8
60 G Z ZINC A2 INOX A4 INOX 10.9 LHB Hold Down Bolt Product Features Full strength is maintained Stress-free anchoring system Cast-in placement eliminates the need for drilling Anchor can be tied into reinforcing to distribute the load over a wider area to become an integral part of the reinforcing structure Cast-in anchor has high tensile load carrying capacities as well as application in tension zone, pre-tensioning and post-tensioning concrete structures Material Specifications Plating Specifications Carbon Steel Grade 4.6 Zinc Galvanised to chromate High Yield Deformed Bars finishes High Tensile Steel Grade 8.8 Hot Dipped Galvanised Stainless Steel 304 (A2) and 316 (A4) Anchor design method and notation are in accordance to the safety and design guideline for European Technical Approval (ETAG-001). 10.0 Mechanical Anchors a single anchor is considered for non-cracked concrete valid for concrete compressive strength: f ck,cube = 25 N/mm 2t no influence of anchor spacing and edge distance must adhere to setting details for accurate loading data Characteristic Resistance [F Rk ] Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33 Carbon steel: class 4.6 High tensile steel: class 8.8 Tensile Load (kN) N Rk 21.6 40.2 62.8 90.4 132.8 165.6 54.0 100.4 156.8 226.0 332.2 414.1 Shear Load (kN) V Rk 16.1 30.1 47.0 67.8 99.9 124.3 40.5 75.4 117.6 169.5 249.1 310.5 Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33 Deformed bars: BSt 500 Stainless steel: class A2/A4 Tensile Load (kN) N Rk 37.1 69.1 107.9 155.3 228.4 401.8 37.9 70.5 110.1 158.6 233.1 207.6 Shear Load (kN) V Rk 34.8 64.8 101.1 145.6 171.3 376.6 35.4 65.9 102.9 148.3 218.0 194.1 Design Resistance [F Rd ] Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33 Carbon steel: class 4.6 High tensile steel: class 8.8 Tensile Load (kN) N Rd 18.0 33.5 52.3 75.3 110.7 138.0 45.0 83.7 130.7 188.3 276.8 345.1 Shear Load (kN) V Rd 12.9 24.1 37.6 54.2 79.9 99.4 32.4 60.3 94.1 135.6 199.3 248.4 Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33 Deformed bars: BSt 500 Stainless steel: class A2/A4 Tensile Load (kN) N Rd 30.9 57.6 89.9 129.4 190.3 334.8 31.6 58.8 91.7 132.1 194.3 173.0 Shear Load (kN) V Rd 22.3 41.4 64.7 93.2 137.0 170.8 22.7 42.3 66.0 95.0 139.7 124.4 Recommended Load [F Rec ] Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33 Carbon steel: class 4.6 High tensile steel: class 8.8 Tensile Load (kN) N Rec 12.9 23.9 37.4 53.8 79.1 98.6 32.1 59.8 93.4 134.5 197.7 246.5 Shear Load (kN) V Rec 9.2 17.2 26.9 38.7 57.1 71.0 23.1 43.1 67.2 96.9 142.4 177.4 Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33 Deformed bars: BSt 500 Stainless steel: class A2/A4 Tensile Load (kN) N Rec 22.1 41.1 64.2 92.4 135.9 239.1 22.5 42.0 65.5 94.4 138.8 123.6 Shear Load (kN) V Rec 15.9 29.6 46.2 66.6 97.9 122.0 16.2 30.2 47.1 67.9 99.8 88.9 Basic Loading Data

10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

Embed Size (px)

Citation preview

Page 1: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

60

GZZINC

A2I N O X

A4I N O X

10.9 LHB Hold Down BoltProduct Features• Full strength is maintained• Stress-free anchoring system• Cast-in placement eliminates the need for drilling• Anchor can be tied into reinforcing to distribute the load over a wider area to become an integral part of the reinforcing structure• Cast-in anchor has high tensile load carrying capacities as well as application in tension zone, pre-tensioning and post-tensioning concrete structures

Material Specifications Plating Specifications• Carbon Steel Grade 4.6 • Zinc Galvanised to chromate• High Yield Deformed Bars finishes• High Tensile Steel Grade 8.8 • Hot Dipped Galvanised• Stainless Steel 304 (A2) and 316 (A4)

Anchor design method and notation are in accordance to the safety and design guideline for European Technical Approval (ETAG-001).

