8
..., ~ ANALOG W DEVICES ----- FEATURES DC PERFORMANCE 25 p,V max Offset Voltage (AD705T) 0.6 p,V 1°C max Drift (AD705K/T) 100 pA max Input Bias Current (AD705K) 250 pA max 18Over MIL Temperature Range (AD705T) 114 dB min CMRR (AD705K/T) 114 dB min PSRR (AD705T) 200 V/mV min Open Loop Gain 0.5 p,V pop typ Noise, 0.1 Hz to 10 Hz 600 p,A max Supply Current AC PERFORMANCE 0.15 V/p,s Slew Rate 800 kHz Unity Gain Crossover Frequency 10,000 pF Capacitive Load Drive Capability Low Cost Available in 8 Pin Plastic MiniDIP, Hermetic Cerdip and Surface Mount (SOIC) Packages MIL-STD-883B Processing Available APPLICATIONS Low Frequency Active Filters Precision Instrumentation Precision Integrators PRODUCT DESCRIPTION The AD70S is a low power bipolar op amp that has the low input bias current of a BiFET amplifier but which offers a sig- nificantly lower IB drift over temperature. The AD70S offers many of the advantages of BiFET and bipolar op amps without their inherent disadvantages. It utilizes superbeta bipolar input transistors to achieve the picoampere input bias current levels of FET input amplifiers (at room temperature), while its IB typi- cally only increases 5 times vs. BiFET amplifiers which exhibit a lOOOXincrease over temperature. This means that, at room temperature, while a typical BiFET may have less IB than the AD70S, the BiFET's input current will increase to a level of several nA at + 12SoC.Superbeta bipolar technology also permits the AD70S to achieve the microvolt offset voltage and low noise characteristics of a precision bipolar input amplifier. The AD70S is a high quality replacement for the industry- standard OP-O7 amplifier while drawing only one sixth of its power supply current. Since it has only 1/20th the input bias current of an OP-O7, the AD70S can be used with much higher source impedances, while providing the same level of dc preci- sion. In addition, since the input bias currents are at picoAmp levels, the commonly used "balancing" resistor (connected between the noninverting input of a bipolar op amp and ground) is not required. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Picoampere Input-Current Bipolar Up Amp - I 100 .. ~ 80 .. Q 0 ctn. en I 60 :!I!! tDZ 1-1.11 ~a: 40 -() I- 1.11 en It 20 0 ~- 0 -60 -20 0 +20 +60 +100 TEMPERATURE - °C +140 The AD70S is an excellent choice for use in low frequency active fIlters in 12- and 14-bit data acquisition systems, in preci- sion instrumentation and as a high quality integrator. The AD70S is internally compensated for unity gain and is available in five performance grades. The AD70SJ and AD70SK are rated over the commercial temperature range of 0 to + 70°C. The AD70SA and AD70SB are rated over the industrial temper- ature range of -40°C to +8SoC. The AD70ST is rated over the military temperature range of -SsoC to + 12SoCand is available processed to MIL-STD-883B, Rev. C. The AD70S is offered in three varieties of 8-pin package: plastic DIP, hermetic cerdip and surface mount (SOIC). "J" grade chips are also available. PRODUCT HIGHLIGHTS 1. The AD70S is a low drift op amp that offers BiFET level input bias currents, yet has the low IB drift of a Bipolar amplifier. It upgrades the performance of circuits using op amps such as the OP-O7, OP-97 and LTlOI2. 2. The combination of Analog Devices' advanced Superbeta processing technology and factory trimming provides both low drift and high dc precision. 3. The AD70S can be used in applications where a chopper amplifier would normally be required but without the chop- per's inherent noise and other problems. One Technology Way; P. O. Box 9106; Norwood, MA 02062-9106 U.S.A. Tel: 617/329-4700 Twx: 710/394-6577 Telex: 924491 Cables: ANALOGNORWOODMASS OBSOLETE

100 - Mixed-signal and digital signal processing ICs | Analog …€¦ ·  · 2017-02-15100 pA max Input Bias Current ... nor for any infringements of patents or other rights of

Embed Size (px)

