34
1/34 Status of the Nuclotron-NICA project Nearest Plans. G.Trubnikov Sarantsev seminar, September 17, 2011 Alushta, Ukraine

1/34

Embed Size (px)

DESCRIPTION

Status of the Nuclotron-NICA project Nearest Plans. G.Trubnikov Sarantsev seminar, September 17, 2011 Alushta, Ukraine. 1/34. Вид на площадку с вертолета. ЛФВЭ. Нуклотрон ( сверхпроводящий синхротрон ). ОИЯИ. Синхрофазотрон. Схема комплекса НИКА. - PowerPoint PPT Presentation

Citation preview

Page 1: 1/34

1/34

Status of the Nuclotron-NICA projectNearest Plans.

G.TrubnikovSarantsev seminar, September 17, 2011

Alushta, Ukraine

Page 2: 1/34

ЛЛФФВВЭЭ

ЛЛФФВВЭЭ

ООИИЯЯИИ

ООИИЯЯИИ

Вид на площадку с вертолета

Синхрофазотрон

Нуклотрон (сверхпроводящий синхротрон)

Нуклотрон (сверхпроводящий синхротрон)

Схема комплекса НИКАСхема комплекса НИКА

Page 3: 1/34

Предложена в рамках «Дорожной Карты» научных исследований ОИЯИ Основные области: Релятивистская физика тяжелых ионов: поиск и изучение фазовых переходов и новых состояний ядерной материи,включая смешанную фазу и критическую точку; Спиновая физика малонуклонных систем:изучение спин-зависимых процессов; Физика ароматов: проверка правила OZI, поиск многокварковых состояний (пентакварки) поиск и изучение экзотических ядер (гиперядра);

Инновационные проекты: медицинские пучки, биология.

Научная программа на ускорительном комплексе физики высоких энергий ОИЯИ

3/34

Page 4: 1/34

Ускорительный комплекс ЛФВЭ

SPI – d EBIS – N, Ar, Fe, Kr, Xe, …Laser – Li, B, C, F, Mg, …Duoplasmotron – p, d, a, 3He

SPI – d EBIS – N, Ar, Fe, Kr, Xe, …Laser – Li, B, C, F, Mg, …Duoplasmotron – p, d, a, 3He

4/34

Page 5: 1/34

1 этап: Нуклотрон-М

РуководителиРуководители: : ГГ..ВВ..ТрубниковТрубников, , АА..ДД..КоваленкоКоваленко,,

Требуемые НИРиОКР – приоритет при проведении сеансовЭтот этап д.б. завершен в 2010 демонстрацией:

- Ускорение тяжелых ионов с A ~ 100 ÷ 200- интенсивность ~ 107 A/имп

- Энергия пучка > 3,5 ГэВ/н- Развитая инфраструктура

Цель– достичь в 2010 году параметров Нуклотрона, необходимых для реализации проекта НИКА за счет: Модернизации инжекционного комплекса (нет АСУ и диагностики, потери k=3) Модернизации ВЧ системы (нестабильность, нет диагностики, 0.6 Т/с) Обновление диагностики и систем управления (на уровне середины 90-х) Модернизации вакуумной системы (10е-7 Торр) Реконструкции систем питания и криогенного обеспечения (2 кВт@4.5К, нет АСУ) Развития необходимой инженерной инфраструктуры (уровень конца 80-х годов)

Тема 02-00-1065-2008/2010

5/34

Слайд с заседания УС 2008г.

