1.3-glade_121106-print

Embed Size (px)

Citation preview

  • 8/17/2019 1.3-glade_121106-print

    1/46

    Sediment-related Disasters:

    Mechanism, Prediction and Assessment6. November 2012 – Taichung, Taiwan 

    Thomas Glade 

    Landslide-triggering rainfall thresholds –a review of concepts and some examples

  • 8/17/2019 1.3-glade_121106-print

    2/46

    Rational

    • Landslides are occurring due to many factors.• Observations: Triggering conditions are manifold.

    • Critical conditions need to be investigated for

     – Research: Fundamental understanding of the slope system

     – Application: Integration in landslide early warning systems.

    • Differentiation:

     – Local single landslides (often grade of activity)

     – Regional landslide distributions (often linked with weather

    forecasts)

    Basic assumption:

    Landslide frequency related to trigger frequency

  • 8/17/2019 1.3-glade_121106-print

    3/46

    Different landslide-triggers

    • Meteorological conditions – Extreme rainfall

     – Prolonged rainfall

     – Snow melt

    • Earthquakes• Human related triggers

  • 8/17/2019 1.3-glade_121106-print

    4/46

    Correlation with tr iggers

     A. Threshold defined as a lower bound

    to landslide-triggering conditions (”+”

    symbols)

    B. Threshold defined as an upper bound

    to conditions that did not trigger anylandslides (”-” symbols). Very useful

    for an initial calibration of thresholds

    in newly instrumented regions.

    C. Threshold defined as a boundary

    between triggering and non-

    triggering conditions.• This is the preferred approach for

    calibrating thresholds for use in EWS.

    • The challenge in optimising the threshold

    model is to minimize the number of falsealarms (”-” symbols above the threshold)

    and missed events (”+” symbols below the

    threshold).

    D. Thresholds defined as lower and

    upper boundaries enclosing aprobability range of triggering conditions

     A B C D

    Modified from:

    Cepeda J. & G. Devoli (2008): Rainfall thresholds for landslide triggeringfollowing volcanic ash eruptions and earthquakes.- Geophysical Research

     Abstracts 10, EGU2008-A-03879.

  • 8/17/2019 1.3-glade_121106-print

    5/46

    Different factors

     Range of stability

    Stable  Marginallystable

    Preparatory

     factors

     Aktivelyinstable

    Triggering

     factors

    Controlling

     factors

     Disposition factors

    Glade T & Crozier MJ (2005) The nature of landslide hazard impact.- In: Glade T, Anderson MG & Crozier MJ (Hrsg) Landslide hazard and risk. Wiley,

    Chichester 43-74. NACH: Crozier MJ (1989): Landslides: Causes, consequences and environment. Routledge, 252 S.

  • 8/17/2019 1.3-glade_121106-print

    6/46

    The threshold “ concept”

    DefinitionIn general: Once a given border/value/range is exceeded,

    the system will change.

    Landslide related: Once a given magnitude of precipitation

    is exceeded, landslides will occur with a given probability.

    Three main types of rainfall thresholds

    • Precipitation of a specific rainfall event• Precipitation including antecedent conditions (e.g.

    rainfall, soil moisture)

    • Other types of meteorological conditions (e.g. snow melt)

  • 8/17/2019 1.3-glade_121106-print

    7/46

    Types of rainfall-thresholds

    Typical landslide-triggering rainfall thresholds

    • Event rainfall

    • Intensity - Duration (ID)

    • Rainfall event - Duration (ED)

    • Rainfall event - Intensity (EI)

    • Rainfall event – Antecedent Rainfall Conditions (ARI)

    • Rainfall event – Soil Water Status Model (SWSM)

  • 8/17/2019 1.3-glade_121106-print

    8/46

    Event rainfall thresholds 1/2

    Note: Nomenclature is not consistent in the literature, and different definitions have been used for the

    same or similar variables.

    Refer to Appendix 1 for complete Table.

    Variable Description Units First introduced

    D Rainfall duration. The duration of the rainfall event or

    rainfall period.

    h, or days Caine (1980)

    DC Duration of the critical rainfall event. h Aleotti (2004)

    E(h),(d) Cumulative event rainfall. The total rainfall measured from

    the beginning of the rainfall event to the time of failure.

