(1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

Embed Size (px)

Citation preview

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    1/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-1

    DATE : 24.04.2016 CUMULATIVE TEST-03 (CT-03)Syllabus : Inverse Trigonometric Function & Limit Continuity & Derivability, Quadratic Equation, Applicationof Derivatives, Sequence and Series, Binomial Theorem, Straight line, Circle

    TARGET : JEE (ADVANCED) 2016O

    Course : VIJETA (ADP) & VIJAY (ADR) Date : 24-04-2016

    MM AA TT HH EE MM AA TT II CC SS

    DPPDPPDPPDAILY PRACTICE PROBLEMS

    NO. 06

    TT EE SS TT II NN FF OO RR MM AA TT II OO NN

    REVISION DPP OFS OLUTION OF TRIANGLE AND CONIC S ECTION

    Total Marks : 147 Max. Time : 116 min.Single choice Objective ('–1' negative marking) Q.1 to Q.12 (3 marks 3 min.) [36, 36]Multiple choice objective ('–1' negative marking) Q.13 to Q.28 (4 marks 3 min.) [64, 48]

    Subjective Questions ('–1' negative marking) Q.29 to Q.33 (3 marks 3 min.) [15, 15]Comprehension ('–1' negative marking) Q.34 to Q.40 (3 marks 3 min.) [21, 21]

    1. In a triangle ABC, if 2015c 2 = a 2 + b 2 and cot C = N(cot A + cot B), then the number of distinct primefactor of N is ABC esa ;fn2015c 2 = a 2 + b 2 rFkkcot C = N(cot A + cot B) rc N ds fofHkUu vHkkT; Hkktdks a dh la [;k gS&

    (A) 0 (B) 1 (C*) 2 (D) 4

    Sol. cotC = N(cotA + cotB) cosC cos A cosB

    NsinC sin A sinB

    2 2 2 2 2 2 2 2 2a b – c b c – a a c – b

    N4 4 4

    N = 1007 = 19 × 53

    2. The number of right angle t`riangles of integer side lengths whose product of leg lengths is equal tothree times the perimeter is

    iw.kkZa d Hkqtkvksa dh yEckbZ okys ,sls ledks .k f=kHkqtks dh la[;k ftues a ledks .k 'kh"kZ cukus okyh nks uks a Hkqtkvksa dk xq.kuQy ifjeki dk3 xquk gS] gksxh&(A) 0 (B) 1 (C) 2 (D*) 3

    Sol.

    3

    3

    a–3

    a–3

    b–3b–3

    ANSWERKEY OF DPP # 061. (C) 2. (D) 3. (A) 4. (C) 5. (A) 6. (A)7. (C) 8. (B) 9. (A) 10. (C) 11. (D) 12. (A)

    13*. (CD) 14. (CD) 15. (ABD) 16. (AB) 17. (AC) 18. (BC)19. (AD) 20. (AC) 21. (BC) 22. (ABD) 23. (ACD) 24. (AC)25. (AC) 26. (ABC) 27. (ABD) 28. (ABC) 29. 8 30. 831. 4 32. 5 33. 8 34. (B) 35. (A) 36. (C)37. (B) 38. (D) 39. (ABD) 40. (ABCD)

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    2/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-2

    ab = 6s 2 = 6s r = 3Now vc , a 2 + b 2 = (a + b – 6) 2 (a – 6) (b – 6) = 18

    3_. An ellipse and hyperbola share common foci F 1, and F 2. The ellipse has vertices at the origin and (0,24) and a semi-minor axis of length 11. The hyperbola has a conjugate axis of length 4 3 . The ellipseand hyperbola intersect at four points. Let P be one of the points of intersection, then value of (PF 1)

    2 +(PF 2)

    2 is. ,d nh?kZ o`Ùk rFkk vfrijoy; dh ukfHk;kaF1, rFkkF2 mHkfu"B gsA nh?kZo`Ùk ds 'kh"kZ ewy fcUnq rFkk(0, 24) ij gS vkS jv)Zy?kq v{k dh yEckbZ11 gS] rFkk vfrijoy; la ;qXeh v{k dh yECkkbZ4 3 gSA nh?kZo`Ùk vkSj vfrijoy; pkj

    fcUnqvka s ij izfrPNs n djrs gSA ekuk izfrPNsn fcUnqvks a es a ls ,d fcUnqP gSA rc(PF 1)2 + (PF 2)2 dk eku gSA

    (A*) 410 (B) 820 (C) 532 (D) 266Sol. For ellipse PF 1 + PF 2 = major axis

    PF 1 + PF 2 = 26 (i.e. distance between vertices)= 2a a = 13

    for an ellipse distance between centre and focus = ae = 2 2a b = 169 121 = 4 3ellipse and hyperbola are con-focal.

    distance between centre and focus for hyperbola = 4 3

    4 3 = Ae'. 4 3 =2 2

    A B A2

    =2 2

    (4 3 ) (2 3) A = 6for hyperbola, |PF 1 – PF 2| = 2A = 12

    PF 1 + PF 2 = 26 & |PF 1 – PF 2 | = 12square and add, we get.(PF 1)

    2 + (PF 2)2 = 410.

    nh?kZ o`Ùk ds fy, PF 1 + PF 2 = nh?kZv{kPF 1 + PF 2 = 26 ( 'kh"kksZ ds e/; nwjh)

    = 2a a = 13

    nh?kZ Zo`Ùk ds fy, ukfHk vkS j dsUnz ds e/; nwjh= ae = 2 2a b = 169 121 = 4 3 nh?kZ o`Ùk vkS j vfrijoy; dh ukfHk;ka laikrh gS

    vfrijoy; ds fy, ukfHk vkS j dsUnz ds e/; nwjh= 4 3 4 3 = Ae'. 4 3 = 2 2 A B A2 = 2 2(4 3 ) (2 3)

    A = 6vfrijoy; ds fy, , |PF 1 – PF 2 | = 2A = 12

    PF 1 + PF 2 = 26 & |PF 1 – PF 2 | = 12 oxZ djds tks Mus ij(PF 1)

    2 + (PF 2)2 = 410.

    4_. If 'O' is the circumcentre of ABC and R 1, R 2 & R3 are the radii of the circumcircles of triangles OBC,

    OCA and OAB respectively. then1 2 3

    a b c

    R R R

    has the value.

    ;fn 'O', ABC dk ifjdsUnz gS rFkk f=kHkq tks aOBC, OCA vkS j OAB ds ifjxr o`Ùkks a dh f=kT;ka,a Øe'k%R1, R 2 & R 3

    gS] rc1 2 3

    a b cR R R

    dk eku gSA

    (A)3

    abc

    2R (B)

    3Rabc

    (C*)2

    4

    R (D)

    24R

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    3/27

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    4/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-4

    (A*) ijoy; ds v{k ds lekUrj(B) ijoy; ds v{k ds yEcor~ (C) ijoy; ds v{k ds uk rks lekUrj vkS j uk gh yEcor (D) dqN ugh dgk tk ldrk

    Hint. orthocentre lies on directrix yEcdsUæ fu;rk ij fLFkr gS

    H(–a, a(t – 1/t)) & 2 2a 1 1

    G t – 1 ,a t –3 tt

    centroid dsUæd

    7. Normals AO, AA 1 & AA2 one drawn to the parabola y2 = 8x from A(h, 0). If triangle OA 1 A2 is equilateral,

    then ‘h’ can be equal to fcUnq A(h, 0) ls ijoy; y2 = 8x ij vfHkyEc AO, AA 1 rFkk AA2 [khaps x;s gSA ;fn f=kHkqtOA 1 A2 ,d leckgq f=kHkqt gS] rc‘h’ dk eku gks ldrk gSµ (A) 24 (B) 26 (C*) 28 (D) 30

    Hint. 0

    A1(t1)

    30°

    A2(–t 1)

    A(h, 0)

    equation of normal vfHkyEc dk lehdj.k y = – tx + 2at + at 3 ...(i)

    &1

    2t

    = tan1

    6 3 t1 = 2 3 ...(ii)

    equation lehdj.k (ii) & vkSj (i) h = 28

    8. The auxilliary circle of a family of ellipse passes through origin and makes intercepts of 8 and 6 units on

    the x-axis and y-axis respectively. If the eccentricity of all such ellipses is12

    , then the locus of their

    focus is ,d nh?kZ o`Ùk fudk; dk lgk;d o`Ùk ewy fcUnq ls xqtjrk gS rFkkx-v{k ,oay-v{k ij Øe'k%8 rFkk6 bdkbZ ds

    vUr%[k.M dkVrk gSA ;fn ,s ls lHkh nh?kZo`Ùkks a dh mRdsUærk12 gS] rc muds ukfHk dk fcUnq iFk gSµ

    (A)2 2x y

    16 9 = 25 (B*) 4x 2 + 4y 2 – 32x – 24y + 75 = 0

    (C)2 2x y

    9 16 = 25 (D) 2x 2 + y 2 = 2

    Hint.

