19
Fluid & Particulate Systems 424521 / 2010 Fluid & Particulate Systems ÅA 424521 / 2018 10 Fluid and Particulate Systems 424521 /2018 POWDER MECHANICS & POWDER FLOW TESTING (flow / no flow) Ron Zevenhoven ÅA Thermal and Flow Engineering [email protected] Fluid & Particulate Systems 424521 / 2010 Fluid & Particulate Systems ÅA 424521 / 2018 10.1 Powder mechanics Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland RoNz 2/38

10.1 Powder mechanics - Åbo Akademi · 2018-05-08 · Powder (flow) behaviour Powder will flow when a critical stress is overcome At low stress powder won’t flow, and forms heaps

  • Upload
    others

  • View
    5

  • Download
    1

Embed Size (px)

Citation preview

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

10Fluid and Particulate Systems 424521 /2018

POWDER MECHANICS & POWDER FLOW TESTING(flow / no flow)

Ron ZevenhovenÅA Thermal and Flow Engineering

[email protected]

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

10.1 Powder mechanics

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 2/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Types of flow of powders in silos [2]

a. Mass flow b. Funnel flowc. Expanded flow d. “Pipe”e. Rathole f. Arching

Differences :- Residence time

variations- Wear of wall- Food / non-food

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 3/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Stresses in a powder

http

://di

etm

ar-s

chul

ze.d

e/sp

anne

.htm

l

fluid powder

In solids, horizontal and verticalstresses are different,σh/σv typically ~ 0.3 ... 0.6

In fluids (non-flowing) σh/σv ~ 1

Fluids: surface tension, viscosity

Powders: cohesion

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 4/38

SeeJanssen Equation(1895)

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Stresses experienced by particles in powder, stresses in a silo [1,9]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 5/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Powder (flow) behaviour Powder will flow when a critical stress is overcome At low stress powder won’t flow, and forms heaps. In a powder flow stress are not dependent on flow rate.

Before flow, powders swell. Powders can consolidate, compact, decreasing porosity. Powders tend to form dense masses. Fluidisation is possible. Powders can segregate: particles with

different shape, size, density, etc. willrespond differently to forces and strains and as a result follow different paths.

No surface tension: particles can enter through small holes

Source: K. Heiskanen, 2000

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 6/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Normal stress, shear stress & sliding[4]

At contact point: normal force and shear force

Negative normal force = tensile force For non-cohesive powders:normal force can only be compressive

If shear force > ƒ normal force,with ƒ = coefficient of friction,then the powder granules will slide.

ƒ = tan (φ), with angle of friction φ

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 7/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Stress componentsnote: stress is result of strain

Under a certain orientation, along the principal axes, the shearstresses go to zero. The stresses are then the principal stresses.With maximum stress σ1, intermediate stress σ2, minimum stress σ3.Sum σ1+ σ2+ σ3 = constant and irrespective of direction.Of interest here are primarily (only) σ1 and σ3, when an axis of symmetry exists then σ3 = σ2 .

http

://w

ww

.sv.

vt.e

du/c

lass

es/E

SM

4714

/met

hods

/EE

G.h

tml

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 8/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Transformation of stresses into major & minor principal stresses

xx and yy [4]

eliminate α: 2

2122

21

22

is a circle in σ, τ plot

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 9/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Yield locus of a Coulomb powder [1]

= c + ∙tan

2

τc = cohesion

ϕ = internal angleof friction

Usually the Yield Locus

is curved!

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 10/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Arching in silos (hoppers) [8]

Important for silo/hopper design is the conditionof collapse of the arch outlet size B design.

The unconfined yield stress fc is the maximum normal stress under which a powder with a free, unstressed surface will yield

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 11/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Yield locus & Mohr circles for Coulomb powder A: no flow, B: flow [3]

τ = c + σꞏtan (φ)

σ3 σ1

o

o

c

sin

sin

sin

sin 0c if

sin

cos

sin

sin

1

1

1

1

1

2

1

1

3

1

33

1

φ0

φ internal angleof friction

φo effective internalangle of friction

Tensile strenght σt

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 12/38

shear stress < critical value, except at point *

*

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Multiple yield loci [9]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 13/38

δ = effective angle of internal frictionJYL = Jenike yield locus

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

10.2 Powder flow testing, sheartesting

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 14/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Jenike shear tester (~1979) [1,5]

http

://w

ww

.free

man

tech

.co.

uk/im

ages

/sto

ries/

pow

dert

estin

g/re

port

_moh

r_lg

.gif

Force measured with for examplea piezo-electric element

Moves at 1-3 mm/min

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 15/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Principles of Jenike shear testing /1[e.g. 5,6]

Determines the shear strength of a particulate material under a certain load.