Page 6: 1/34

Estimation of the average vaccum in the Nuclotron ring measuring circulating deutron beam lifetime at Е=5 MeV/u

corresponds to the vacuum pressure not worse than 4*10-10 Тоrr.(it means that since 2007 we improved vacuum by >2 orders)

Estimation of the average vaccum in the Nuclotron ring measuring circulating deutron beam lifetime at Е=5 MeV/u

corresponds to the vacuum pressure not worse than 4*10-10 Тоrr.(it means that since 2007 we improved vacuum by >2 orders)

Mag

netic

fie

ld,

T

Bea

m i

nte

nsi

ty,

par

ticl

es

6/34

Nuclotron-M Results

Page 7: 1/34

7/34

Automatic beam orbit correction system (kit of 28 correctors)

Nuclotron Run 4321 February - 22 March 2011

MCP detector for residual gas

ions registration

Beam profile evolution at acceleration(transverse and

longitudinal)

Page 8: 1/34

8

New digital system for on-line beam orbit measurmentNew digital system for on-line beam orbit measurment

Nuclotron Run 4321 February - 22 March 2011

Beam signal amplitude evolution from pick-ups (Acceleration. Field rising from 300 to 1000 Gs)

8/34

Page 9: 1/34

4.5÷ 5·1010 (d) at 300 MeV/u

For the first time at

Nuclotron had been

performed

beam slow extraction

at 3,1 GeV/u

9/34

Nuclotron-M Results

Page 10: 1/34

10/34

10

First 6 turns (about 50 s), deutron beam after orbit correction. Blue - injected beam, Red - signal from pick-up.First 6 turns (about 50 s), deutron beam after orbit correction. Blue - injected beam, Red - signal from pick-up.

Circulating beam signals during 1150 ms. Small increasing of the signal amplitude is connected to beam de-bunchingCirculating beam signals during 1150 ms. Small increasing of the signal amplitude is connected to beam de-bunching

Nuclotron-M Results

Page 11: 1/34

Сеана №41, март 2010

Пучок Xe (A=124, Z=42+) был ускорен до 570 МэВ/н и 1 ГэВ/н, и успешно выведен для физиков.

Изображение выведенного пучка Xe(Е = 0,6ГэВ/н) на фотопластине

Сигнал ускоренного пучка Xe с датчиканизкоинтенсивного циркулирующего пучка

След от пучка Xe (1 ГэВ/н) в фотоэмульсии (эксперимент “Беккерель”)

Kr, Xe впервые получены на источнике

Результаты модернизации КРИОН, ЛУ-20, ВЧ систем, вакуума

11/34

Результаты: Нуклотрон-М

Page 12: 1/34

Полномасштабная реконструкция системы питания всего ускорительного комплекса

12/34

Результаты: Нуклотрон-М

I_max = 6kAB_max = 20 kGsdB/B = 0.1Gsdf/f (RF) = 1e-5

Page 13: 1/34

13/34

Результаты: Нуклотрон-М

Page 14: 1/34

14/34

Nuclotron-NICA

foreinjector

Cascade transformer up to 0,7 MeV

p,dlaser

ESIS

d

Recent: Maximum HILAC energy is

reduced from 6.2 MeV/u to ~ 3

MeV/u

Доклад К.Левтерова

Page 15: 1/34

9/36

Injection complexHeavy Ion Linear Accelerator

Design at IHEP (Protvino) and

JINR21.87

m

~0.85 m

Fabrication and test assembling at VNIIEF (Sarov)

Presently in there – technology analysis and cost

estimateRecent: Maximum HILAC energy is reduced from 6.2 MeV/u to ~ 3

MeV/u

Page 16: 1/34

16/36

Heavy Ion Source KRION-6TNuclotron-NICA

Assembling of electron/ion optics system:

view from the “ion extraction” side.

Superconducting test coil (L=19 cm, 32 layers of SC wire) : preparation for

testing in a liquid helium.

Magnetic field (T) versus current (A) for SC solenoids; experimental and expected data.1) 26 layers (green line, 21 Jan.’11) – 7.41T at I_crit.=131 A (experimental data);2) 32 layers (top green line, 25 Apr.’11) – 7.81T at I_crit=114 A (experimental data);3) red line: critical current for SC wire according it’s manufacturer data;4) blue line: expected for Krion-6T ESIS – 22 layers, L=120 cm, B=6 T at I_working=118 A . Should be ready in September 2011.