    (0, 6)

    (8, 0)

    Centre of ellipse (4, 3) & diameter of circle = 2a = 10distance of focus from centre = ae = 5/2

    locus is (x – 4) 2 + (y – 3) 2 = 25/4 nh?kZ o`Ùk dk dsUæ (4, 3) & dsUæ ls ukfHk dh nwjh= ae = 5/2

    fcUnqiFK(x – 4) 2 + (y – 3) 2 = 25/4

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    5/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-5

    9. Two tangents to the hyperbola2 2

    2 2x y

    –a b

    = 1 having slopes m 1 & m 2 cut the coordinate axes in four con-

    cyclic points. Then m 1m 2 is equal to

    vfrijoy;2 2

    2 2

    x y –

    a b = 1 dh nks Li'kZ js [kk,s a] ftudh iz o.krk,sam 1 vkS j m 2 gS] funs Z'kkad v{kks a dks pkj leo`Ùkh;

    fcUnqvks a ij dkVrh gSA rcm 1m 2 dk eku gSµ

    (A*) 1 (B) –1 (C)ab (D) –

    ba

    Hint. Let the tangents be ekuk Li'kZ js [kk,s a gSµy = m 1x +

    2 2 21a m – b

    y = m 2x +2 2 2

    2a m – b

    point of intersection of these with axes are budk v{kks a ds lkFk izfrPNsn fcUnq gS2 2 2

    1

    1

    a m – b A – ,0

    m

    2 2 2

    2

    2

    a m – bB , 0

    m

    2 2 21C 0, a m – b 2 2 22D 0, a m – b for concyclicity, pØh;rk ds fy, OA.OB = OC.OD m 1m 2 = 1

    10. The chord of contact of a point P with respect to a hyperbola and its auxiliary circle are at right angles,then P lies on(A) conjugate hyperbola (B) directrices(C*) one of the asymptotes (D) None of these

    ,d fcUnqP dh ,d vfrijoy; ,oa mlds lgk;d o`Ùk ds lkis{k Li'kZ thok,sa ledks .k ij gS] rc P fLFkr gSµ (A) la ;qXeh vfrijoy; ij (B) fu;rkvksa ij(C*) ,d vUurLi'khZ ij (D) bues a ls dksbZ ugh

    Hint. P(h, k)

    T = 0 for hyperbola vfrijoy; ds fy, 2 2hx ky

    –a b

    = 1 ...(i)

    T = 0 for auxilliary circle lgk;d o`Ùk ds fy, hx + ky = a 2 ...(ii)equation (i) & (ii) are perpendicular (i) vkS j (ii) yEcor~ gS

    2 2

    2 2

    h k –

    a b = 0 Asymptotes vuUrLi'khZ ;k

    11. If H is the orthocentre of an acute angle triangle whose circum-circle is x 2 + y 2 = 16, thencircumdiameter of HBC is

    ;fn H ,d U;wudks .k f=kHkqt dk yEcdsUæ gS ftldk ifjxr o`Ùkx2 + y 2 = 16 gS] rc HBC dk ifjxr O;kl gSµ (A) 1 (B) 2 (C) 4 (D*) 8

    Sol.

    A

    B Ca

    90 – C 90 – B

    H

    Circum radius of ABC, HAB, HBC and HCA is same BHC ( B C) = B + C = – A

    asin( A)

    = 2R =a

    sinA

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    6/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-6

    12. An endless inextensible string of length 15m passes around two pins, A & B which are 5m apart. Thisstring is always kept tight and a small ring, R, of negligible dimensions, inserted in this string is made tomove in a path keeping all segments RA, AB, RB tight (as mentioned earlier). The ring traces a path,given by conic C, then(A*) Conic C is an ellipse with eccentricity 1/2 (B) Conic C is an hyperbola with eccentricity 2(C) Conic C is an ellipse with eccentricity 2/3 (D) Conic C is a hyperbola with eccentricity 3/2

    ,d fcuk Nks j dh ¼vUrghu½ vforkU; Mks jh ftldh yEckbZ15m gS] nks fcUnqvks a (pins) A rFkkB ls xqtjrh gS] tgk¡ AB = 5m gSA ;g Mks jh ges'kk dl dj j[kh tkrh gS ,oa ,d NksVk lk oy;]R, ftldh foek,s a ux.; gS] Mksjh esa Mkyk tkrk gS tks bl izdkj xfr djrk gS fd lHkh [k.MRA, AB, RB dls (tight) gq, gS ¼tSls Åij fn;k x;k gS½A oy; ,d iFk cukrk gS og 'kkadoC gS] rc (A*) 'kkadoC ,d nh?kZ o`Ùk gS ftldh mRdsUærk1/2 gSA (B) 'kkadoC ,d vfrijoy; gS ftldh mRdsUærk 2 gSA (C) 'kkadoC ,d nh?kZ o`Ùk gS ftldh mRdsUærk2/3 gSA (D) 'kkadoC ,d vfrijoy; gS ftldh mRdsUærk 3/2 gSA

    Sol.

    R

    AB 5Since length of string is constant, RA + RB = 10, hence locus of R, i.e. conic C is an ellipse with

    eccentricity5 1

    10 2.

    pawfd Mksjh dh yEckbZ vpj gSRA + RB = 10 vr%R dk fcUnq iFk] nh?kZ o`ÙkC dh mRdsUærk5 110 2

    .

    13*. Let ABC be such that BAC =23

    and AB.AC = 1, then the possible length of the angle bisector AD

    is

    ekuk ABC bl izdkj gS fd BAC = 23

    rFkk AB.AC = 1 ] rc dks .k v}Zd AD dh laHkkfor yEckbZ gSµ

    (A) 2 (B) 1 (C*) 1/2 (D*) 1/3

    Sol.

    60° 60°x

    y

    D C B

    1/x

    A

    AD = y =2bc A

    cosb c 2

    y =1

    1x

    x

    ymax. =12

    14*. In a triangle ABC, If D is mid point of side BC and AD is perpendicular to AC, then the value ofcosA.cosC is ABC esa ;fnD HkqtkBC dk e/; fcUnq gS rFkk AD, AC ds yEcor~ gS rc cosA.cosC dk eku gS&

    (A)22b

    ac (B)

    2 22 a – c3bc

    (C*) –22b

    ac (D*)

    2 22(c – a )3ac

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    7/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-7

    Sol.