10.0 Mechanical Anchors

• a single anchor is considered • for non-cracked concrete • valid for concrete compressive strength: fck,cube = 25 N/mm2t • no influence of anchor spacing and edge distance • must adhere to setting details for accurate loading data

Characteristic Resistance [FRk]

Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33

Carbon steel: class 4.6 High tensile steel: class 8.8

Tensile Load (kN) NRk 21.6 40.2 62.8 90.4 132.8 165.6 54.0 100.4 156.8 226.0 332.2 414.1

Shear Load (kN) VRk 16.1 30.1 47.0 67.8 99.9 124.3 40.5 75.4 117.6 169.5 249.1 310.5

Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33

Deformed bars: BSt 500 Stainless steel: class A2/A4

Tensile Load (kN) NRk 37.1 69.1 107.9 155.3 228.4 401.8 37.9 70.5 110.1 158.6 233.1 207.6

Shear Load (kN) VRk 34.8 64.8 101.1 145.6 171.3 376.6 35.4 65.9 102.9 148.3 218.0 194.1

Design Resistance [FRd]

Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33

Carbon steel: class 4.6 High tensile steel: class 8.8

Tensile Load (kN) NRd 18.0 33.5 52.3 75.3 110.7 138.0 45.0 83.7 130.7 188.3 276.8 345.1

Shear Load (kN) VRd 12.9 24.1 37.6 54.2 79.9 99.4 32.4 60.3 94.1 135.6 199.3 248.4

Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33

Deformed bars: BSt 500 Stainless steel: class A2/A4

Tensile Load (kN) NRd 30.9 57.6 89.9 129.4 190.3 334.8 31.6 58.8 91.7 132.1 194.3 173.0

Shear Load (kN) VRd 22.3 41.4 64.7 93.2 137.0 170.8 22.7 42.3 66.0 95.0 139.7 124.4

Recommended Load [FRec]

Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33

Carbon steel: class 4.6 High tensile steel: class 8.8

Tensile Load (kN) NRec 12.9 23.9 37.4 53.8 79.1 98.6 32.1 59.8 93.4 134.5 197.7 246.5

Shear Load (kN) VRec 9.2 17.2 26.9 38.7 57.1 71.0 23.1 43.1 67.2 96.9 142.4 177.4

Rebar Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33

Deformed bars: BSt 500 Stainless steel: class A2/A4

Tensile Load (kN) NRec 22.1 41.1 64.2 92.4 135.9 239.1 22.5 42.0 65.5 94.4 138.8 123.6

Shear Load (kN) VRec 15.9 29.6 46.2 66.6 97.9 122.0 16.2 30.2 47.1 67.9 99.8 88.9

Basic Loading Data

Page 2: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

61

Design Steel Tensile Resistance [NRd,s]

Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33

Carbon steel: class 4.6 High tensile steel: class 8.8

NRd,s (kN) 18.0 33.5 52.3 75.3 110.7 138.0 45.0 83.7 130.7 188.3 276.8 345.1

Anchor Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33

Deformed bars: BSt 500 Stainless steel: class A2/A4

NRd,s (kN) 30.9 57.6 89.8 129.4 190.3 334.8 31.6 58.8 91.7 132.1 194.3 173.0

The design steel resistance is derived from NRd,s = NRk,s / gMs,N where the partial safety factor is 1.5 for carbon steel 4.6, deformed bar and high tensile steel 8.8; 1.87 for stainless steel A2/A4. The recommended load is derived from NRec,s = NRd,s / gF where the safety factor is 1.4.

ds

Lt

y

dBr

x

Installation Procedure & Setting Diagram

Always Wear Suitable Eye Protection To BSEN166.

