o f n e w p h a r m a c e u t i c a ls , n e w f u n d i n g i n it ia -

    t i v e s to s u p p o r t t h i s e f f o r t i n a l l t h e r a p e u t i c a r e a s - n o t

    j u s t c a n c e r - a n d n e w i n t e r d i s c i p l i n a r y r e s e a r c h a n d e d u -

    c a t i o n p r o g r a m s t o p r o v i d e i n n o v a t i v e a p p r o a c h e s t o

    Oceanography Vo [ . 14 No . 1 /20 01 85

  • 8/11/2019 14 1 Pomponi

    9/10

    m a r i n e b a s e d d r u g d i s co v e r y .

    Re c e n t U . S. l e g i s la t i o n a n d e x e c u t i v e d i r e c t i v e s s u p -

    p o r t a r e n e w e d e m p h a s i s o n e x p l o r i n g t h e v a s t

    u n k n o w n a r e a s o f o u r o c e a n s , d is c o v e r i n g s p e c ie s n e w

    t o s c i e n c e , i d e n t i f y i n g ma r i n e r e s o u r c e s w i t h p o t e n t i a l

    me d i c i n a l v a l u e , a n d e n s u r i n g t h e p r o t e c t i o n a n d s u s -

    t a i n e d u s e d o f th e s e r e so u r c e s . W e n o w h a v e t h e u n i q u e

    o p p o r t u n i t y t o c a p i t a l i z e o n n e w t e c h n o l o g i c a l

    a d v a n c e s d e v e l o p e d t o e x p lo r e t h e o c e a n s o f E a r th a n d

    o t h e r p l a n e t s , r e c e n t d i s c o v e r i e s i n me d i c i n e , mo l e c u l a r

    b i o l o g y , a n d ma r i n e b i o t e c h n o l o g y , a n d a g r e a t e r a p p r e -

    c i a t io n f o r b e n e f i t s h a r in g a n d t h e v a l u e o f ma r i n e

    r e s o u r c e s t o r e a l iz e t h e f u l l p o t e n t i a l o f o u r o c e a n s a n d

    h u m a n h e a l t h .

    Acknowledgments

    D r u g d i s c o v e r y r e s e a r c h a t H a r b o r B r a n c h

    O c e a n o g r a p h i c I n s t i t u t i o n w a s s u p p o r t e d i n p a r t b y

    g r a n t s f r o m t h e N a t i o n a l I n s t i t u te s o f H e a l t h . Re s e a r c h

    o n s u s t a in a b l e u s e o f m a r i n e r e s o u r c e s w a s f u n d e d b y

    t h e N O A A S e a G r a n t M a r i n e B i o t e c h n o l o g y P r o g r a m . I

    a c k n o w l e d g e t h e a s s i s t a n c e o f J o h n Re e d , Ro s s L o n g l e y ,

    a n d Su s a n Se n n e t t i n p r e p a r a t i o n o f t h e ma n u s c r i p t . I

    t h a n k t h e O c e a n S t u d i e s Bo a r d f o r t h e i r i n v i t a t i o n , a n d

    I g r a t e f u l l y a c k n o w l e d g e t h e N a t i o n a l S c i e n c e

    Fo u n d a t i o n , t h e O f f i c e o f N a v a l Re s e a r c h , t h e U n i t e d

    S t a t e s G e o l o g i c a l Su r v e y , t h e Sc r i p p s I n s t i t u t i o n o f

    O c e a n o g r a p h y , a n d t h e W o o d s H o l e O c e a n o g r a p h i c

    I n s t i t u t io n f o r t h e ir s p o n s o r s h i p o f t h is l e c t u r e.

    R E F E R E N C E S

    Ba k e r , J . T . a n d V . M u r p h y , 1 9 8 1 :

    H andbook o f M ar i ne

    Sc ie nc e : C om poun ds f r om M ar i ne O r gan i s m s .

    Vol. II.

    CRC P r e s s , Bo c a Ra t o n , F l o r id a .

    Ba l a n d r i n , M . E , J. A. K l o c k e , E . S . W u r t e l e a n d W . H .

    Bo U in ge r, 1 9 8 5 : N a t u r a l p l a n t c h e mi c a l s , s o u r c e s o f

    i n d u s t r i a l a n d me d i c i n a l ma t e r i a l s .