    A bC

    D

    a/2

    B

    c

    a/2

    From ACD, ls

    cosC =2ba

    2 2 2a b – c 2b

    2ab a 3b 2 = a 2 – c 2

    Now vc , cosA . cosC =2 2 2 2 2 2 2 2b c – a 2b b c – a 2(c – a )

    .2bc a ac 3ac

    15. Circles are drawn with OA & OB as diameters, where A & B are points of parabola y 2 = 4x. Thesecircles meet at P (other than O). m 1 and m 2 are slope of tangents at A & B respectively and m is slopeof chord AB, then (given m 1 + m 2 0, A, B are points other than origin and 'O' is origin)

    (A*) A, P, B are collinear points (B*) m is harmonic mean of m 1 and m 2 (C) m is arithmetic mean of m 1 and m 2 (D*) OP is perpendicular to ABOA o OB dks O;kl eku dj o`Ùk cuk;s tkrs gS tgk¡ A o B ijoy; y2 = 4x ij fcUnq gS ;s o`ÙkP ( ewy fcUnqO dsvykok) ij feyrs gSAm 1 ,oa m 2 Øe'k% A ,oa B ij [khaph xbZ Li'kZjs[kkvksa dh iz o.krk;sa gS rFkkm thok AB dh

    izo.krk gS] rks( fn;k gSm 1 + m 2 0 o A, B ewy fcUnq ugha gSA)(A*) A, P, B la js[kh; fcUnq gSA (B*) m, m 1 rFkkm 2 dk gjkRed ek/; gSA (C) m, m 1 rFkkm 2 dk lekUrj ek/; gSA (D*) OP, AB ds yEcor~ gSA

    Sol.O P

    B(t2)

    A(t 1)

    Since OA & OB are diameters of circles OPA = OPB = 90°Hence A, P, B are collinear

    Now m =1 2

    2t t

    =

    1 2

    21 1

    m m

    = 1 21 2

    2m mm m

    1 21 2

    1 1m & m

    t t

    Hence (A), (B), (D)

    Hindi.O P

    B(t2)

    A(t 1)

    pwafdOA rFkkOB o`Ùkksa ds O;kl gSOPA = OPB = 90°

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    8/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-8

    vr% A, P, B la js [kh; gSA

    vc m =1 2

    2t t

    =

    1 2

    21 1

    m m

    = 1 21 2

    2m mm m

    1 21 2

    1 1m & m

    t t

    vr%(A), (B), (D)

    16. Tangents are drawn to hyperbola

    2 2

    2

    x y16 b = 1. ('b' being parameter) from A(0, 4). The locus of point of

    contact of these tangent is a conic C, then(A*) Eccentricity of conic C is 1(B*) (0, 3) is focus of C(C) Eccentricity of conic C is 1/2(D) (0, 5) is focus of C

    A(0, 4) ls vfrijoy;2 2

    2x y16 b

    = 1. ('b' iz kpy gS) ij Li'kZ js[kk,sa [khaph tkrh gSA bu Li'kZ js[kkvksa ds Li'kZ

    fcUnqvks a dk fcUnqiFk 'kkadoC gS] rks(A*) 'kkadoC dh mRdsUærk1 gSA (B*) (0, 3), C dh ukfHk gSA (C) 'kkadoC dh mRdsUærk1/2 gSA (D) (0, 5), C dh ukfHk gSA

    Sol.

    (0, 4)

    P(4sec , btan )

    Tangent at P isx sec y tan

    4 b

    = 1.

    It passes through (0, 4) Hence b = – 4 tan ...(1)Now h = 4 sec and k = btan = – 4 tan 2 (from (1))

    K = – 4(sec 2 – 1) k = – 42h

    116

    .

    4K – 16 = – h 2 x2 = – 4 (y – 4) (A) & (B)

    Hindi.

    (0, 4)

    P(4sec , btan )

    P ij Li'kZ js[kkxsec y tan4 b

    = 1 gSA

    ;s (0, 4) ls xqtjrh gSA vr%b = –4 tan ...(1)vc h = 4 sec vkS j k = btan =–4 tan 2 ((1) ls)

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    9/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-9

    K = –4(sec 2 – 1) k = – 42h

    116

    .

    4K – 16 = –h 2 x2 = –4 (y –4) (A) rFkk(B)

    17. From centre O, of the ellipse2 2x y

    16 9 = 1, two perpendicular rays are drawn meeting the ellipse at P &

    Q, N is the foot of perpendicular from O to PQ, then

    nh?kZ o`Ùk2 2x y

    16 9 = 1 ds dsUæ O ls nks yEcor~ fdj.ks a nh?kZ o`Ùk dksP ,oa Q ij feyrh gSAN, PQ ij O ls yEc ikn

    gS] rks

    (A*)2 2

    1 1 25144OP OQ

    (B)2 2

    1 1 25144OP OQ

    (C*) ON =125

    (D) ON =65

    Sol. Let OP = r 1 & OQ = r 2

    P(r 1cos ,r 1sin )

    O

    N

    Now P & Q lie on the ellipse hence

    r 12

    2 2cos sin16 9

    = 1

    2 2cos sin16 9

    = 2

    1

    1

    r ….(1)

    r 22 2 2sin cos

    16 9

    = 1 2 2sin cos16 9

    = 22

    1r

    …..(2)

    Now (1) + (2) 2 21 2

    1 1 1 116 9 r r

    = 25144

    Let equation of chord PQ be x cos + ysin = p, homogenizing the equation of ellipse with this chordgives

    2 2x y16 9

    –2

    xcos y sinp

    = 0

    As OP & OQ are perpendicularcoefficient of x 2 + coefficient of y 2 = 0

    2

    21 cos

    16 p

    +2

    21 sin9 p

    = 0 21 1 116 9 p p2 = 144

    25 p = 12/5

    Hindi. ekukOP = r 1 rFkkOQ = r 2

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    10/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-10

    P(r,cos ,r,sin )

    vc P rFkkQ nh?kZ o`Ùk ij gS vr%

    r 12

    2 2cos sin16 9

    = 1

    2 2cos sin16 9

    = 2

    1

    1

    r ….(1)

    r 22

    2 2sin cos16 9

    = 1

    2 2sin cos16 9

    = 2

    2

    1

    r …..(2)

    vc (1) + (2) 2 21 2

    1 1 1 116 9 r r

    = 25144

    ekukPQ thok dk lehdj.k gSx cos + ysin = p nh?kZ o`Ùk ds lehdj.k dks le?kkr cukus ij 2 2

    x y16 9 –

    2

    xcos y sinp = 0

    D;ks afdOP rFkkOQ yEcor~ gSA x2 dk xq .kkad+ y 2 dk xq .kkad= 0

    2

    21 cos

    16 p

    +2

    21 sin9 p

    = 0 21 1 1

    16 9 p

    p 2 =14425

    p = 12/5

    18. y = x is tangent to an ellipse whose foci are (1, 0) and (3, 0) then(A) Major axis of ellipse is = 6

    (B*) Major axis of ellipse is = 10

    (C*)3 3

    ,4 4

    is the point of contact of this ellipse and this tangent

    (D)1 1

    ,2 2

    is the point of contact of this ellipse and this tangent

    js [kky = x nh?kZo`Ùk] ftldh ukfHk;k¡(1, 0) ,oa (3, 0) gSa] dh Li'kZ js [kk gS] rks(A) nh?kZ o`Ùk dk nh?kZv{k= 6 gSA (B*) nh?kZ o`Ùk dk nh?kZv{k = 10 gSA

    (C*)3 3

    ,4 4

    nh?kZ o`Ùk vkS j Li'kZ js [kk dk Li'kZ fcUnq gSA

    (D)1 1

    ,2 2

    nh?kZ o`Ùk vkS j Li'kZ js [kk dk Li'kZ fcUnq gSA

    Sol. Product of perpendicular from two foci on any tangent = b 2 =3 1

    .2 2

    =32

    b =32

    Now ae = 1 a 2 = b 2 + a 2e 2 a =52

    We know that tangent and normal bisect the angle between focal distances of a point.

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    11/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-11

    y = x

    (3, 0)(1, 0)

    (0, 1)

    Image of (1, 0) in y = x is (0, 1), line joining (0, 1) & (3, 0) is x + 3y = 3. Point of contact of y = x & ellipse

    is the point of intersection of y = x and x + 3y = 3, i.e.3 3

    ,4 4

    Hindi. ukfHk;ksa ls Li'kZ js[kkkvksa ij Mkys x;s yEcksa dk xq.kuQy= b 2 = 3 1.2 2

    =32

    b =32

    vc ae = 1 a 2 = b 2 + a 2e 2 a = 52

    ge tkurs gS fd Li'kZ js[kk ,oa vfHkyEc ukfHk;ksa nw jh;ks a ds e/; cuus okys dks a .k dks lef}Hkkftr djrs gSA

    y = x

    (3, 0)(1, 0)

    (0, 1)

    (1, 0) dk js[kky = x esa izfrfcEc(0, 1) gSA fcUnqvksa(0, 1) rFkk(3, 0) dks feykus okyh js[kkx + 3y = 3 gSA

    y = x dk Li'kZ fcUnq rFkk js [kky = x vkS j x + 3y = 3 dk iz frPNsn fcUnq gS vFkkZr~ 3 3,4 4

    gSA

    19. Let set S consists of all the points (x, y) satisfying 9x 2 + 16y 2 144. For points in S let maximum and

    minimum value ofy 4x 9

    be M and m respectively, then

    Ekkuk leqPp;S mu lHkh fcUnqvks a (x, y) dk leqPp; gS tks 9x 2 + 16y 2 144 dks larq"V djrs gSA leqPp;S es a

    fLFkr fcUnqvksa (x, y) ds fy;s O;atd y 4x 9

    dk vf/kdre ,oa U;w ure eku Øe'k%M rFkkm gS] rks

    (A*) M = 1 (B) M =657

    (C) m = 1 (D*) m =7

    65

    Sol.