Anchor Size M12 M16 M20 M24 M30 M33 M39

Rebar Size (equivalent) T12 T16 T20 T25 T32 -- T40

Cross sectional area (mm2) As 84.3 157.0 245.0 353.0 519.0 647.0 913.0

Nominal tensile strength - thread section (N/mm2) fuk ~ Carbon steel: class 4.6 ~ Deformed bar: BSt 500 ~ High tensile steel: class 8.8 ~ Stainless steel: class A2 /A4

320550800700

320550800700

320550800700

320550800700

320550800700

320550800500

320550800500

Elastic moment of resistance (mm3) Wel 109.2 277.5 540.9 935.5 1,668.0 2,322.0 3,860.0

Design Bending Moment (Nm) MRa,s ~ Carbon steel: class 4.6 ~ Deformed bar: BSt 500 ~ High tensile steel: class 8.8 ~ Stainless steel: class A2 /A4

33.557.784.059.0

85.2146.5212.8170.5

166.2285.6415.2291.0

287.4493.9718.4503.8

512.4880.7

1,439.21,009.0

713.31,226.01,783.3696.0

1,185.82,038.12,964.51,158.0

The design bending moment is derived from MRd,s = MRk,s * fuk / gMs,N where the partial safety factor of 1.25 for carbon steel 4.6 and high tensile steel 8.8; 1.56 for stainless steel A2/A4. The recommended bending moment is derived from MRec,s = MRd,s / gF where the safety factor is 1.4.

Mechanical Properties

Steel Tensile Resistance [NRd,s ]

Page 3: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

62

Concrete Cone Resistance / Pull-Out Resistance [NRd,c]

• a single anchor is considered• for non-cracked concrete• valid for concrete compressive strength: fck,cube = 25 N/mm2

• no influence of anchor spacing and edge distance• bending radius dBr = 4~7 ds• must adhere to setting details for accurate loading data Carbon Steel: class 4.6

Anchor Size

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Steel

Tension (kN)

Design Concrete Cone ResistanceNon-cracked Concrete

(Load in kN)

Design Steel Shear (kN)

ds Lt x ds NRd,s NRd,c VRd,s

M12 50 50 50 18.0 6.4 13.4 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 12.9

M16 75 60 60 33.5 14.0 23.8 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 24.1

M20 75 80 135 52.3 24.6 37.2 52.3 52.3 52.3 52.3 52.3 52.3 52.3 52.3 52.3 37.6

M24 100 100 165 75.3 38.2 53.5 71.4 75.3 75.3 75.3 75.3 75.3 75.3 75.3 54.2

M30 125 125 200 110.7 55.4 73.6 94.3 110.7 110.7 110.7 110.7 110.7 110.7 79.7

M33 150 150 230 138.0 74.7 95.6 119.1 138.0 138.0 138.0 138.0 138.0 99.4

Anchorage Length, y 50 75 100 125 150 175 200 225 250 275 300 325 350 (mm)

High Tensile Steel: class 8.8

Anchor Size

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Steel

Tension (kN)

Design Concrete Cone ResistanceNon-cracked Concrete

(Load in kN)

Design Steel Shear (kN)

ds Lt x ds NRd,s NRd,c VRd,s

M12 50 50 50 45.0 23.0 35.1 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 32.4

M16 75 60 60 83.7 51.1 68.6 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 60.3

M20 75 80 135 130.7 70.0 90.2 113.1 130.7 130.7 130.7 130.7 130.7 130.7 130.7 94.1

M24 100 100 165 188.3 91.9 114.9 140.5 183.0 183.0 183.0 183.0 183.0 183.0 135.6

M30 125 125 200 276.8 143.6 203.1 272.8 276.8 276.8 276.8 276.8 276.8 199.3

M33 150 150 230 345.1 204.9 274.9 313.8 345.1 345.1 345.1 345.1 248.4

Anchorage Length, y 100 125 150 175 200 225 250 300 375 400 425 450 475 (mm)

Deformed Bars: BSt 500

Anchor Size

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Steel

Tension (kN)

Design Concrete Cone ResistanceNon-cracked Concrete

(Load in kN)

Design Steel Shear (kN)

ds Lt x ds NRd,s NRd,c VRd,s

T12 (M12) 50 50 50 30.9 23.0 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 22.3

T16 (M16) 75 60 60 57.6 36.1 51.1 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6 41.4

T20 (M20) 75 80 135 89.8 70.0 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 64.7