    Sc ience ,

    228, 1154-

    1160.

    Bat t e rsh i l l , C .N. , M.J . Page , A .R. Duckwor th , K .A.

    Mi l l e r, P .R. Bergq u i s t , J .W. Blun t , M .H.G. M unr o , P .T .

    N o r t h c o t e , D . J . N e w ma n a n d S . A . Po mp o n i , 1 9 9 9 :

    D i s c o v e r y a n d s u s t a in a b l e s u p p l y o f m a r i n e n a t u r a l

    p r o d u c t s a s d r u g s , i n d u s t r i a l c o m p o u n d s a n d a g r o -

    c h e mi c a ls : c h e m i c a l e c o l o g y , g e n e t ic s , a q u a c u l t u r e

    and ce l l cu l tu re .

    M e m oi r s o f t he Q ue e ns l and M us e um ,

    44, 76 (abst ract ) .

    Be r g m a n n , W . a n d D . C. Bu r k e , 1 9 5 5 : Co n t r i b u t i o n s t o

    t h e s t u d y o f ma r i n e p r o d u c t s , X X X I X . T h e n u c l e o -

    s i d es o f s po n g e s . I I I S p o n g o t h y m i d i n e a n d

    s p o n g o u r i d i n e .

    J . O r g . C he m . ,

    20, 1501-1507.

    Bew ley , C.A. , N .D. H ol l a nd and D.J. Fau lkner , 1996 :

    T w o c l a s s e s o f me t a b o l i t e s f r o m Theone l la swinhoe i a r e

    l o c a l i z e d i n d i s ti n c t p o p u l a t i o n s o f b a c t e r i a l

    s y mb i o n t s .

    Exper ient ia ,

    52, 716-722.

    Colwel l , R .R. , 1996 : Microb ia l b iod ivers i ty and b io tech-

    nology. In:

    M . E . R e ak a - K ud l a and E . W i l s on , e d s .,

    B iodiver s it y I I : Und ers tanding and Protect ing O ur

    Biological R esource s . J o s e p h H e n r y P r e s s, W a s h in g t o n,

    D.C. , pp. 279-288.

    Co rey , E . J ., D . Y . Gin an d R.S . Kan ia , 1996:

    Enan t iose lec t ive to t a l syn thes i s o f ec t e inasc id in 7 '43 .

    J . A m . C he m . So t. ,

    118, 9202-9203.

    D a v i d s o n , B . S. , 1 9 95 : N e w d i m e n s i o n s i n n a t u r a l p r o d -

    u c t s r e s e a r c h : c u l t u r e d ma r i n e mi c r o o r g a n i s ms .

    C~rr.

    Opin . B io technol . ,

    6, 284-291.

    Fen ica l , W. , 1993 : Che mica l s tud ies o f mar ine b ac te r i a :

    d e v e l o p i n g a n e w r e s o ur c e .

    Chem . Rev . ,

    93, 1673-1683.

    Ha rr i ed , G .Y. , M.A . S t raw n an d D.C. M yles , 1997 : To ta l

    s y n t h e s i s o f ( - ) - d i s c o d e r mo l i d e : a n a p p l i c a t i o n o f

    c h e l a t i o n - c o n t r o l le d a l k y l a t i o n r e a c t i o n .

    J . Org. Chem . ,

    62, 6098-6099.

    Ho pk in s , C . , M. Gr i l l ey , C. Mi l l e r , K-J . Shon , L . J . Cu rz ,

    W.R. Gray , J. Ky ker t , J . Riv ie r , D . Yosh ikam i an d B.M.

    O l i v e r a , 1 9 9 5 : A n e w f a mi l y o f

    C onus

    p e p t i d e s

    t a rge ted to the n i co t in i c ace ty lcho l ine recep to r .

    J. Biol.

    Chem. ,

    270(38), 22361-22367.

    I re l and , C.M. , B.R. Copp , M.P. Fos te r , L .A. McDonald ,

    D .C . Ra d i s k y a n d J .C . Sw e r s e y , 1 9 9 3 : B i o me d i c a l

    p o t e n t i a l o f ma r i n e n a t u r a l p r o d u c t s . I n :

    M ar i ne

    Biotechnology , Vol . 1 : Pharmace t l ti ca l and Bioac t i ve

    N a t ur a l P r oduc t s . D . H . A t t a w a y a n d O . R . Z a b o r s k y ,

    e d s . , P l e n u m P r e s s , N e w Y o rk , p p . 1 -4 3.