    A(9, 4)

    y 4x 9

    is the slope of line joining A(9, 4) & (x, y)

    For maximum & minimum value of this expression we have to determine the slope of tangents to the

    ellipse2 2x y

    25 16

    = 1 from (9, 4)

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    12/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-12

    Hence y = Kx ± 216k 9 It passes through (9, 4)Hence (4 – 9k) 2 = 16K 2 + 9 65K 2 – 72K + 7 = 0

    Hence K = 1 or7

    65 M = 1 & m =

    765

    Hindi.

    A(9, 4)

    A(9, 4) vkS j (x, y) dks tksM+us okyh js[kk dh izo.krky 4x 9

    gS

    vf/kdre vkS j U;wure eku fudkyus ds fy, gesa Li'kZ js[kk dh izo.krk fudkyuh gksxhAvr%y = Kx ± 216k 9

    ;g (9, 4) ls xqtjrh gSA

    vr%(4 – 9k)2

    = 16K2

    + 9 65K2

    – 72K + 7 = 0vr% K = 1 ;k 7

    65 M = 1 rFkkm = 7

    65

    20. Consider the curve ax 2 + 2hxy + by 2 + 2gx + 2fy + c = 0, where x, y are real variables and a, b, c , f, g, hare real constants. Let = abc + 2fgh – af 2 – bg 2 – ch 2, and curve S be the locus of point of intersectionof perpendicular tangents of the above curve.(A*) If 0 and h 2 = ab, then S is a straight line

    (B) If 0, h = 0, a = b 0 then S is a circle of radius 2 22 g f c (C*) If = 0, a + b = 0, then S is a point only(D) IF = 0, a + b = 0 then S is a pair of straight lines.

    oØ ax2

    + 2hxy + by2

    + 2gx + 2fy + c = 0 ij fopkj dhft;s tgk¡ x, y okLrfod pj gS ,oaa, b, c , f, g, h okLrfod vpj gSA ekuk = abc + 2fgh – af 2 – bg 2 – ch 2 ,oa oØ S, fn;s x, oØ dh yEcor~ Li'kZ js[kkvksa ds izfrPNsn fcUnqvksa dk fcUnqiFk gS&(A*) S ,d ljy js[kk gS ;fn 0 vkS j h2 = ab.

    (B) S ,d o`Ùk gS ftldh f=kT;k 2 22 g f c gS ;fn 0, h = 0, a = b 0.(C*) S dsoy ,d fcUnq gksxk ;fn = 0, a + b = 0.(D) S ljy js[kk ;qXe gksxk ;fn = 0, a + b = 0.

    Sol. If 0, h 2 = ab curve is a parabola, hence S is a straight line

    If 0, h = 0, a = b 0 curve is a circle & S is a circle of radius 2 22 g f c (provided a = b = 1)If = 0, a + b = 0 curve is a pair of perpendicular straight lines for which S is a point which is thepoint of intersection of the two lines.

    Hindi. ;fn 0, h 2 = ab oØ ijoy; gS vr% S ljy js [kk gSA

    ;fn 0, h = 0, a = b 0 oØ o`Ùk gS rFkkS dh f=kT;k 2 22 g f c gS ( ;fn a = b = 1) ;fn = 0, a + b = 0 oØ yEcor~ js [kk ;qXe gksxk ftlds fy,S ,d fcUnq gksxkA

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    13/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-13

    21. The ellipse2x

    4 +

    2y3

    = 1 has a double contact with a circle at the extremity of latus rectum. The point

    of contact lying in first and fourth quadrant.(A) Centre of circle is (0, 0)

    (B*) Centre of circle is1

    ,04

    (C*) Radius of circle is3 5

    4

    (D) Radius of circle is3 5

    2

    nh?kZ o`Ùk2x

    4 +

    2y3

    = 1 ,d o`Ùk dks ukfHk yEc ds nksuks fljs fcUnqvksa ij Li'kZ djrk gSA Li'kZ fcUnq izFke ,oa prqFkZ

    prqFkkZ± 'k es a gS] rks(A) o`Ùk dk dsUæ(0, 0) gSA

    (B*) o`Ùk dk dsUæ 1 ,04

    gSA

    (C*) o`Ùk dh f=kT;k3 54

    gSA

    (D) o`Ùk dh f=kT;k 3 52

    gSA

    Sol.C

    3P 1,

    2

    31,

    2

    By symmetry centre of circle lies on x-axis

    Normal at P is4x 3y1 3 / 2

    = 1 point C is1

    ,04

    Radius =2 2

    1 31

    4 2

    =9 9

    16 4 =

    3 54

    Hindi.C

    3P 1,

    2

    31,

    2

    lefefr ls o`Ùk dk dsUæx-v{k ij gksxkA

    P ij vfHkyEc 4x 3y1 3 / 2

    = 1 gS fcUnqC 1 ,04

    gSA

    f=kT;kk=2 2

    1 31

    4 2

    = 9 916 4

    =3 5

    4

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    14/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-14

    22. Normal at point P(x 1, y 1), not lying on x-axis, to the hyperbola x2 – y 2 = a 2 meets x-axis at A and y-axis

    at B. If O is origin then(A*) Circumcentre of triangle OAB is P.(B*) Slope of OP + slope of AB = 0(C) Slope of OP = slope of AB(D*) Locus of centroid of triangle OAB is a rectangular hyperbolavfrijoy; x2 – y 2 = a 2 ds fcUnqP(x 1, y 1), tks fd x-v{k ij ugha gS] ij vfHkyEc [khapk tkrk gS] tks x-v{k ,oay-v{k dks Øe'k% A vkS j B ij feyrk gS] O ewy fcUnq gS] rc(A*) f=kHkqtOAB dk ifjdsUæP gSA (B*) OP dh izo.krk + AB dh iz o.krk = 0(C) OP dh iz o.krk = AB dh iz o.krk (D*) f=kHkqtOAB ds dsUæd dk fcUnqiFk vk;rh; vfrijoy; gSA

    Sol. Equation of normal at P is1 1

    x yx y

    = 2 A(2x 1, 0), B(0, 2y 1)

    Hence P is mid-point of AB, i.e. circumcentre of OAB

    m AB = – 11

    yx

    , m OP = 11

    yx

    Let (h, k) be centroid of the triangle OAB 3h = 2asec 1 3k = 2atan

    x2 – y 2 =24a

    9

    Hindi. P ij vfHkyEc dk lehdj.k1 1

    x yx y

    = 2 gS A(2x 1, 0), B(0, 2y 1)

    vr%P, AB dk e/; fcUnq gS vFkkZ r~ f=kHkqtOAB dk ifjdsUæ

    m AB = – 11

    yx

    , m OP = 11

    yx

    ekuk(h, k) f=kHkqtOAB dk dsUæd gSA 3h = 2asec 1 3k = 2atan

    x2

    – y2

    =

    24a9

    23. A & B two points on the curve xy = a 2. Let N be the mid-point of AB. The line through A and B meets.x-axis at P and y-axis at Q, then(A*) N bisects PQ(B) ON is perpendicular to AB (where O is origin)(C*) AP = BQ(D*) AQ = BP

    A ,oa B oØ xy = a 2 ij nks fcUnq gSA ekukN, AB dk e/; fcUnq gSA fcUnqvksa A rFkkB ls xqtjus okyh ljy js[kkx-v{k ,oay-v{k dks Øe'k%P o Q ij feyrh gS] rks (A*) N, PQ dks lef}Hkkftr djrk gSA (B) ON, AB ds yEcor~ gS ( tgk¡ O ewy fcUnq gS)(C*) AP = BQ(D*) AQ = BP

    Sol.