Citation preview

...,

~ ANALOGW DEVICES

-----FEATURES

DC PERFORMANCE25 p,V max Offset Voltage (AD705T)0.6 p,V1°Cmax Drift (AD705K/T)100 pA max Input Bias Current (AD705K)250 pA max 18Over MIL Temperature Range (AD705T)114 dB min CMRR (AD705K/T)114 dB min PSRR(AD705T)200 V/mV min Open Loop Gain0.5 p,V pop typ Noise, 0.1 Hz to 10 Hz600 p,A max Supply Current

AC PERFORMANCE0.15 V/p,s Slew Rate800 kHz Unity Gain Crossover Frequency10,000 pF Capacitive Load Drive CapabilityLow CostAvailable in 8 Pin Plastic MiniDIP, Hermetic Cerdip

and Surface Mount (SOIC) PackagesMIL-STD-883B Processing Available

APPLICATIONSLow Frequency Active FiltersPrecision InstrumentationPrecision Integrators

PRODUCT DESCRIPTIONThe AD70S is a low power bipolar op amp that has the lowinput bias current of a BiFET amplifier but which offers a sig-nificantly lower IB drift over temperature. The AD70S offersmany of the advantages of BiFET and bipolar op amps withouttheir inherent disadvantages. It utilizes superbeta bipolar inputtransistors to achieve the picoampere input bias current levels ofFET input amplifiers (at room temperature), while its IB typi-cally only increases 5 times vs. BiFET amplifiers which exhibita lOOOXincrease over temperature. This means that, at roomtemperature, while a typical BiFET may have less IB than theAD70S, the BiFET's input current will increase to a level ofseveral nA at + 12SoC.Superbeta bipolar technology also permitsthe AD70S to achieve the microvolt offset voltage and low noisecharacteristics of a precision bipolar input amplifier.

The AD70S is a high quality replacement for the industry-standard OP-O7 amplifier while drawing only one sixth of itspower supply current. Since it has only 1/20th the input biascurrent of an OP-O7, the AD70S can be used with much highersource impedances, while providing the same level of dc preci-sion. In addition, since the input bias currents are at picoAmplevels, the commonly used "balancing" resistor (connectedbetween the noninverting input of a bipolar op amp and ground)is not required.

Information furnished by Analog Devices is believed to be accurate andreliable. However, no responsibility is assumed by Analog Devices for itsuse; nor for any infringements of patents or other rights of third partieswhich may result from its use. No license is granted by implication orotherwise under any patent or patent rights of Analog Devices.

PicoampereInput-CurrentBipolarUp Amp-

I

100

..

~ 80..Q 0z£ctn.en I 60:!I!!tDZ1-1.11~a:~ § 40-()

I-1.11enIt 200

~-

0-60 -20 0 +20 +60 +100

TEMPERATURE - °C

+140

The AD70S is an excellent choice for use in low frequencyactive fIlters in 12- and 14-bit data acquisition systems, in preci-sion instrumentation and as a high quality integrator.

The AD70S is internally compensated for unity gain and isavailable in five performance grades. The AD70SJ and AD70SKare rated over the commercial temperature range of 0 to + 70°C.The AD70SA and AD70SB are rated over the industrial temper-ature range of -40°C to +8SoC. The AD70ST is rated over themilitary temperature range of -SsoC to + 12SoCand is availableprocessed to MIL-STD-883B, Rev. C.

The AD70S is offered in three varieties of 8-pin package: plasticDIP, hermetic cerdip and surface mount (SOIC). "J" gradechips are also available.

PRODUCT HIGHLIGHTS1. The AD70S is a low drift op amp that offers BiFET level

input bias currents, yet has the low IB drift of a Bipolaramplifier. It upgrades the performance of circuits using opamps such as the OP-O7, OP-97 and LTlOI2.

2. The combination of Analog Devices' advanced Superbetaprocessing technology and factory trimming provides bothlow drift and high dc precision.

3. The AD70S can be used in applications where a chopperamplifier would normally be required but without the chop-per's inherent noise and other problems.