    K e r r , R .G ., L . Ro d r i g u e z a n d J. K e l l ma n , 1 9 9 6 : A

    c h e m o e n z y m a t i c s y n t h e s i s o f 9 (1 1 )- se c os te r oi Ld s

    u s i n g a n e n z y me e x t r a c t o f t h e ma r i n e g o r g o n ] , a n

    Pseudop terogorgia american a. Tet . Let ters . 37, 8301-8304.

    K o b a y a s h i , J. a n d M. I s h ib a s h i , 1 9 9 3 : B i o a c t i v e me t a b o -

    l it e s o f s y m b i o t i c ma r i n e mi c r o o r g a n i s m s .

    Chem . R ev . ,

    93, 1753-1769.

    M alakof f , D . , 1997 : Ex t inc t ion o n the h igh seas .

    Sciel~'ce,

    277, 486-488.

    M cC onnel l , O .J. , R .E . Lo ng le y and EE. Ko ehn , 1994: " ['he

    d i s c o v e r y o f m a r i n e n a t u r a l p r o d u c t s w i t h t h e r a p e u -

    t ic potent ial . In: T he D i s c ove r y ~ N a t u r a l P r oduc ts w i t h

    Therapeut i c Potent ia l .

    V . P . G u l l o , e d . , Bu t t e r w o r t h -

    H e i n e m a n n , Bo s t o n , p p . 1 09 -1 7 4.

    M o r s e , D . E . a n d A . N . C . M o r s e , 1 9 9 1 : M o l e c u l a r s i g n a l s ,

    r e c e p t o r s a n d g e n e s c o n t r o l l i n g r e p r o d u c t i o n , d e v e l -

    o p m e n t a n d g r o w t h : p r a c t i c a l a p p l i c a t i o n s f o r

    i m p r o v e m e n t s i n m o l l u s c a n a q u a c u l t u r e .

    Bull . h.:s t .

    Zool . Acad. Sin. , 16, 441-454.

    M u n r o , M . H . G . , J.W . B l u n t , E . J . D u m d e i , S . J. H .

    Hickford, R.E. Li l l , S. Li , C.N. Bat tershi l l and A.R.

    D u c k w o r t h , 1 99 9: T h e d i s c o v e r y a n d d e v e l o p m e n t o f

    m a r i n e c o m p o u n d s w i t h p h a r m a c e u t i c a l p o t e n t i a l . J .

    Biotechnolo~y,

    70, 15-25.

    N O A A , 2 0 0 0 :

    Discover ing E ar th ' s F ina l Front i er : A U.S .

    S t ra t e gy f o r O c e a n E x p lor a ti on .

    T h e R e p o r t o f t h e

    P r e s i d e n t ' s P a n e l f o r O c e a n E x p l o r a t io n , W a s h i n g t o n ,

    D.C. , 61 pp.

    O c e a n S t u d i e s Bo a r d , N a t i o n a l Re s e a r c h C o u n c i l. , 1 9 99 :

    From M onsoons to M icrobes : Und ers tanding the Ocea~z~

    R o l e i n H um an H e a l t h .

    N a t i o n a l A c a d e m y P r e s s ,

    W a s h i n g t o n , D . C .

    86 Oceonography VoL 14 No . 1 /20 01

  • 8/11/2019 14 1 Pomponi

    10/10

    P au l , V . J ., 1992 : C hem i ca l de fens es o f ben t h i c m ar i ne

    i nve r t eb ra t e s In : Ecological R oles o f Marine Natural

    Products.

    v .J . P au l , ed . , C om s t ock P u b l i s h i ng , I t haca ,

    New York , pp . 164-188.

    P aw l i k , J.R. , 1993 : Ma r i ne i nve r t eb ra t e ch em i ca l de fens -

    es.

    C he m . R e v .,

    93, 1911-1922.

    P o m p o n i , S . A . , 1 9 9 9 : T h e b i o p r o c e s s - t e c h n o l o g i c a l

    po t en t i a l o f t he s ea . J . Biotechnology, 70, 5-13.