    Q B

    A

    N

    P

    22

    a(at , )

    t

    21

    a(at , )

    t

    Equation of AB is x + t 1t2y = a(t 1 + t 2)

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    15/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-15

    Hence point P is (a(t 1 + t 2), 0) and Q is1 2

    1 10,a

    t t

    N is 1 2

    1 2

    a t t a 1 1,

    2 2 t t

    Hence N bisects AB as well as PQ

    m ON = 1 2

    1 2

    a t t

    2t t.

    1 22

    a t t =

    1 2

    1

    t t

    Now AN = BN and PN = QN AP + AN = BQ + BN AP = BQ

    Further AP + AB = BQ + AB BP = AQ

    Hindi.

    Q B

    A

    N

    P

    AB dk lehdj.k x + t 1t2y = a(t 1 + t 2) gSA

    vr% fcUnqP (a(t 1 + t 2), 0) vkS j Q1 2

    1 10,a

    t t

    gSA

    N 1 2

    1 2

    a t t a 1 1,

    2 2 t t

    gSA

    vr%N, AB dks lef}Hkkftr djrk gS lkFk ghPQ dks Hkh

    m ON = 1 2

    1 2

    a t t

    2t t.

    1 22

    a t t =

    1 2

    1t t

    vc AN = BN vkS j PN = QN AP + AN = BQ + BN AP = BQ blhfy, AP + AB = BQ + AB BP = AQ

    24. Let, S, be a conic whose centre is M(p, q). Locus of middle points of chords of this conic, which passesthrough a fixed point N( , ) is(A*) Another conic which has a centre (B) Another conic with same focus

    (C*) Another conic with centre asp q

    ,2 2

    (D) Another conic with centre asp q

    ,2 2

    ekuk, S ,d 'kkado gS ftldk dsUnzM(p, q) gS rks 'kkado dh lHkh thokvksa ds e/; fcUnq dk fcUnqiFk] tks ,d fuf'pr fcUnqN( , ) ls xqtjrh gSa] gksxk (A*)

    ,d nw ljk 'kka do ftldk dsUæ gSA(B)

    ,d nwljk 'kkado leku ukfHk okyk gksA(C*) ,d nw ljk 'kkado ftldk dsUæ p q,

    2 2

    gSA (D) ,d nw ljk 'kkado ftldk dsUæ p q,

    2 2

    gSA

    Sol. Since the above conic has a centre it must be a hyperbola or an ellipseLet origin be shifted to M(p,q) and axis be so rotated that it coincides with the principle axis of conic S,hence its equation is Ax 2 + By 2 = 1, and new-co-ordinates of N be ( ', ')Equation of chord whose mid-point is (h, k) is T = S 1, i.e.

    Axh + Byk = Ah 2 + Bk 2 it passes through ( ', ')Hence A(x 2 – x ') + B(y 2 – y ') = 0

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    16/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-16

    A2

    'x

    2

    + B2

    'y

    2

    = 2 A '

    4 +

    2B '4

    Hence locus is a similar conic whose centre is' ',

    2 2

    i.e. mid-point of MN.Hindi. pawfd mijksDr 'kkado dk dsUæ gS vr% ;s nh?kZ o`Ùk ;k vfrijoy; gksxkA

    ekuk ewy fcUnq dksM(p,q) ij LFkkukUrfjr djrs gS rFkk v{k dks 'kkadoS ds laikrh djrs gq, /kw .kZu djrs gSA vr% bldk lehdj.k Ax 2 + By 2 = 1 vkSjN ds u;s funsZ'kkad( ', ') gSA thok dk lehdj.k ftldk e/; fcUnq (h, k) gS T = S 1, i.e. Axh + Byk = Ah 2 + Bk 2 ;g ( ', ') ls xqtjrh gSA vr% A(x 2 – x ') + B(y 2 – y ') = 0

    A2

    'x

    2

    + B2

    'y

    2

    = 2 A '

    4 +

    2B '4

    vr% le:i 'kkado dk fcUnqiFk ftldk dsUæ ' ',2 2

    gSA

    vFkkZ r~ e/; fcUnq MN gSA

    25. Consider the ellipse2 2

    2x y

    f(k 11)f(k 2k 5) = 1, where f(x) is a strictly decreasing positive function,

    then(A*) the set of values of k for which the major axis of the ellipse is x-axis is (–3, 2)(B) the set of values of k for which the major axis of the ellipse is y-axis is (– , 2)(C*) the set of values of k for which the major axis of the ellipse is y-axis is (– , –3) (2, )(D) the set of values of k for which the major axis of the ellipse is x-axis is (–3, )

    ekuk fd ,d nh?kZo`Ùk2 2

    2x y

    f(k 11)f(k 2k 5) = 1 gS] tgk¡ f(x) fujUrj ãleku /kukRed Qyu gS] rc

    (A*) ;fn nh?kZ o`Ùk dk nh?kZv{k

    x-v{k gS] rc

    k ds ekuks a dk leq Pp;

    (–3, 2) gSA

    (B) ;fn nh?kZ o`Ùk dk nh?kZv{k y-v{k gS] rck ds ekuksa dk leq Pp; (– , 2) gSA (C*) ;fn nh?kZ o`Ùk dk nh?kZv{k y-v{k gS] rck ds ekuksa dk leq Pp; (– , –3) (2, ) gSA (D) ;fn nh?kZ o`Ùk dk nh?kZv{k x-v{k gS] rck ds ekuks a dk leqPp; (–3, ) gSA

    Hint. For major axis to be x-axis, nh?kZ v{k ds fy, x-v{k gSA f(k2 + 2k + 5) > f(k + 11) k2 + 2k + 5 < k + 11 k (–3, 2)

    26. Two concentric ellipses are such that the foci of one lie on the other and the length of their major-axesare equal. If e 1 & e 2 be their eccentricities, then (A*) the quadrilateral formed by joining their foci is a parallelogram

    (B*) the angle between their axes is given by cos =2 2 2 21 2 1 2

    1 1 1 –

    e e e e

    (C*) their axes are perpendicular if e 1 =221– e

    (D) None of these

    nks ladsUæh; nh?kZ o`Ùk bl izdkj gS fd ,d dh ukfHk;k¡ nwljs ij fLFkr gS rFkk muds nh?kZ v{kksa dh yEckbZ cjkA ;fn mudh mRdsUærk,s ae 1 rFkke 2 gS] rc(A*) muds ukfHk;ksa dks feykus ls cuk prqHkq Zt ,d lekUrj prq HkqZt gSA

    (B*) muds v{kks a ds e/; dks .k cos = 2 2 2 21 2 1 2

    1 1 1 –

    e e e e

    (C*) mudh v{k yEcor~ gS ;fne 1 = 221– e

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    17/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-17

    (D) bues a ls dksbZ ugh

    Hint.

    C2H

    o SS¢H¢

    HH¢ & SS ¢ have same mid-point HSH ¢S ¢ is a parallelogram

    let one ellipse be2 2

    2 2

    x ya b

    = 1 ...(i) H lies on it

    also H (ae 2 cos , ae 2 sin )putting in equation (i)

    cos 2 = 2 2 2 21 2 1 2

    1 1 1

    e e e e

    (A), (B) & (C) are correct. (C) follows from (B)

    Hint.