     Also known as storm rainfall. “h” indicates the considered

    period in hours; “d” indicates the considered period indays.

    mm Innes (1983)

    EMAP Normalized cumulative event rainfall. Cumulative event

    rainfall divided by MAP (EMAP=E/MAP). Also known as

    normalized storm rainfall.

    - Guidicini and

    Iwasa (1977)

    … … … …

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe.- Meteorol. Atmos.

    Phys. 98: 242.

  • 8/17/2019 1.3-glade_121106-print

    9/46

    Event rainfall thresholds 2/2

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe.- Meteorol. Atmos.

    Phys. 98: 248.

    # Extent AreaLandslide

    typeThreshold Notes

    72 L Hokkaido area, Japan A R >200 mm

    73 R Los Angeles area, California A R >235 mm

    74 L Hong Kong S A15d >50 mm and R>50 mm Minor events

     A15d >200 mm and R>100 mm Severe events A15d >350 mm and R>100 mm Very severe events

    75 R

    Contra Costa County,

    California Sh E>177.8 mm Abundant landslides

    … … … … … …

    Note: Extent: R - regional threshold; L - local threshold.

     Area: The area where the threshold was defined.

    Landslide type: A - all types; D - debris flow; S - soil slip; Sh - shallow landslide.

    Refer to Appendix 2 for complete Table.

  • 8/17/2019 1.3-glade_121106-print

    10/46

    Intensity - duration (ID) thresholds

    Note: Extent: G, global threshold; R, regional threshold; L, local threshold.

     Area: the area where the threshold was defined.

    Landslide type: A, all types; D, debris flow; S, soil slip; Sh,shallow landslide, L, lahar.

    Rainfall intensity in mm=hr, rainfall duration in hours.

    Complete Table: Please refer to Appendix 3.

    # Extent Area Landslide

    type

    Equation Range Notes

    1 G World Sh, D I = 14.82 x D-0.39 0.167

  • 8/17/2019 1.3-glade_121106-print

    11/46

    Intensity - duration (ID) thresholds

  • 8/17/2019 1.3-glade_121106-print

    12/46

    Intensity - duration (ID) thresholds

    Legend: Very thick line: Global threshold;

    Thick line: Regional threshold;

    Thin line: Local threshold.

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe.- Meteorol. Atmos.

    Phys. 98: 243.

  • 8/17/2019 1.3-glade_121106-print

    13/46

  • 8/17/2019 1.3-glade_121106-print

    14/46

    Rainfall event - Duration (ED) thresholds

    Note: Extent: G - global threshold; R - regional threshold, L - local threshold.

     Area: The area where the threshold was defined.

    Landslide type: A - all types; D - debris flow; Sh - shallow landslide.Cumulative event rainfall in mm, rainfall duration in hours.

    Refer to Appendix 5 for complete Table.

    # Extent Area Landslidetype

    Equation Range Notes

    90 G World Sh, D E = 14.82 x D0.61  0.167

  • 8/17/2019 1.3-glade_121106-print

    15/46

    Rainfall event - Duration (ED) thresholds

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe.- Meteorol. Atmos.

    Phys. 98: 250.

    Legend: Very thick line: Global threshold;

    Thick line: Regional threshold;

    Thin line: Local threshold.

  • 8/17/2019 1.3-glade_121106-print

    16/46

    Rainfall event - Intensity (EI) thresholds

    Note: Extent: G - global threshold; R - regional threshold; L - local threshold. Area: The area where the threshold was defined.

    Landslide type: A - all types; D - debris flow; S - soil slip; Sl - slide; E - earth flow; M - mud flow;

    Sh - shallow landslide; L - lahar.

    Refer to Appendix 6 for comprehensive table.

