13 Canahuire-CDH

Embed Size (px)

Citation preview

  • 8/9/2019 13 Canahuire-CDH

    1/4

  • 8/9/2019 13 Canahuire-CDH

    2/4

    13o Simpsio de Geologia da Amaznia

    Belm | 22 a 26 de setembro de 2013

    _____________________________________________________________________________________

    Figure 1 - Reflected light photomicrographs of typical ore assemblages at the Canahuire Au-(Cu-Ag) deposit. A) Spongy pyrite (Py I) grain with chalcopyrite (Cp) rimmed with sphalerite (Sph)and cut by thin veinlets of tennantite-tetrahedrite (Tn-Th). B) Intergrowth of marcasite (Mrc) and

    polygonal pyrite (Py II) together with chalcopyrite (Cp) grains in the matrix. C) Arsenopyrite(Apy) with inclusions of native gold (Au). D) Galena (Gn) in contact with intergrowth of pyrite I(Py I) and pyrite II (Py II).

    Figure 2 - A) Backscattered electron image showing the intergrowth of pyrite I (Py I) and pyriteII (Py II). The yellow circles are the points analysed on the electron microprobe. Points 1 to 4 arewithin pyrite spongy I (Py I) and points 5 to 8 are within pyrite II (Py II). Polygonal pyrite (PyII) contains minor amounts of AsAuAg.

  • 8/9/2019 13 Canahuire-CDH

    3/4

  • 8/9/2019 13 Canahuire-CDH

    4/4

    13o Simpsio de Geologia da Amaznia

    Belm | 22 a 26 de setembro de 2013

    _____________________________________________________________________________________

    PRELIMINARY CONCLUSIONS

    The change in ore paragenesis from stage I, with pyrite I, pyrrhotite, arsenopyrite andmagnetite, to stage II with arsenopyrite chalcopyrite tennantite tetrahedrite -stibiobismuthinite marks a hydrothermal system evolving from low to intermediate sulphidationstate fluids (see Fig. 1 in Einaudi et al. 2003).

    Collectively, 13

    C and 18

    O values from calcite veinlets are comparable with marinelimestone values and may reflect fluids in equilibrium with the Gramadal Formation limestone,under low fluid/rock ratios, in distal zones from the mineralization. The marked shift to slightlymore depleted 13C values and much lower 18O values, as observed in siderite replacementzones towards the mineralization, suggests that the Canahuire hydrothermal system evolvedthrough varying degrees of interaction of the Gramadal limestone with magmatic and meteoricfluids. This interaction may have probably promoted the change from low to intermediatesulphidation state of the fluids and gold deposition.

    ACKNOWLEDGEMENTSThis research project is part of a M.Sc. dissertation under progress at the Institute of

    Geosciences of the University of Campinas and with support from Gold Fields Exploration.Special acknowledgements are due to Dr. Erika Tonetto (SEMUNICAMP), Profs. Alcides Sialand Valderez Ferreira (NEG LABISE UFPE) and Nilson Botelho (electron microprobe UNB).

    REFERENCESBAUMGARTNER R. & FONTBOT L. Mineral Zoning and Geochemistry of Epithermal

    Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru. In: ECONOMICGEOLOGY, 2008. v.103, p.493537

    BENEDEZ R., FONTOBT L. Cordilleran epithermal Cu-Zn-Pb-(Au-Ag) mineralization inthe Colquijirca district, central Peru: Deposit-scale mineralogical patterns. In:ECONOMIC GEOLOGY, 2009. v.104, p.905-944.

    EINAUDI M., HEDENQUIST J., INAN E. Sulfidation state of fluids in active and extincthydrothermal systems: transition from porphyry to epithermal environments. In:ECONOMIC GEOLOGY SPECIAL PUBLICATION, 2003. v.10, p.285-313

    SANTOS A., BAUMGARTNER R., GAIBOR A., DUSCI M., AZEVEDO F., GRADIM R.,DUNKLEY P., DENBOER D., VALER R. 2011. Geology and mineralisation of the Au-Cu-Ag Canahuire epithermal deposit, Chucapaca Project, Southern Peru. In: SGA, TheBiennial SGA Conference, 11, Proceedings, Antofagasta (Chile) available on:https://www.e-sga.org/index.php?id=228&tx_commerce_pi1%5BshowUid%5D=1903&tx_commerce_pi

    1%5BcatUid%5D=2&cHash=03f281e3a8