One Technology Way; P. O. Box 9106; Norwood, MA 02062-9106 U.S.A.Tel: 617/329-4700 Twx: 710/394-6577Telex: 924491 Cables: ANALOGNORWOODMASS

OBSOLETE

SPECIFICATIONS(@ TA= +25°C,VCM= 0 v, andVs= :t15 Vdc,unlessotherwisenoted)

-2-

AD705J/A AD705KIB AD705TParameter Conditions Min Typ Max Min Typ Max Min Typ Max Units

INPUT OFFSET VOLTAGEInitial Offset 30 90 10 35 10 25 fLVOffset Tminto Tmax 45 150 25 60 25 60 fLV

vs. Temp, Average TC 0.2 1.2 0.2 0.6 0.2 0.6 fLVrCvs. Supply (PSRR) Vs = :t2 V to :t18 V 110 129 110 129 114 129 dB

Tminto Tmax Vs = :t2.5 V to :t18 V 108 126 108 126 108 126 dB

Long Term Stability 0.3 0.3 0.3 fLV/montb

INPUT BIAS CURRENT)

VCM= OV 60 150 30 100 30 100 pAVCM= :t13.5V 80 200 50 150 50 150 pA

vs. Temp, Average TC 0.3 0.3 0.6 pArCTmintoTmax VCM = OV 80 250 50 150 90 250 pATmintoTmax VCM = :t13.5V 100 450 70 350 120 450 pA

INPUT OFFSET CURRENT VCM= OV 40 150 30 100 30 100 pAVCM= :t13.5V 40 200 30 150 30 150 pA

vs. Temp, Average TC 0.3 0.3 0.4 pArCTmintoTmax VCM= OV 80 250 50 150 80 250 pATminto Tmax VCM = :t13.5V 80 450 50 350 80 450 pA

FREQUENCY RESPONSEUnity Gain

Crossover Frequency 0.4 0.8 0.4 0.8 0.4 0.8 MHz

Slew Rate, Unity Gain G = -1 0.1 0.15 0.1 0.15 0.1 0.15 V/fLSSlew Rate Tminto Tmax 0.05 0.15 0.05 0.15 0.05 0.15 V/fLS

INPUT IMPEDANCEDifferential 40//2 40//2 40//2 M11//pFCommon Mode 300//2 300//2 300//2 G!lI/pF

INPUT VOLTAGE RANGECommon Mode Voltage :t13.5 :t14 :t 13.5 :t 14 :t13.5 :t14 V

COMMON MODEREJECTION RATIO VCM = :t13.5 V 110 132 114 132 114 132 dB

Tminto Tmax 108 128 108 128 108 128 dB

INPUT VOLTAGE NOISE 0.1 Hz to 10 Hz 0.5 0.5 1.0 0.5 1.0 fLV p-pf = 10 Hz 17 17 17 nVIv'Hzf=lkHz 15 22 15 22 15 22 nVly'Hz

INPUT CURRENT NOISE f= 10Hz 50 50 50 fAly'Hz

OPEN LOOP GAIN Vo-:t12VRLOAD = 10 k11 300 2000 400 2000 400 2000 V/mVTminto Tmax 200 1500 300 1500 300 1500 V/mV

Vo = :t1O V

RLOAD = 2 k11 200 1000 300 1000 300 1000 V/mVTminto Tmax 150 1000 200 1000 200 1000 V/mV

OUTPUT CHARACTERISTICS

Voltage Swing RLOAD = 10 k11 :t13 :t14 :t13 :t14 :t13 :t14 VTminto Tmax :t13 :t14 :t13 :t 14 :t13 :t 14 V

Current Short Circuit :t 15 :t 15 :t 15 mACapacitive Load

Drive Capability Gain = +1 10,000 10,000 10,000 pFOutput Resistance Open Loop 200 200 200 11

POWER SUPPLYRated Performance :t 15 :t 15 :t 15 VOperating Range :t2.0 :t18 :f:2.0 :t18 :f:2.0 :f:18 VQuiescent Current 380 600 380 600 380 600 fLA

Tmin to Tmax 400 800 400 800 400 800 fLATEMPERATURE RANGE

FOR RATED PERFORMANCE

Commercial (0 to +70°C) AD705} AD70SKIndustrial (-40°C to +85°C) AD705A AD705BMilitary (- 55°C to + 125°C) AD705T

OBSOLETE

AD705

NOTES'Bias Current Specificationsare guaranteed maximum at either input.All min and max specificationsare guaranteed.