    # Extent Area Landslide

    type

    Equation Range Notes

    105 R Chiba and Kanagawa

    prefectures, central Japan

    Sh Imax = 390 x E-0.38 0

  • 8/17/2019 1.3-glade_121106-print

    17/46

    Intensity, duration and

    antecedent rain

    Generalization of I-D model

    where:

    I, D and  β as in ID model

     An: antecedent n-day precipitation (mm)

    α 1 and α 2: constants of the model

    • the term in brackets account for the effects of antecedent precipitation

    • the model requires a calibration of the value of ”n”,

    and the constants α1, α2 and β

    Cepeda, J.; Nadim, F.; Høeg, K. & A. Elverhøi.(2009):A new function for estimating local rainfall thresholds for landslide triggering.- Geophysical Research

     Abstracts,11, EGU2009-12290,

  • 8/17/2019 1.3-glade_121106-print

    18/46

    Rainfall thresholds for

    different landslide types

    D: 1 to 9 hours I = 4.297 D-0.275  D: 3 to 17 hours I = 181,2 A23d

    -0.6788 D-1.5163 

    • for debris flows, a traditional ID threshold is sufficient+ triggering rainfall 1 to 9 hrs

    + no need of antecedent rain

    • for slides, an improved performance is achieved with the IAD model+ triggering rainfall 3 to 17 hrs

    + need of antecedent rain of 50 days.

    Cepeda J.M., Malet J.P. & A. Remaître (2011): Empirical estimates of precipitation conditions for landslide triggering in France and Norway.- Geophysical

    Research Abstracts 13, EGU2011-10550

  • 8/17/2019 1.3-glade_121106-print

    19/46

    Basic disposition

    0

    8

    DispositionVariable disposition

    Forces

    on the

    slope

    system

    Triggering events 

    Based on Kienholz et al. (1998)

    Time

    Disposition

  • 8/17/2019 1.3-glade_121106-print

    20/46

     Bilder

    ParameterDaily

    rainfall

    Antecedent

    daily rainfall

    Index soil-

    water status

    Climate

    - Percipitation

    - Antecedent rainfall

    - Pot. Evapotranspiration

    Soil characteristics

    ( Depth, soil moisture, porosity, textur )

    Modell requirements 

    Glade T (2000): Modelling landslide triggering rainfall thresholds at a range of complexities.- Landslides in Reserach, Theory and Practice, Proceedings of the8th International Symposium on Landslides, 26-30 June 2000, Cardiff, UK, Thomas Telford, 2, 633-640.

  • 8/17/2019 1.3-glade_121106-print

    21/46

    Daily Rainfall Model 

    Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand.- Environmental Geology 35(2-3): 160-174.

    1862-1995

  • 8/17/2019 1.3-glade_121106-print

    22/46

    Antecedent Daily Rainfall Model

    Wellington 

    Pa0 = P1 + 2k P2 + ...+ n

    k Pn 

    Glade T, Crozier MJ & Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "Antecedent DailyRainfall Model".- Pure and Applied Geophysics 157(6-8): 1059-1079.

    1862-1995

  • 8/17/2019 1.3-glade_121106-print

    23/46

    Antecedent Daily Rainfall Model

    Hawke’s Bay 

    Pa0 = P1 + 2k P2 + ...+ n

    k Pn 

    Glade T, Crozier MJ & Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "Antecedent DailyRainfall Model".- Pure and Applied Geophysics 157(6-8): 1059-1079.

    1870-1995

  • 8/17/2019 1.3-glade_121106-print

    24/46

    Antecedent Daily Rainfall Model 

    Pa0 = P1 + 2k P2 + ...+ n

    k Pn 

    Glade T, Crozier MJ & Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "Antecedent DailyRainfall Model".- Pure and Applied Geophysics 157(6-8): 1059-1079.

    1862-1995

  • 8/17/2019 1.3-glade_121106-print

    25/46

  • 8/17/2019 1.3-glade_121106-print

    26/46

    Soil Water Status Index model 

    1931-1995

    Glade T (2000): Modelling landslide-triggering rainfalls in different regions in New Zealand - the soil water status model.- Zeitschrift für Geomorphologie 122: 63-

    84.

  • 8/17/2019 1.3-glade_121106-print

    27/46

    Threshold based landslide forecast

    Observations 1950-1979 

    Crozier MJ (1999) Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surface Processes and Landforms 24:825-833

  • 8/17/2019 1.3-glade_121106-print

    28/46

  • 8/17/2019 1.3-glade_121106-print

    29/46

  • 8/17/2019 1.3-glade_121106-print

    30/46

    Non-linearity – delayed response

    Following Dearing J (2004), in: Goudie A.S. [Ed.]: Encyclopedia of Geomorphology, p. 721

  • 8/17/2019 1.3-glade_121106-print

    31/46

    Forces and Response

    Dearing, J.A., Battarbee, R.W., Dikau, R.,

    Larocque, I. & F. Oldfield (2006):

    Human-environment interactions: learning

    from the past. Regional Environmental

    Change, 6: 1-16.