    P om pon i , S .A . and R . Wi l l oughby , 2000 : Deve l opm en t

    o f s pong e ce l l cu l t u res fo r b i om ed i ca l app l i ca ti on . In:

    M others i l l , C . and A us t in , B ., eds . ,

    Aquatic Invertebrate

    Cell Culture. Springer-Prax s , Su rrey , Eng land, pp .

    323-336.

    R adm er , R . J. , 1996 : A l ga l d i ve r s i t y an d com m erc i a l a l ga l

    p r o d u c t s . BioScience, 46, 263-270.

    Rinehar t , K.L. , T .G. Hol t , N.L. F regeau , J .G. S t roh , P .A.

    Ke i fe r , F . S un , L .H . L i and D .G. Mar t i n , 1990 :

    Ecteinascidins 729, 743, 745, 759A, 759B, and 770:

    p o t e n t a n t i t u m o r a g e n t s f r o m t h e c a r i b b e a n ~ m i c a t e

    Ecteinascidia turbinata. J . Org. Ch em. , 55, 4512-4515.

    Rouss i s , V. , Z . Wu, W. Fenical , S .A. S t robel , G.D. Van

    D u y n e a n d J. C la r d y, 1 9 9 0 : N e w a n t i i n f la m m a t o r y

    p s e u d o p t e r o s i n s f r o m t h e m a r i n e o c t o c o r a l

    P s e u d o p t e r o g o r g i a e l i s a b e t h a e . J . Org. Chem. , 55,

    4916-4922.

    S enne t t , S .H . , 2000 : Mar i ne chem i ca l eco l ogy : app l i ca -

    t i ons i n m ar i ne b i om ed i ca l p ro s pec t i ng . In :

    Marine

    Chemical Ecology. J .B . M cC l in tock and B.J. Baker , eds . ,

    CRC Press , Boca Raton , F lor ida .

    t er Haar , E . , R . J . Kowalsk i , E . Hamel , C .M. Lin , R .E.

    Long l ey , S .P. Gun as ekera , H .S . R os e nk ran z and B .W.

    Day , 1996: D i s co derm o l i de , a cy t o t ox i c m ar i ne agen t

    t ha t s t ab i li zes m i c ro t ub u l es m ore po t en t l y t han Taxo l.

    Biochemistry , 35, 243-250.

    W ins ton , J .E . , 1988 : The sys te m at i s t ' pe rspe ct ive . In :

    Biomedical Importance o f M arine Organisms. D.G.

    F au t i n , ed . , C a l i fo rn i a Academ y o f S c i ences , S an

    Francisco , pp . 1-6 .

    Wr i gh t , A .E . , D .A . F o r l eo , G .P . Gunawardana , S .P .

    Gu nas ek era , F .E . Ko ehn a nd O . J. McC onne l l , 1990 :

    A n t i t u m o r t e t r a h y d r o i so q u i n o l i n e a l k a l o i d s f ro m t h e

    co l on i a l a s c i d i an Ecteinascidia turbinata. J . Org. Chem.

    55, 4508-4512.

    Dr. RogerRevelle

    T h e R o g e r R e v e l l e C o m m e m o r a t i v e L e c t u r e S e r ie s w a s c r e a t e d b y

    t he Oce an S t ud i es B oard i n hono r o f the l a t e R oger R eve l l e . The

    s peak er s and t op i cs a r e i n t en ded t o h i gh l i gh t t he i m por t an t l i nks

    b e t w e e n o c e a n s c i e n c e s a n d p u b l i c p o l i c y fo r a g e n e r a l a u d i e n c e .

    The l ec t u re i s he l d an nua l l y a t t he F a l l m e e t i ng o f t he OS B i n

    W as h i ng t on , DC , and i s ope n t o t he pub li c . F o r m o re i n fo rm at i on

    a b o u t t h e L e c t u r e S e ri e s a n d t h e O c e a n S t u d ie s B o a r d , s e e

    h t t p : // w w w 4 . n a t i o n a la c a d e m i e s . o r g / c g e r / o s b . n sf / .

    Sponsors:

    N a t i o n a l S c ie n c e F o u n d a t i o n

    O f f ic e o f N a v a l R e s e a r c h

    S c r i p p s I n s ti t u ti o n o f O c e a n o g r a p h y

    U.S. Geo l og i ca l S u rv ey

    W o o d s H o l e O c e a n o g r a p h i c I n s t i tu t i o n

    Oceonography VoL 14 No. 1 /200 1 87