ABSOLUTE MAXIMUM RATINGS1

Supply Voltage :!::18VInternal Power Dissipation2. . . . . . . . . . . . . . . . . . 650 mWInputVoltage :!::VsDifferential Input Voltage3 . . . . . . . . . . . . . . . . . :!::0.7VoltsOutput Short Circuit Duration. . . . . . . . . . . . . . . IndefmiteStorage Temperature Range Q . . . . . . . . . . -65°C to + 150°CStorage Temperature Range N, R . . . . . . . . -65°C to + 125°COperating Temperature Range

AD705]/K Oto+70°CAD705A/B 40°Cto+85°CAD705T 55°Cto+125°C

Lead Temperature Range(Soldering 60 seconds) """""""""'" 300°C

NOTES

'Stresses above those listed under "Absolute Maximum Ratings" may causepermanent damage to the device. This is a stress rating only and functionaloperation of the device at these or any other conditions above those indi-cated in the operational section of this specification is not implied. Exposureto absolute maximum rating conditions for extended periods may affectdevice reliability.

28-Pin Plastic Package: 81A = 165°ClWatt8-Pin Cerdip Package: 81A= llO°ClWatt8-Pin Small Outline Package: 81A = ISSOClWatt

3The Input pins of this amplifier are protected by back-to-back diodes. If thedifferential voltage exceeds :to.? volts, external series protection resistorsshould be added to limit the input current to less than 25 mA.

CONNECTION DIAGRAM

OF~~r.. I 1 8 I ~~r~ET8 PIN PLASTIC

MINIDIP (N),CERDIP (0)

AND SOIC (R)PACKAGES

5 I g~~~

METALIZATION PHOTOGRAPHDimensions shown in inches and (mm).

5 OVER CaMP

4 -Vs

Specifications in boldface are tested on all production units at final electrical test.

Results from those tests are used to calculate outgoing quality levels.

Specifications subject to change without notice.

OUTLINE DIMENSIONSDimensions shown in inches and (mm).

Cerdip (Q) Package

SEATINGPLANE

0.00510.131 0.05511.35)MIN MAX

11- -.jr

0 5

0.25R10.64)

1 4

L~ 0.40S110.29)'-'.1 --,0.220IS.S9)I.-r MAX-, 10.31017.B711'~

~0'01510'3B) II II

0.20 IS.OBI 0.06 11.52)MAX .

0.12S~13.1B)- -

~

-

~

It O.ISj~BII lI

t0.29 /7.371 I'

0.200 IS.OB) 1 U 0.32IB.13)~,--~~

--t0.1I- ..J -\\r12.541 1 O.OOB (0.20)

asc 0.IS0 O.OIS(0.3BI0.01410.36) 0.0310.76)0.023 (O.SB) 0.07 I1.7BI

Plastic MiniDIP (N) Package

SEATINGPLANE

OSf r0.2S 0.31

1 41~) 17['III 0.39{9.91)---J

~

0'3017'62)

~r- MAX I REF

,--

~0'03S,",0'01

A0.16S ,",0.01 (0.B9,",0.2S)14.19 ,",0.2S) ~

. ,- tO.I~I~.IBI

~ ~T I~:~f :~:~~)

l,--~~

--I0101- ..J-\\-(2.S4) 1 0.011 ,",0.003'TYP 0.15° 10.2B,",O.OB)

0.0IB,",0.003 0.03310.B4)10.46,",O.OB) NOM

8-Pin SOIC (R) Package

r 0.193 ,",0.008 ,I-A 14.9"",0.10) R I

.=['. , '116.00,",0.20) 0.154'"'0.004

~' . :1""-I I-

0.05011.271 ase

~-,-0.098'"0006

}- ~-~:~.tO:231O.OOB,",O.OO4

(0.203 ,",0.07SI

~0.011 ,",0.002

10.269,",0.03)

~~j...

0.033 '"' 0.017(0.B3 '"' 0.431

-3-

AD705J/A AD705KIB AD705TParameter Conditions Min Typ Max Min Typ Max Min Typ Max Units

PACKAGE OPTIONS

8-Pin Cerdip (Q) AD705AQ AD705BQ AD705TQ8-Pin Plastic MiniDIP (N) AD705JN AD705KN

8-Pin SOIC (R) AD705JR

TRANSISTOR COUNT # of Transistors 45 45 45

OBSOLETE

TypicalCharacteristics100

(@ +25°&,Vs= ::!:15V,unlessotherwisenoted)200

80

f!?~ 60II.0a:wID::E 40::>z

20

0-80 -60 -40 -20 0 +20 +40 +60 +60

INPUTOFFSETVOLTAGE- Microvolts

Figure 1. Typical Distribution ofInput Offset Voltage

+Vs

J!J~ -0.5,u>w;! ~ -1.0........w""CJO;: ~ -1.5....0 0-> 0-w::>Q '"00::E....Z Q +1.5OW::E a:::E ffi0 II. +1.00 w

!;j!:.