    C2Ho SS¢

    HH¢ rFkkSS ¢ leku fcUnq j[krs gS HSH ¢S ¢ lekUrj prqHkqZt gS

    ekuk ,d nh?kZ o`Ùk2 2

    2 2x ya b

    = 1 gS ...(i) H bl ij fLFkr gS

    rFkkH (ae 2 cos , ae 2 sin ) lehdj.k (i) esa j[kus ij

    cos 2 = 2 2 2 21 2 1 21 1 1

    e e e e (A), (B) & (C) are correct. (C) follows from (B)

    27_. An ellipse2 2

    2 2x ya b

    = 1 (a > b) contains a circle (x – 1) 2 + y 2 = 1 so that the area of ellipse is minimum,

    then

    (A*) a 2 + b 2 = 6 (B*) a 2 – b 2 = 3

    (C) Min. Area of ellipse =32

    sq. units (D*) Minimum area of ellipse =3 3

    2 sq. units

    ,d nh?kZ2 2

    2 2

    x y

    a b = 1 (a > b) o`Ùkks a (x – 1) 2 + y 2 = 1 dks bl izdkj j[krk gS fd nh?kZ o`Ùk dk {ks=kQy U;wure gSA

    (A*) a 2 + b 2 = 6 (B*) a 2 – b 2 = 3

    (C) nh?kZo`Ùk dk U;w ure {ks=kQy= 32

    oxZ bdkbZ (D*) ) nh?kZ o`Ùk dk U;wure {ks=kQy = 3 32

    oxZ bdkbZ gSA

    Sol. (1, 0)

    y

    (0, 0) x

    Solve equation of circle & ellipse

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    18/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-18

    2 2

    2 2x (1 (x 1) )

    1a b

    (b 2 – a 2)x2 + (2a 2)x – a 2b2 = 0 .......(1)

    Cricle and ellipse touches each other for minimum area We get repeated roots of equation (1)

    D = 0 4a 4 + 4a 2b2(b 2 – a 2) = 0 a 2 =4

    2b

    b 1

    Area of ellipse = ab

    Let A = 2a 2b2 =62

    2b

    b 1

    to minimum area of ellipse, we have to minimum A

    dA

    0db

    b =32

    for b =32

    ,9

    a2

    Minimum area of ellipse = 9a2

    × 3 3 32 2

    sq. units

    Hind i

    (1, 0)

    y

    (0, 0) x

    o`Ùk vkS j nh?kZ o`Ùk ds lehdj.k dks gy djus ij

    2 2

    2 2

    x (1 (x 1) )1

    a b

    (b 2 – a 2)x2 + (2a 2)x – a 2b2 = 0 .......(1)

    U;wure {ks=kQy ds fy, o`Ùk vkS j nh?kZ o`Ùk ,d nq ljs dks Li'kZ djrs gSA lHkh(1) ds ewy iqujko`fÙk gSA

    D = 0 4a4

    + 4a2

    b2

    (b2

    – a2

    ) = 0 a2

    =

    4

    2

    bb 1

    nh?kZ o`Ùk dk {ks=kQYk= ab

    ekuk A = 2a 2b2 =6

    22

    b

    b 1

    nh?kZ o`Ùk ds U;wure {ks=kQy ds fy, yEckbZ A

    dA

    0db

    b =32

    b =32

    ,9

    a2 ds fy,

    nh?kZ o`Ùk dk U;wure {ks=kQYk = 9a 2 × 3 3 32 2 oxZ bdkbZ

    28_. Equation for an ellipse is2 2x y

    13 2

    . line BD passes through focus F 1 and intersects the ellipse at

    points B and D. Line AC passes through focus F 2 and intersects the ellipse at points A and C. Line BDis perpendicular to AC at point P. Which of the following is (are) correct for area of quadrilateral to beminimum.(A*) The two lines AC & BD intersects on minor axis

    (B*) Minimum area of quadrilateral is9625

    sq. units.

    (C*) circumcentre of PF 1 F 2 is centre of ellipse.

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    19/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-19

    (D) Area of quadrilateral is2596

    sq. units.

    ekuk fd nh?kZo`Ùk dk lehdj.k2 2x y

    13 2

    gS js[kkBD ukfHkF1 ls xqtjrh gS rFkk nh?kZo`Ùk dks fcUnqvksaB rFkkD.

    ij izfrPNs n djrh gSA js[kk AC ukfHkF2 ls xqtjrh gS rFkk nh?kZo`Ùk dks fcUnqvksa A rFkkC ij izfrPNsn djrh gSA js [kkBD, AC ds yEcor~P ij gS rks prqHkZqt dk {ks=kQYk U;wure gks us ds fy, fuEu es a ls dkSulk lgh gS\(A*) nks js[kk,s a AC rFkkBD y?kq v{k ij izfrPNsn djrh gSA

    (B*) prqHkq Zt dk U;w ure {ks=kQy9625

    oxZ bdkbZ gSA

    (C*) PF 1 F 2 i dk ifjdsUnz nh?kZ o`Ùk dk dsUnz gSA

    (D) prqHkqZt dk {ks=kQy 2596

    oxZ bdkbZ gSA

    Sol.

    B P

    90°+ F 1

    (1,0)

    y

    xDF 2

    (–1,0)

    A

    C

    Parametric coordinates of line passing through F 1(1, 0) is Q(1 + rcos(90° + ), r sin(90° + ) Q(1 – rsin , r cos ) This point lies on ellipse

    2 2(1 r sin ) (r cos )

    13 2

    (2sin 2 + 3cos 2 )r 2 – (4sin )r – 4 = 0

    (2 + cos 2 )r 2 – (4sin ) r – 4 = 0It is quadratic in r, which will gives points. B & D.

    |r 1 – r

    2| = BD =

    2

    2 2 2 2

    16sin 4 4 3

    (2 cos ) (2 cos ) 2 cos

    similarly AC =2

    4 32 sin

    Area of quadrilateral ABCD =12

    (BD) × (AC) =2 2

    1 4 3 4 32 2 cos 2 sin

    =2 2

    24

    6 sin cos = 2

    24

    sin 26

    4

    For area to be minimum, sin 22 = 1 =4

    Minimum area of quadrilateral ABCD =9625

    sq. units.

    slope of line BD is –1 and slope of line AC is 1equation of line BD is y = –x + 1 & that of line AC is y = x + 1Point of intersection lines BD & AC is (0, 1), which lies on minor axis.

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    20/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-20

    Hindi.

    B P

    90°+ F 1

    (1,0)

    y

    xDF 2(–1,0)

    A

    C

    F 1(1, 0) ls xqtjus okyh js [kk ds izkpfyd funsZ 'kkadQ(1 + rcos(90° + ), r sin(90° + ) gS Q(1 – rsin , r cos ) ;g fcUnq nh?kZ o`Ùk ij fLFkr gS

    2 2(1 r sin ) (r cos )

    13 2

    (2sin 2 + 3cos 2 )r 2 – (4sin )r – 4 = 0

    (2 + cos 2 )r 2 – (4sin ) r – 4 = 0 ;g r, esa f}?kkr gS tksB rFkkD fcUnqvksa ij gSA

    |r 1 – r 2 | = BD =2

    2 2 2 216sin 4 4 3

    (2 cos ) (2 cos ) 2 cos

    bl izdkj AC = 24 3

    2 sin

    prqHkqZt dk {ks=kQYk ABCD = 12

    (BD) × (AC) =2 2

    1 4 3 4 32 2 cos 2 sin

    =2 2

    24

    6 sin cos = 2

    24

    sin 26

    4

    U;wure gks us ds fy,, sin 22 = 1 =4

    prqHkqZt ABCD dk U;w ure {ks=kQy= 9625

    oxZ bdkbZ

    js [kkBD dh iz o.krk –1 gS rFkk js[kk AC dh iz o.krk 1 gSA js [kkBD dk lehdj.k y = –x + 1 rFkk js [kk AC dk lehdj.k y = x + 1BD rFkk AC js [kkvks a ds izfrPNsn fcUnq(0, 1), gS tks fd y?kqv{k ij gSA

    29. A tangent drawn to the hyperbola2

    2xa

    –2

    2yb

    = 1 at P6

    forms a triangle of area 3a 2 sq. units. with co-

    ordinate axes. If the eccenticity of the hyperbola is 'e', then the value of e 2 – 9 is.

    vfrijoy;2

    2x

    a

    –2

    2y

    b

    = 1 ds fcUnqP6

    ij Li'kZ js[kk [khaph tkrh gS tks funsZ'kkad v{kks ds lkFk3a 2 oxZ bdkbZ

    {ks=kQy dk f=kHkq t cukrh gSA ;fn vfrijoy; dh mRdsUærk'e' gS rc e 2 – 9 dk eku gSµAns. 8

    Sol. P asec ,b tan6 6

    2a b

    ,3 3

    Tangent at P ij Li'kZ js [kk 2x3a

    –y

    3b = 1

    Area {ks=kQy = 3a 2 = 12

    .3a2

    . 3 b

    b

    a

    = 4

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    21/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-21

    30. AB is focal chord of a parabola. Let D and C be foot of perpendicular from A & B on it's directrixrespectively. If CD= 6 and area of trapezium ABCD is 24 square units, then find length of chord AB.