Page 17: 1/34

11/36

Source of polarized particles (p, d, H) JINR+INR RAS

Nuclotron-NICA

We plan to assemble and TEST SPP at Nuclotron with

d in the end of 2012

V.Fimushkin

Page 18: 1/34

Booster synchrotron

18/36

Page 19: 1/34

19

NICA Project Concept & Status

SC Booster-Synchrotron

Booster scheme

Booster Parameters

Particles ions A/Z3

Injection energy, MeV/u 3

Maximum energy, GeV/u

0.6

Magnetic rigidity, T·m 1.55 25.0

Circumference, m 211.2

Fold symmetry 4

Quadrupole periodicity 24

Betatron tune 5.8/5.85

Design and construction of the Booster RF System is under development at Budker INP (G.Kurkin and

team)

Page 20: 1/34

20

NICA Project Concept & Status

SC Synchrotron Nuclotron

Parameter Project Status

(April 2011)

Max. magn. field, T

2.05 2.05

Magn. rigidity, Tm

45 45

Cycle duration, s 2.0 5.0

B-field ramp, T/s 2.0 1.0

Accelerated particles

p–U, p, d p-Xe, d

Max. energy, GeV/u

12.6(p), 5.87(d) 4.5( 197Au79+)

3.5 (d), 1.5 (124Xe42+)

Intensity, ions/cycle

1E11(p,d), 1E9 (A > 100)

5E10 (p,d), 1E10 (d)

1E5 (124Xe24+) 20/34

Page 21: 1/34

SC experiment at Nuclotron

21/34

Circumference, m 251.5 Ions up to A=56 Energy, GeV 3.5 Rev.frequency, MHz 1.2 Vacuum, Torr 10^-10 Intensity 10^11(p)-10^9(C12) Ring slippage factor 0,0322dp/p 10^-3

Page 22: 1/34

Simulations of stochastic cooling

22/34

Expected evolution of particle distribution function and rms value of dP/P for protons.

Expected evolution of particle distribution function and rms value of dP/P for carbon ions (C6+)

Доклад Н.Шурхно

Page 23: 1/34

23/34

Nuclotron-NICAStochastic cooling system prototype at Nuclotron

Vacuum chamber for kickerVacuum chamber for pick-up

Slot-coupler structures, manufactured at IKP FZJSlot-coupler structures, manufactured at IKP FZJ

We plan to assemble and TEST stochastic cooling system

prototype at Nuclotron in the end of 2011

(depends on electronics delivery)

Page 24: 1/34

Stochastic cooling

24/34

kp

pk

eq M

M

N

W22 )/11(1

s

eq

CNN

2

p

pTff

M

pkpk

pk

)(2

1

minmaxp

pT

f

pkpk

2

1max

p

pTff

M

kpkp

kp

)(2

1

minmax

Total and partial slip-factors of the ring as the function of ion energy.

At such position of the kicker the condition gives for the acceptable upper frequency of the band the value of about 20 GHz (at the momentum spread equal to the ring dynamic aperture ±0.01). The luminosity of 11027 cm2s1 corresponds to about 2.3109 ions per bunch, the effective ion number is about 81011. To provide required cooling time the cooling bandwidth can be chosen from 3 to 6 GHz

W = 3-6 GHz

Kicker - 48 meters upstream the IP-point PU - 132 meters upstream the Kicker

“Slice” overlapping(by D.Moehl)

3..6GHz: Tsc~0,5Tibs2..4 GHz: Tsc~Tibs

Page 25: 1/34

Electron cooling

25/34

Dependence of the cooling times for transverse and longitudinal degrees of freedom

Recombination supression:a) Increasing T_tr_eb) “Shift” of electron energy

Conclusions: T_ecool ~ 0,05 Tibs at 1 GeV/uConclusions: T_ecool ~ 0,05 Tibs at 1 GeV/u

Electron transverse temperature [eV] required to obtain ion life-time = 10 hours.

Electron transverse temperature [eV] required to obtain ion life-time = 10 hours.