~ +0.5

-VB 0 10 15

SUPPLYVOLTAGE-'" Volts

Figure 4. Input Common ModeVoltage Range vs. Supply Voltage

50

40

SAMPLE SIZE: 85-55"CTO+125°C

f!?~ 30II.0a:wID::E 20::>z

10

-0.4 -0.2 0 +0.2 +0.4

OFFSETVOLTAGEDRIFT- ~VloC

Figure 7. Typical Distribution ofOffset Voltage Drift

20

160

'"....~ 120II.0a:wID::E 80::>z

40

0-120 -60 0 +60 +120

INPUT BIAS CURRENT - Picoamperes

Figure 2. Typical Distribution ofInput Bias Current

35

30

a.0.J!J 25~I

~ 20..~~ 15....::>0-!;j 100

01k 10k 100k

FREQUENCY - Hz

Figure 5. Large Signal FrequencyResponse

4

~I 3w

CJ

~0>

I;j 2'"II.II.0:!:wCJ

~ 10

00 1 2 3

WARM.UPTIMEIN MINUTES

Figure 8. Change in Input OffsetVoltagevs. Warm-UpTime

-4-

200

SAMPLE SIZE: 510

160

'"....~ 120II.0a:w

~ 80::>z

40

0-120 -60 0 +60 +120

INPUT OFFSET CURRENT - Plcoamperes

Figure 3. Typical Distribution ofInput Offset Current

100

.P:>"-

t 10ii:QWCJ

~~I;j 1.0'"II.II.0

- SOURCERESISTANCE- MAY BE EITHERBALANCED- ORUNBALANCED

77-

/::;;ti

1M0.1

1k 100M10k 100k 1M 10M

SOURCE RESISTANCE -Ohms

Figure 6. Offset Voltage Drift vs.Source Resistance

60

40

-40

..a.I 20

zwa:a:::>0 0'"..iii

~ -20:!:

NEGATIVEI.

5 -60-15 150 10-10 -5 5

COMMONMODEVOLTAGE- Volts

Figure 9. Input Bias Current vs.Common Mode Voltage

- ----- r-

-

-\\

\ "-

...-

//'

OBSOLETE

z;;:<:>w<:>

~g 1MQ.00...IZWQ.0

1000

~:> 100cI

WU>0Zw<:>..:~ 10>

l'1 10 100

FREQUENCY- Hz

1000

Figure 10. Input Noise VoltageSpectral Density

500

..: 450"-,I-ZWa:a:a 400I-ZWUU>w5a 350

3000 5 10 15

SUPPLY VOLTAGE-~Volls

Figure 13. Quiescent SupplyCurrent vs. Supply Voltage

10M

lOOk I1 4 6 10 20 40 60 100

LOAD RESISTANCE - kn

Figure 16. Open Loop Gainvs.Load Resistance over Temperature

20

140

120

~ 100..:<:>w<:> 80..:I-~ 60Q.0

9 40zWQ.0 20

-200.01 0.1

1000

~~ 100I

WU>0ZI-Zwa:a:::>u

10kU

10

11 1.0 100

FREQUENCY- Hz

Figure 11. Input Noise CurrentSpectral Density

160

140

120

100III..,I

a: 80a:::!u 60

40

20

00.1 10 100 Ik 10k lOOk

FREQUENCY-Hz

Figure 14. Common ModeRejection vs. Frequency

0

i!90 g.

CI

120 t::;:U>

150 m..::z:Q.180

30

60

10 100 Ik 10k lOOk 1M 10M

FREQUENCY-Hz

Figure 17. Open Loop Gain andPhase vs. Frequency

-5-

O.5"V

1000 0 5TIME- Seconds

10

Figure 12. 0.1 Hz to 10 Hz NoiseVoltage

180

160

140

120III..,

~ 100a:[f

80

60

40

1M20

0.1 1M10 100 Ik 10k lOOk

FREQUENCY - Hz

Figure 15. Power Supply Rejectionvs. Frequency

+Vs

+0.5

-0.5ii)..w

6~ -1.0>1-,...I1-0~~ -1.5...1...1wll.oil.;!ii:...10

~6 +1.5!5~Il.a:!5~ +1.0Ow

!;.