  • 8/17/2019 1.3-glade_121106-print

    32/46

    Following Graf (1988) and Brunsden and Thornes (1979)

    Hufschmidt G., Crozier M.J. & T. Glade (2005): Evolution of natural risk: research framework and perspectives.- Natural Hazards and Earth System Sciences 5(3):

    375-387.

    Lagged responses ….

  • 8/17/2019 1.3-glade_121106-print

    33/46

    Earth System Science …… ??

    Hugget (2003), p.42

    Trad Geoscience Approach:

  • 8/17/2019 1.3-glade_121106-print

    34/46

    Trad. Geoscience Approach:

    Environment Society

     A geosystem within globalenvironmental change

    (Slaymaker 2000, nach

     NASA 1988) – IGBP 1991

    Slaymaker O (2000): Global Environmental Change: The Global Agenda. - In: Slaymaker O (Hrsg.): Geomorphology, Human Activity and Global Environmental Change,

    Wiley: 3-20.

  • 8/17/2019 1.3-glade_121106-print

    35/46

    Old wine in new bottles?

    Weichhart P (2005): Auf der Suche nach der dritten Säule. Gibt es Wege von der Rhetorik zur Pragmatik?- In: Müller-Mahn D & U Wardenga (Hrsg.): Möglichkeiten und

    Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie.- Leibniz-Institut für Länderkunde, Leipzig Heft 2, 109-136.

     BASED ON

    Weichhart P (2003): Physische Geographie und Humangeographie - eine schwierige Beziehung: Skeptische Anmerkungen zu einer Grundfrage der Geographie und zum

     Münchener Projekt einer „Integrativen Umweltwissenschaft".- In: Heinritz G (Hrsg.): „Intcgrative Ansätze in der Geographie - Vorbild oder Trugbild?". Münchner

    Symposium zur Zukunft der Geographie, 28. April 2003. Eine Dokumentation. Münchener Geographische Hefte 85. Passau, S. 17 - 34.

    The „Three Pillar-Model“ (Weichhart 2005, based on Weichhart 2003, S. 25)

    Society-Environment

    Interaction

    SocietyPhysical

    Environment

  • 8/17/2019 1.3-glade_121106-print

    36/46

    Summary

    • The threshold approach is useful and practical.• Long landslide and triggering records are required.

    • Various threshold models exist.

    • Limitations are evident:

     – Different landslide types

     – Transferability of models

     – Single failures – widespread occurrence

     – Trigger information (e.g. 24h = 12am-12am, or 9am-9am, or …?)

  • 8/17/2019 1.3-glade_121106-print

    37/46

    Some perspectives

    • The threshold approach assumes stationarity of both thetrigger and the responding system.

    • Instead we are living in a complex system defined by

     – Non-linearity

     – Chaotic behaviour – Self-organization

     – Emergence

    • Spatial distributions: Landslides & Precipitation.

    • Human interference modifies the trigger impact andlandslide response.

    • Thresholds for coupled social – landslide systems are

    required.

  • 8/17/2019 1.3-glade_121106-print

    38/46

    Selected references

    Cepeda J.M., Malet J.P. & A. Remaître (2011): Empirical estimates of precipitation conditions for landslide triggering in France and Norway.-

    Geophysical Research Abstracts 13, EGU2011-10550

    Cepeda, J.; Nadim, F.; Høeg, K. & A. Elverhøi.(2009):A new function for estimating local rainfall thresholds for landslide triggering.- GeophysicalResearch Abstracts, 11, EGU2009-12290,

    Crosta G.B. & P. Frattini (2003): Distributed physically-based rainfall thresholds for landslide triggering. Geophysical Research Abstracts, 5:

    11896.

    Crozier M.J. (1999): Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surface Processes and

    Landforms, 24(9): 825-833.