T_tr_e = 1 eVT_tr_e = 1 eV

Page 26: 1/34

26/34

IBS DR

SC DR

Summary final

Page 27: 1/34

27/34

Magnets for the Booster:

•Prototype dipole magnet had been manufactured and successfully tested in May of this year. The first results of the tests had been obtained.•The iron yoke of model quadrupole lens had been manufactured. Completion of the lense is planned for August 2011.•Multipole corrector magnet, a cryostat for the lense and the corrector are under construction. Completion of their construction is planned for November 2011.•Cryogenic tests of the tandem lense + corrector in the common cryostat is scheduled for the end of this year.•Development of the first stage of the system for magnetic measurements scheduled for the end of this year.

Collider Magnets:•The iron yoke for model dipole magnet had been manufactured. Two coils and cryostat for magnet must be completed in June. Cryogenic test is planned for August - September 2011.•Manufacturing of the iron yoke for model quadrupole lense and tooling for its coil winding had been started.

Status of NICA SC magnetsStatus of NICA SC magnets

Page 28: 1/34

28/34

Installation of the cryostat with the magnet on the bench for the cryogenic test.

Cryogenic test facility for superconducting magnets

AC losses as a function of the field ramp rate at magnet operation in triangular cycle

The quench history of the magnet

First test results for booster dipole

Доклад Г.Кузнецова

Page 29: 1/34

29/34

• The first quench was occurred at 7705 A. After 13th quench current reach nominal value 9690 A. This corresponds to the magnetic field induction in the gap of 1.8 T. Further training was stopped because of the limitation of the power supply.

• The measured static (at zero current) heat flow to the magnet was 5.8 W.

• AC losses of 12 W were determined by the calorimetric method during magnet operation at triangular cycle with field ramp rate 1.2 T/s without pause. This value agrees well with the calculation and confirms the correct grade of steel for the magnet yoke.

• Hydraulic resistance of the cooling channel was 2 times higher calculated value due to the fact that the inner tube diameter was 2.6 mm instead of 3 mm.

First test results for booster dipole

Доклад Г.Кузнецова

Page 30: 1/34

30/34Finished yoke of the quadrupole magnet

Booster quadrupole magnet manufacturing

Page 31: 1/34

31/34

Test on vacuum tightness of the tubes for cooling the yoke

Manufacturing of the winding (0,9 mm wires)

Collider dipole magnet manufacturing

Page 32: 1/34

32/34

Important:

- dedicated test bench for injection system (inflector plates) into Booster is in operation; - dedicated prototype of HV platform for Ion sources (PS 225kV/3A) is under assembly; - new system of the whole complex synchronization is under design and construction; - new thermometry and quench detection system for Nuclotron is in progress; - development of electron cooling system for booster is in active phase (could be designed and constructed at BINP). HV electron cooling system for collider is under design with All-Russian Electrotechnical Inst + FZJ + BINP; - …

PLANS:

Next run at Nuclotron with prolonged period (~1,5 months) is plannedfor November-December 2011 and beam will be delivered mainly for physicists.

Nuclotron-NICA

Page 33: 1/34

частицы

Интенсивности, частиц/имп

Энергия GSI (SIS18)Nuclotron-M

(2010)

Ожидается на Nuclotron-N

(2012)

Ожидается с новым ионным источником и

бустером

(2014-2015)

p 4,5 GeV 21010 81010 51011 51012

d 2,2 GeV 51011 81010 51011 51012

4He 2109 31010 11012

d 2108 71010 (SPI) 71010 (SPI)7Li6+ 7109 31010 51011

12C6+ 300 MeV 71010 6109 31010 31011

24Mg12+ 300 MeV 51010 7108 4109 51010

40Ar18+ 300 MeV 61010 8106 2109 21010

56Fe28+ 4106 2109 51010

58Ni26+ 300 MeV 8109

84Kr34+ 0,3 -1 GeV 21010 2105 1108 1109

124Xe48/42+ 0,3 -1 GeV 11010 1105 7107 1109

181Ta61+ 1 GeV 2109

197Au65/79+ 3109 1108 1109

238U28+/73+ 0,05-1 GeV 6109/21010

Page 34: 1/34

Thank you for your attention