    AB ijoy; dh ukfHk; thok gSA ekukD rFkkC Øe'k% A rFkkB ls ijoy; dh fu;rk ij yEcikn gSA ;fn CD = 6 bdkbZ ,oa leyEc prqHkqZt ABCD dk {kS=kQy24 oxZ bdkbZ gS] rks AB dh yEckbZ Kkr dhft;sA

    Ans. 8

    Sol.

    CB

    S

    AD

    6

    Let S be focus AS =AD & BS = BC Area of trapezium

    =21

    {AD + BC}.6

    = 3 (AS + BS)= 3ABhence AB = 8 units

    Hindi.

    CB

    S

    AD

    6

    ekukS ukfHk gS AS =AD rFkkBS = BC leyEc prqHkq Zt dk {kS=kQy

    =21

    {AD + BC}.6

    = 3 (AS + BS)= 3ABvr% AB = 8 bdkbZ

    31. A circle is drawn whose centre is on x-axis and it touches y-axis. If no part of the circle lies ouside theparabola y 2 = 8x, then maximum possible radius of the circle is

    ,d o`Ùk dk dsUnzx- v{k ij gS ,oa ;g o`Ùky-v{k dks Li'kZ djrk gSA ;fn o`Ùk dk dksbZ Hkh Hkkx ijoy;y2 = 8x ds

    ckgj ugha gS] rks o`Ùk dh vf/kdre laHkkfor f=kT;k gSµ Ans. 4

    Sol.

    Let equation of circle be (x – r) 2 + y 2 = r 2 Solving at with y 2 = 8x 1 we getx2 – 2rx + r 2 + 8x = r 2 x = 0 or x = 2r – 8

    Now 2r – 8 0 r 4 Hence r max = 4

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    22/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-22

    Alter: Normal at (2t 2, 4t) to y 2 = 8x, meets x-axisat (4 + 2t 2, 0), So x-coordinate of centre should be such that r 4 + 2t 2 4, hence r max = 4

    Hindi.

    ekuk o`Ùk(x – r) 2 + y 2 = r 2 gSA y2 = 8x 1 ds lkFk gy djus a ijx2 – 2rx + r 2 + 8x = r 2 x = 0 or x = 2r – 8vc 2r – 8 0 r 4 vr%r max = 4

    Alter: vfHkyEc(2t 2, 4t) ij ijoy; y2 = 8x dk x-v{k dks(4 + 2t 2, 0) ij feyrk gSA vr% dsUæ ds funsZ 'kkad bl iz dkj gksaxsar 4 + 2t 2 4, vr%r max = 4

    32. Parabola, P 1 has focus at S(2, 2) and y-axis is it's directrix. Parabola, P 2 is confocal with P 1 and it'sdirectrix is x-axis. Let Q(x 1, y 1) and R(x 2, y 2) be real points of intersection of parabolas P 1 and P 2.

    If the ratioRS

    a b bQS

    find (a + b) (given x 2 > x 1 and a, b N)

    ijoy; P 1 dh ukfHkS(2, 2) o fu;rk y-v{k gS ijoy; P 2 ijoy; P 1 ds lkFk lgukfHk; gS rFkk bldh fu;rkx-

    v{k gS ekukQ(x 1, y 1) o R(x 2, y 2), P 1 o P 2 ds okLrfod iz frPNsn fcUnq gS aA ;fn RS a b bQS

    rks (a + b) gS

    ( fn;k gSx2 > x 1 o a, b N)Ans. 5Sol.

    R

    P 2

    S(2, 2)

    Q

    P 1

    21

    22

    P (y 2) 4(x 1)

    P (x 2) 4(y 1)

    Subtracting them we get (x – y)(x + y) = 0 line QR is y = x

    Hence x 1 & x2 are roots of the equation

    (x – 2) 2 = 4(x – 1) x2 – 8x + 8 = 0 1

    2

    4 2 2 x

    4 2 2 x

    (given x 2 > x 1)

    SoRS 2 2 2 2 1

    3 2 2QS 2 2 2 2 1

    Hindi.

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    23/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-23

    R

    P 2

    S(2, 2)

    Q

    P 1

    21

    22

    P (y 2) 4(x 1)

    P (x 2) 4(y 1)

    ?kVkusa ij(x – y)(x + y) = 0 js[kkQR, y = x gS

    vr% lehdj.k ds ewyx1 rFkkx2 gSA are roots of the equation

    (x – 2) 2 = 4(x – 1) x2 – 8x + 8 = 0 1

    2

    4 2 2 x

    4 2 2 x

    ( fn;k gSx2 > x 1)

    vr% RS 2 2 2 2 1 3 2 2QS 2 2 2 2 1

    33_. Consider a circle C : x 2 + y 2 – 8y + 12 = 0 and an ellipse E :2 2

    2 2x ya b

    = 1 (a > b and b < 2).

    If the maximum perpendicular distance from the foci of the ellipse upon the tangent drawn to the circle

    is 7 units, and shortest distance between both the curves is 1 unit, then find the value of(a 2 – 2b 2).

    ekuk fd o`ÙkC : x 2 + y 2 – 8y + 12 = 0 rFkk nh?kZ o`ÙkE :2 2

    2 2

    x ya b

    = 1 (a > b vkS j b < 2).

    ;fn nh?kZo`Ùk dh ukfHk;ksa ls] o`Ùk dh Li'kZ js[kk ij vf/kdre yEcor~ nw jh 7 bdkbZ gS rFkk nks oØksa ds e/; y?kqÙke nw jh1 bdkbZ gSA rc(a 2 – 2b 2) dk eku Kkr dhft,A

    Ans. 8Sol. Shortest distance ¼y?kqÙke nq jh½= 1 2 – b b = 1

    SM = 7 SC = 5

    x

    y

    M 6

    C(0,4)

    S(ae,0)O

    1

    2

    A

    2 2a e 16 = 5 a 2e 2 = 9 a 2 – b 2 = 9 a 2 = 10 a 2 – 2b 2 = 8

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    24/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-24

    P(h, k)

    P(h, k)

    Comprehension (Q. No. 34 to 35)_vuqPNsn(iz u la[;k34 ls 35)

    From a point 'P' three co-normals to the parabola y 2 = 4x such that the product of tangents of anglemade by two of them is 2. Suppose the locus of the point 'P' is a part of a conic 'C'. Now a circle S = 0is described on the chord of the conic 'C' as diameter passing through the point (1, 0) and with gradientunity, then answer the following questions :

    fcUnq'P' ls ijoy; y2 = 4x ds rhu lg vfHkyECk fcUnq] bl iz dkj gS fd mu esa ls nks ds lkFk cuk, x, dks.k dh

    Li'kZ T;k dk xq .kuQy 2 gS ekuk fd fcUnqP dk fcUnqiFk] 'kka do C dk ,d Hkkx gS vc 'ka kdo C dh thok dks O;kl ekudj [khpk x;k o`ÙkS = 0 ] fcUnq(1, 0) ls xqtjrk gS rFkk izo.krk bdkbZ gS rc fuEu iz 'uksa ds mÙkj nhft,A

    34_. Locus of 'P' is :(A) circle (B*) Parabola (C) Ellipse (D) Hyperbola'P' dk fcUnqiFk gS:(A) o`Ùk (B*) ijoy; (C) nh?kZo`Ùk (D) vfrijoy;

    35_. Radius of circle S = 0 is : o`ÙkS = 0 dh f=kT;k gSA & (A*) 4 (B) 5 (C) 17 (D) 23

    Sol. Equation of normal in y = mx – 2m – m 3 it passes through P(h, k)

    m 3 + (2 –h)m + k = 0

    m 1m 2m 3

    .......(i)

    m 1 m 2 m 3 = –k, but m 1m 2 = 2

    m 3 =k

    2, it satisfies equation (1)

    3k

    8 – (2 – k)

    k2

    + k = 0

    k3 + 4(2 – h)k – 8k = 0 (k 0)

    k2

    + 8 – 4h – 8 = 0 locus of 'P' is y 2 = 4x which a parabola.Now chord passing through (1, 0) is the focal chord.Given that slope of focal chord is 1.