Results in yield locus (Y.L.) for a certain consolidation. Y.L. gives minimum shear stress, , needed to initiate

flow, as a function of the normal stress, , on the shear plane at a given bulk density.

The consolidation can be quantified by a Mohr circle. Coulomb flow is assumed, i.e. = A + B Material sheared against itself angle of internal

friction, effective angle of internal friction Material sheared against wall angle of wall friction

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 16/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Dimensions of the Jenike shear cell [5]

http

://w

ww

.sol

idsh

andl

ingt

ech.

com

/

Weight for normal stress

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 17

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Jenike shear cell testing [5]

Stress-strain curves for over- (1),critically (2) and under- (3)

consolidated samples

Stress-strain curve: pre-shear, weight reduction, shear

Experience: pre-shear (kPa) ~ 0.08×√powder density (kg/m3)and multiples of that.

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 18/38

one test in two steps

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Yield loci and Mohr circles for shear test data [5,8]

A family of yield loci Yield locus showing validshear points

fc σmax

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 19/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Typical data: free-flowing powders [8]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 20/38

Lucite =Perspex

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Typical data: cohesive powders [8]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 21/38

Warren-Spring (WS) equation:

Or, a linear fit:

using parameters from the tableFF = flow function

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

10.3 Silo design

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 22/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Silo types, flow types Silo’s have typical sizes of the order of 1000 m3, say,

800 – 3500 m3. Larger than 1000 m3: concrete, smaller than 650 m3: steel.

Very large ”mammoth”silo’scan contain up to 100 000 m3, with diameters up to 30 m, heights up to 70 m.

Powder flow type depends on Internal friction of material Wall friction of material Half-angle of cone

http

://w

ww

.free

man

tech

.co.

uk/im

ages

/sto

ries/

FT

4/F

T4H

oppe

rDia

g.jp

g

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 23/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Shear test data yield locus Y.L. Mohr circle through consolidation point gives Mohr circle

with minor and major consolidating stresses min and max. Mohr circle through 0 (i.e. σ3 = 0), tangential to Y.L., gives

unconfined yield stress, fc, which is the normal stress needed to break and arch at a free surface (such as a hopper outlet).

Flow Function, FF = max / fc gives first information : – FF < 2 : extremely cohesive, – 2 < FF < 4 : cohesive, – 4 < FF < 10 : easy flowing, – FF > 10 : free flowing.

Combined with flow factor, ff, from design charts, a critical aperture size can be estimated using a flow/no flow analysis.

Jenike shear testing & silo design /1 [e.g. 3,6]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 24/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

The Jenike Flow / No flow criterion [3,6,8]

fc (Pa)

max (Pa)

Flow function, FF’max (Pa)

&

’max = 1/ff max

max, crit

fc, crit

Flow

No Flow

max / ff > fc,crit

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 25/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Data: flow function and effectiveangle of friction for common

materials [8]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 26/38

Consolidation: σn = 1.96, 4.90, 7.84 kPa

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Flow function, ff, for a conical hopper [1]

for given hopper half-angle ;angle of wall friction, w ;

effective angle of friction for the powder, = 50°

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 27/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Flow function, ff, for two hoppers [8]

for given hopper half-angle ;angle of wall friction, w ;

effective angle of friction for the powder, = 40°

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 28/38

Square; length L > 3x width B

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Jenike shear testing & silo design /2 [e.g. 6,9]

Y.L. angle of internal friction, , and effective angle of friction, ,

Wall Y.L. angle of wall friction w. Mass flow criterion for conical hopper :

<< 45° - w i.e. = 45° - 1.2w

where = half-angle with respect to gravity. Minimum bottom opening dcrit = fc,crit H()/(g bulk)

using design graphs for H() “Rule of thumb” : dcrit > 7 x particle size...... For a conical hopper: H(α) = 2 + α/60 For a symmetrical slot outlet: H(α) = 1 + α/180, L > 3W

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 29/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Function H() for hopper aperture versus hopper half-angle

(conical and pyramidal hoppers) [1,8]

Manyempirical

designdiagramslike this

are used !