-Vs0 5 10 15

SUPPLY VOLTAGE-~ Valls

20

Figure 18. Output Voltage Limit vs.Supply Voltage

".......

+125°C

+25°C

-55°C

I

15soJ-

/-

II/' +25°C

I I+125°CI I /

II I

/ /1/

/

.........

'\'\.

'\

'\'"

1\'\.\ "I\. P ASE

'\.

"\

"'\.

GAIN'\.. \"'\.

------ -

----

OBSOLETE

JLs-

0.001' I I I I I I I I , " 'lk1 10 100 1000 10,000

VALUE OF OVERCOMPENSATION CAPACITOR - pF

Figure 19. Slew Rate & GainBandwidth Product vs. Value ofOvercompensation Capacitor

Figure 21b. Unity Gain FollowerLarge Signal Pulse ResponseRF = 10kn, CL = 50pF

10kn

10knV,N

'" 0.1"-:>I

wI-<0:II:;:W..Jen 0.01

SQUAREWAVE INPUT

Figure 22a. Unity Gain Inverter

0.001 -

1 10 100 Ik 10k

FREQUENCY - Hz

Figure 20, Magnitude of ClosedLoop Output Impedance vs.Frequency

Figure 21c. Unity Gain FollowerSmall Signal Pulse ResponseRF = on, CL = 100pF

Figure 22b. Unity Gain InverterLarge Signal Pulse ResponseCL = 50 pF

-6-

RF

V,N

VOUT

JLs-SQUAREWAVE INPUT

lOOk

Figure 21a. Unity Gain Follower(For Large Signal Applications,Resistor RF Limits the CurrentThrough the Input ProtectionDiodes.)

Figure 21d. Unity Gain FollowerSmall Signal Pulse ResponseRF = 0 n, CL = 1000pF

Figure 22c. Unity Gain InverterSmall Signal Pulse ResponseCL = 100 pF

11:'..

,1100"" .... .... .... .... .... ..,. ....I.. . I

r.8 I."iiiil .... .... .... .... "" .... "'"

2V

1M 1000

'"E.<:.

100.. 0:I: II W

0I- zlOOkg <0: 10ee w0 Q.II: ;!!Q.

:I: 5 1l-e Q.;: I-e 0

10kz Q. 0.1<0: 0III 0Z ..J:;;: eC! w

en 0.010..J0

nU",.... .... '" .... ..,. ....I ":"..

+

" .-I . ..'l1li

"" .... .... ....

20 v

II .-II",.... n

PI

I....

...... .... ....

-H +

r--. I

II\'I!!!!!!!!,,I!!!!!-I

. ..!!!II.. ".-..II"

11.... .... .... ""

II

...

20 v

II':!III",........ .... ... .... .... ....r ..-.....

1:In

f

".I 10:'.... .... ..., ....n

20 V

OBSOLETE

Figure 22d. Unity Gain Inverter Small SignalPulse Response CL = 1000 pF

10pF*

10kQ

-Its-SQUAREWAVE INPUT

VOUT

SkQV,N

Figure 23a. Follower Connected inFeed-Forward Mode

'INPUT

OUTPUT

Figure 23b. Follower Feed-ForwardPulse Response

A High Performance Differential Amplifier CircuitFigure 25 shows a high input impedance, differential amplifiercircuit that features a high common mode voltage, and whichoperates at low power. Table I details its performance withchanges in gain. To optimize the common mode rejection of thiscircuit at low frequencies and dc, apply a 1 volt, 1 Hz sine waveto both inputs. Measuring the output with an oscilloscope, adjusttrimming potentiometer R6 for minimum output. For the bestCMR at higher frequencies, capacitor C2 should be replacedwith a 1.5 pF to 20 pF trimmer capacitor.

Both the IC socket and any standoffs at the op amp's input ter-minals should be made of Teflon* to maintain low input currentdrift over temperature.

*Teflon is a registered trademark of E,I. DuPont, Co,

Figure 24, Offset Null and OvercompensationConnections

~: POTENTIALDANGER FROM HIGHSOURCE VOLTAGE, THISDIFFERENTIAL AMPLIFIERDOES NOT PROVIDEGALVANIC ISOLATION,INPUT SOURCE MUST BEREFERRED TO THE SAMEGROUND CONNECTION ASTHIS AMPLIFIER.