    1 2

    2t t

    = 1 t1 + t 2 = 1 and t 1t2 = –1 .....(ii)

    Equation of circle described on t 1, t 2 as diameter is 2 21 2 1 2(x t )(x t ) (y 2t )(y 2t ) 0 On simplifying and using (2), we get

    x2 + y 2 – 6x – 4y – 3 = 0 Radius = 4

    Hindi. vfHkyEc dk lehdj.ky = mx – 2m – m 3 gSA ;g P(h, k) ls xqtjrk gS

    m 3 + (2 –h)m + k = 0

    m 1m 2m 3

    .......(i)

    m 1 m 2 m 3 = –k, but m 1m 2 = 2

    m 3 =k

    2, lehdj.k (i) dks larq"B djrk gSA

    3k

    8 – (2 – k)

    k2

    + k = 0

    k3 + 4(2 – h)k – 8k = 0 (k 0) k2 + 8 – 4h – 8 = 0

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    25/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-25

    'P' dk fcUnqiFky2 = 4x gS tksfd ojoy; gS ;g thok (1, 0) ls xqtjrh gS tks ukfHk; thok gSA fn;k x;k gS fd ukfHk; thok dh iz o.krk 1 gSA

    1 2

    2t t

    = 1 t1 + t 2 = 1 rFkk t1t2 = –1 .....(ii)

    t1, o t2 dk O;kl ekudj [khpsa x, o`Ùk dk lehdj.k 2 21 2 1 2(x t )(x t ) (y 2t )(y 2t ) 0 (2) dh lgk;rk ls ljy djus ij

    x2 + y 2 – 6x – 4y – 3 = 0 f=kT;k= 4

    Comprehension (Q. No. 36 to 38)vuqPNsn(iz u la[;k36 ls 38)

    The triangle ABC is inscribed in a circle of unit radius. If A : B : C = 1 : 2 : 4, then bdkbZ f=kT;k ds o`Ùk ds vUrxZr ABC gS ;fn A : B : C = 1 : 2 : 4 rc

    36. cos2A + cos2B + cos2C =

    (A)12

    (B) –1 (C*) –12

    (D) –13

    37. a 2 + b 2 + c 2 =

    (A)72

    (B*) 7 (C) 14 (D)152

    38. The area of ABC is ABC dk {ks=kQy gS&

    (A) 7 (B) 7 (C)7

    2 (D*)

    74

    Sol. A =7

    , B = 27

    , C = 47

    A

    B Ca

    bc

    o

    1

    11

    (36) cos2A + cos2B + cos2C = – 1 – 4cosA cosB cosC

    = – 1 – 4 cos7

    cos 27

    cos 47

    = – 1 – 4

    8sin

    17 –

    28sin7

    (36) cos2A + cos2B + cos2C =1

    –2

    2 2 21 1– a 1 1– b 1 1– c 1 –

    2.1.1 2.1.1 2.1.1 2 a 2 + b 2 + c 2 = 7

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    26/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-26

    (38) =12

    (sin2A + sin2B + sin2C) = 2sinA sinB sinC

    = 2.sin7

    sin27

    sin47

    = 2sin7

    sin27

    sin37

    = 2. 2 2 22 3

    sin .sin sin7 7 7

    = 2.

    7–1

    72

    =7

    4square units oxZ bdkbZ

    Comprehension (Q. 39 to 40)

    Consider the circle, S, with equation x 2 + y 2 + 2gx + 2fy + c = 0. This circle meets the parabolay2 = 4ax at A(x 1, y 1), B(x 2, y 2), C(x 3, y 3) and D(x 4, y 4). Also let x-intercept of the circle, S, be X L.vuqPNsn(Q. 39 to 40)

    o`ÙkS dk lehdj.k x2 + y 2 + 2gx + 2fy + c = 0 gSA ;g o`Ùk ijoy;y2 = 4ax dks A(x 1, y 1), B(x 2, y 2), C(x 3, y 3) o D(x 4, y 4) ij feyrk gSA ekukXL o`Ùk }kjkx-v{k ij cuk;k x;k vUr%[k.M gSA

    39. Identify the correct identity (identities) lgh loZ lfedk,sa gSµ (A*) y1 + y 2 + y 3 + y 4 = 0 (B*) x 1 + x 2 + x 3 + x 4 = –(8a + 4g)

    (C) y 1y2y3y4 = a2

    c (D*) y 1y2y3y4 = 16a2

    c

    40. If A, B, C are co-normal points and X L = 2 2 29 f c , then(A*) x4 = 0 (B*) x 1x2x3 = 0(C*) Circle, touches parabola (D*) (y 1 + y 2)(y2 + y 3)(y3 + y 1) = 0

    ;fn A, B, C lg vfHkyEc fcUnq gS rFkkXL = 2 2 29 f c , rks (A*) x4 = 0 (B*) x 1x2x3 = 0(C*) o`Ùk] ijoy; dks Li'kZ djrk gSA (D*) (y 1 + y 2)(y2 + y 3)(y3 + y 1) = 0

    Sol. (39 to 40)Considering a point (at 2, 2at) and substitute it in equation of circle, S, we get

    a2

    t4

    + 2a(2a + g)t2

    + 4aft + c = 0

    t1t2t3t4

    t1 + t 2 + t 3 + t 4 = 0

    t1t2 = 2

    2a 2a g

    a

    yi = 2a ti = 0x i = a ti

    2 = a{( ti)2 – 2 t1t2} = –4(2a + g)

    t =2

    c

    a i

    4

    y

    16a =

    2

    c

    a yi = 16a

    2c

    If A, B, C are co-normal point t 1 + t 2 + t 3 = 0 and as X L = 2 (radius of S), centre lies on x-axis f = 0 and t 4 = 0 (as ti = 0)

    Hence t = 0 is a repeated root of circle and parabola one of A, B, C is origin apart from D being origin, i.e. O coincides with one of the points

    amongst A,B,C one of t 1, t 2, t 3 is zero t1 + t 2 = 0 or t 2 + t 3 = 0 or t 3 + t 1 = 0

    and circle has double contact with parabola at origin.Sol. (39 to 40)

    ekuk fcUnq(at 2, 2at) gS bls o`ÙkS ij j[kus a ij

    a 2 t4 + 2a(2a + g)t 2 + 4aft + c = 0

    t1t2t3t4

    t1 + t 2 + t 3 + t 4 = 0

  • 8/17/2019 (1026)Dpp 6 Solutions of Triangle and Conic Section b.pdf.Tmp

    27/27

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    ll | |PAGE NO.-27

    t1t2 = 2

    2a 2a g

    a

    yi = 2a ti = 0x i = a ti

    2 = a{( ti)2 – 2 t1t2} = –4(2a + g)

    t =2

    c

    a i

    4

    y

    16a =

    2

    c

    a yi = 16a

    2c

    ;fn A, B, C lgvfHkyEc fcUnq gS] rkst1 + t 2 + t 3 = 0 rFkk D;ksa fd XL = 2 (S dh f=kT;k), dsUæx-v{k ij gksxkA f = 0 vkS j t4 = 0 ( D;ksafdti = 0)

    vr%t = 0 o`Ùk vkS j ijoy; dk iqujko ̀fÙk ewy gSA A, B, C esa ls ,d ewy fcUnq gS D ds vykokD Hkh ewy fcUnq gS] vFkkZ r~ O, A,B,C esa ls fdlh ,d lkFk

    laikrh gSA t1, t 2, t 3 esa ls dksbZ ,d 'kwU; gSA t1 + t 2 = 0 ;k t2 + t 3 = 0 ;k t3 + t 1 = 0

    rFkk o`Ùk vkS j ijoy; ewy fcUnq ij f}Li'khZ gSA