    Crozier M.J. & T. Glade (1999): Frequency and magnitude of landsliding: fundamental research issues.- Zeitschrift für Geomorphologie 115,

    141-155.

    De Vita P. & P. Reichenbach, with contributions by J.C. Bathurst, M. Borga, G. Crosta, M. Crozier, T. Glade, F. Guzzetti. A. Hansen, J.Wasowski (1998): Rainfall-triggered landslides: a reference list.- Environmental Geology 35(2-3): 219-233.

    Glade T. (1998): Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand.- Environmental Geology

    35(2-3), 160-174.

    Glade T. (2000): Modelling landslide-triggering rainfalls in different regions in New Zealand - the soil water status model.- Zeitschrift für

    Geomorphologie 122, 63-84.

    Glade T., Crozier M.J. & P. Smith (2000): Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical

    "Antecedent Daily Rainfall Model".- Pure & Applied Geophysics 157, 1059-1079.

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe.-

    Meteorol. Atmos. Phys. 98: 239-267.

    Guzzetti F., Peruccacci S., Rossi M. & C.P. Stark (2008): The rainfall intensity–duration control of shallow landslides and debris flows: an

    update.- Landslides 5: 3-17.

    Hufschmidt G., Crozier M.J. & T. Glade (2005): Evolution of natural risk: research framework and perspectives.- Natural Hazards and Earth

    System Sciences 5(3): 375-387.

    Reichenbach P., Cardinali M., De Vita P- & F. Guzzetti (1998): Regional hydrological thresholds for landslides and floods in the Tiber River Basin

    (central Italy).- Environmental Geology 35 (2-3): 146-159.

    Wieczorek G. & T. Glade (2005): Climatic factors influencing triggering of debris flows.- In: Jakob M. & Hungr O. (Eds): Debris flow hazards and

    related phenomena.- Springer, Heidelberg 325-362.

    A t

  • 8/17/2019 1.3-glade_121106-print

    39/46

     A great resource …http://rainfallthresholds.irpi.cnr.it/

  • 8/17/2019 1.3-glade_121106-print

    40/46

    Paekakadiki, New Zealand © Graeme Hancox

    Thank you for your attention!

    [email protected]

    http://geomorph.univie.ac.at/

    http://homepage.univie.ac.at/thomas.glade/

  • 8/17/2019 1.3-glade_121106-print

    41/46

     Appendix I

    Guzzetti F., S.Peruccacci, M. Rossi and C.P.

    Stark (2007): Rainfall thresholds for the initiation

    of landsldies in central and southern Europe.-

    Meteorol. Atmos. Phys. 98: 242.

  • 8/17/2019 1.3-glade_121106-print

    42/46

     Appendix II

    Guzzetti F., S.Peruccacci, M. Rossi and C.P.

    Stark (2007): Rainfall thresholds for the initiation

    of landsldies in central and southern Europe.-

    Meteorol. Atmos. Phys. 98: 248.

  • 8/17/2019 1.3-glade_121106-print

    43/46

     Appendix III

    Guzzetti F., S.Peruccacci, M. Rossi and

    C.P. Stark (2007): Rainfall thresholds for

    the initiation of landslides in central and

    southern Europe.- Meteorol. Atmos. Phys.

    98: 244f.

  • 8/17/2019 1.3-glade_121106-print

    44/46

     Appendix IV

    Guzzetti F., S.Peruccacci, M.

    Rossi and C.P. Stark (2007):

    Rainfall thresholds for the

    initiation of landsldies in central

    and southern Europe.- Meteorol.

     Atmos. Phys. 98: 246.

  • 8/17/2019 1.3-glade_121106-print

    45/46

     Appendix V

    Guzzetti F., S.Peruccacci, M.

    Rossi and C.P. Stark (2007):

    Rainfall thresholds for the

    initiation of landsldies in central

    and southern Europe.- Meteorol.

     Atmos. Phys. 98: 249.

  • 8/17/2019 1.3-glade_121106-print

    46/46

     Appendix VI

    Guzzetti F., S.Peruccacci, M.

    Rossi and C.P. Stark (2007):

    Rainfall thresholds for the

    initiation of landsldies in central

    and southern Europe.- Meteorol.

     Atmos. Phys. 98: 251.