C1SpF

R3200kQ

R210MQ RS*

VOUT

R1100MQ R4*

v,N--

SOURCE

v,N.

R1'100MQ

GND

CIRCUIT GAIN, G = - R2:1 R3 (1 + ~)VOUT= G (V,N-- V,N.)

COMMON MODE INPUT RANGE = 10 (Vs -1,SV)

FOR Vs= ~1SV, VCM RANGE = ~13SV

RESISTORS R1 AND R1', R2 AND R2'ARE VICTOREEN MOX-200 1/4 WATT,1% METAL OXIDE,

*SEE TABLE I

Figure 25. A High PerformanceDifferential Amplifier Circuit

Table /. Typical Performance of Differential AmplifierCircuit Operating at Various Gains

-7-

'-'11(:1

II"" ," ,.., !,t,, .... .... .."I Ifj..

"m. ++11.++H

"I ,.1

rI"i"" .." .." 00.. ....

20 V

I!!III II Uu..' .. ...1_00"

SVS-

I.. .. ..., 00.. , ,.., 00..

" === -r!!!!!===. =. - .

! +++11HH+'" +H

I l-!Ii! -.--=. =. !!!!!.

" fI ..too..

"I"':"

"" "" ,.., . .... .... , .., ....n

5V II - :!!!III

Circuit R4 R5 Trimmed RTI Average CircuitGain (fi) (fi) DC CMR Drift TC Bandwidth

(dB) (J.tV/°C) -3 dB

1 1.13 kO 10 kO 2:85 30 4.4 kHz10 1000 9.76kO 2:85 30 2,8 kHz100 10.2 0 10 kO 2:85 30 930 Hz

OBSOLETE

A 1 Hz, 2-Pole, Active FilterTable II gives recommended component values for the 1 Hz fil-ter of Figure 26. An unusual characteristic of the AD705 is thatboth the input bias current and the input offset current andtheir drift remain low over most of the op amps rated tempera-ture range. Therefore, for most applications, there is no need touse the normal balancing resistor tied between the noninvertingterminal of the op amp and ground. Eliminating the standardbalancing resistor reduces board space and lowers circuit noise.However, this resistor is needed at temperatures above 110°C,because input bias current starts to change rapidly, as shown byFigure 27.

C1

R11MQ

CAPACITORS C1, C2,AND C3 ARE SOUTHERNELECTRONICS MPCC,POLYCARBONATE, i5%,50 VOLT

R21MQ

INPUTOUTPUT

OPTIONAL ,- - - - - - - - - - - - - - - - - - - - - -,BALANCE: R3 :RESISTOR-, 2MQ ,NETWORK I ,

, IWITHOUTTHE: C3 :NETWORK,PINS, 0.0111F ,2 AND 6 OF THE' I

AD705ARETIED: :TOGETHER. ------------------------

Figure 26. A 1 Hz, 2-Pole Active Filter

--

Specified Values are for a - 3 dB point of 1.0 Hz.

For other frequencies, simply scalecapacitors Cl and C2 directly;i.e., for 3 Hz Bessel response,Cl = 0.046 fLF, C2 = 0.037 fLF.

Table II. Recommended Component Values for the 1HzLow Pass Filter

~I

i= 60!;.~:5ua: 30Ua:w~u::u...0w

~ -30~0>

Iii -60Cf)u...u...0

-8-

90

0

WITH OPTIONAL BALANCERESISTOR, R3

-90-60 -40 -20 0 +20 +40 +60 +80 +100 +120 +140

TEMPERATURE - °C

Figure 27. Vas vs. Temperature of 1Hz Filter

-----

aQ?

JN,.!.I!)MU

<iuj:JZ

CJwI-Za:a.

Desired Low Pole Pole Q CI Value C2 ValuePass Response Frequency

(Hz) (I-tF) (I-tF)

BesselResponse 1.27 0.58 0.14 O.ll

Butterworth Response 1.00 0.707 0.23 O.ll

0.1 dB Chebychev 0.93 0.77 0.26 0.11

0.2 dB Chebychev 0.90 0.80 0.28 O.ll

0.5 dB Chebychev 0.85 0.86 0.32 O.ll

1.0 dB Chebychev 0.80 0.96 0.38 0.10--

OBSOLETE