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 30/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Design charts [9]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 31/38

δ = effective angle of internal friction

δw = angle of wall friction

L > 3W

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Design charts [9]

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 32/38

δ = effective angle of internal friction

δw = angle of wall friction

d

α

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

10.4 Exercises 15

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 33/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Exercises 15 a. With a Jenike standard shear tester a powder with a particle size

< 10 μm is being sheared, giving the tabelised (σ, τ) data for each pre-shear / shear test combination. See the three tables below (also next page)

Produce the 3 yield loci for these tests, create the Mohr circles, determine the unconfined yiels stress c and the flow factor FF. Is this a cohesive powder?

σpre-shear

(kPa)τpre-shear

(kPa)σshear

(kPa)τshear

(kPa)

2 1.8 1.5 1.62

2 1.97 1.5 1.67

2 1.87 1 1.35

2 1.94 1 1.39

2 1.92 1 1.43

2 1.87 1 1.45

2 1.85 1 1.47

2 1.8 1 1.46

average τpre-shear :

1.88

σpre-shear

(kPa)τpre-shear

(kPa)σshear

(kPa)τshear

(kPa)

5 4.5 4 4.04

5 4.43 4 3.90

5 4.1 3 3.19

5 4.67 3 3.08

5 4.43 2 2.66

5 4.5 2 2.74

5 4.6 1 1.83

5 4.4 1 1.87

average τpre-shear :

4.45

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 34/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Exercises 15

b. The powder discussed in question 15a is to be stored in a conical hopper under mass flow conditions. Shear tests with a sample of the wall material give an angle of wall friction φwall =33.Using the Figures given here (for δ=φi = 50), deterimine

the angle α

the flow function for this hopper the critical unconfined yield stress, c,crit

the minimum bottom opening dcrit

Assume a powder bulk density ρbulk= 900 kg/m³.

σpre-shear

(kPa)τpre-shear

(kPa)σshear

(kPa)τshear

(kPa)

9 8.3 7 6.9

9 8.2 7 7.2

9 8.1 5 5.6

9 8.6 5 5.5

9 7.9 3 4.1

9 8.6 3 4.0

9 7.9 1 2.40

9 8.7 1 2.34

average τpre-shear

8.3

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 35/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

Exercises 15T

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 36/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018

References [1] Iinoya, K., Gotoh, K., Higashitani, K. “Powder technology

handbook”, Marcel Dekker, New York (1991) Chapters II.1, II.3, III.12, V. 4

[2] F.J.C. Rademacher “Storage and handling of bulk powders” (in Dutch),ProcesTechnologie Oct. 1992 36-41 & Nov. 1992, 27-32

[3] H. Rumpf “Mechanische Verfahrenstechnik” (in German) Carl Hanser Verlag, München/Wien (1975) Chapter 3.4

[4] A. Verruijt “Soil mechanics” (in Dutch) Delft Publishing Co., Delft (1983) [5] “Standard shear cell testing technique (for particulate solids using the Jenike shear

cell)” Institute of Chemical Engineers, European Federation of Chemical Engineering, Rugby (UK) (1989)

[6] Zevenhoven, C.A.P. “Particle charging and granular bed filtration for high temperature application” PhD thesis Delft Univ. of Technol., Delft (1992) Chapter 9.3

[7] L-S Fan, C Zhu “Principles of gas solid flows”, Cambridge Univ. Press (1998) Chapter 8 [8] C06: Crowe, C.T., ed., Multiphase Flow Handbook. CRC Press, Taylor & Francis

(2006), Chapter 9 [9] George G. Chase, SOLIDS NOTES 10, The University of Akron OH, USA

available at: https://www.inti.gob.ar/cirsoc/pdf/silos/SolidsNotes10HopperDesign.pdf See also: D. Schulze “Powders and bulk solids”, Springer (2008)

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 37/38

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flui

d &

Par

ticul

ate

Syst

ems

ÅA

424

521

/ 2

018 End of course 424521 / year 2018

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 38/38