T25 (M24) 100 100 165 129.4 115.4 129.4 129.4 129.4 129.4 129.4 129.4 129.4 93.2

T32 (M30) 125 125 200 190.3 122.3 146.5 172.9 190.3 190.3 190.3 190.3 137.0

T40 (M39) 150 150 230 334.8 280.0 334.8 334.8 334.8 241.0

Anchorage Length, y 100 125 150 175 200 225 250 275 300 350 400 425 450 (mm)

10.0 Mechanical Anchors

Page 4: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

63

Stainless steel: class A2 / A4

Anchor Size

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Steel

Tension (kN)

Design Concrete Cone ResistanceNon-cracked Concrete

(Load in kN)

Design Steel Shear (kN)

ds Lt x ds NRd,s NRd,c VRd,s

M12 50 50 50 31.6 13.4 23.0 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 22.7

M16 75 60 60 58.8 23.8 36.1 51.1 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 42.3

M20 75 80 135 91.7 37.2 52.3 90.2 91.7 91.7 91.7 91.7 91.7 91.7 91.7 91.7 66.0

M24 100 100 165 132.1 53.5 91.9 112.3 132.1 132.1 132.1 132.1 132.1 132.1 132.1 95.0

M30 125 125 200 138.8 94.3 115.2 137.3 138.8 138.8 138.8 138.8 138.8 138.8 86.5

M33 150 150 230 173.0 119.1 139.5 160.9 173.0 173.0 173.0 173.0 107.8

Anchorage Length, y 75 100 125 150 175 200 225 250 275 300 325 350 375 (mm)

The design concrete cone resistance is derived from N0Rd,c = N0

Rk,c / gMc,N where the partial safety factor is 1.5. The recommended load is derived from N0Rec,c = N0

Rd,c / gF where the safety factor is 1.4.

Design Concrete Cone Resistance: NRd,c = N0Rd,c * fh,N * fβ,N * fa,N * fe,N

Design Steel Shear Resistance [VRd,s]

Anchor Size M12 M16 M20 M24 M30 M33 M12 M16 M20 M24 M30 M33

Carbon steel: class 4.6 High tensile steel: class 8.8

VRd,s (kN) 12.9 24.1 37.6 54.2 79.7 99.4 32.4 60.3 94.1 135.6 199.3 248.4

Anchor Size T12 T16 T20 T25 T32 T40 M12 M16 M20 M24 M30 M33

Deformed bars: BSt 500 Stainless steel: class A2/A4

VRd,s (kN) 22.3 41.4 64.7 93.2 137.0 170.8 22.7 42.3 66.0 95.0 139.7 124.4

The design steel resistance is derived from VRd,s = VRk,s / gMs,V where the partial safety factor is 1.25 for carbon steel 4.6, high tensile steel 8.8 and deformed bars; 1.56 for stainless steel. The recommended load is derived from VRec,s = VRd,s / gF where the safety factor is 1.4.

Steel Shear Resistance [VRd,s]

Concrete Edge Shear Resistance [VRd,c]

• a single anchor is considered • for non-cracked concrete • valid for concrete compressive strength: fck,cube = 25 N/mm2 • load determined towards concrete edge only • minimum edge distance ‘cmin is considered • must adhere to setting details for accurate loading data

Design Concrete Edge Shear Resistance [V0Rd,c ]

Anchor Size M12 M16 M20 M24 M30 M33 M39

Carbon steel: class 4.6 / High tensile steel: class 8.8 / Deformed bars / Stainless steel: class A2/A4

VoRd,c (kN) 15.7 25.3 37.2 51.4 70.2 102.9 205.6

cmin (mm) 100 125 150 175 200 250 375

The design concrete cone resistance is derived from V0Rd,c = V0

Rk,c / gMc,V where the partial safety factor is 1.5. The recommended load is derived from V0Rec,c = V0

Rd,c / gF where the safety factor is 1.4.

Design Concrete Edge Shear Resistance: VRd,c = V0Rd,c * fβ,N * fα,V * fae,V

c2

cI

• a single anchor is considered• for non-cracked concrete• valid for concrete compressive strength: fck,cube = 25 N/mm2

• no influence of anchor spacing and edge distance• bending radius dBr = 4~7 ds• must adhere to setting details for accurate loading data

Concrete Pry-Out Resistance [VRd,cp]

Page 5: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

64

Carbon Steel: class 4.6

AnchorSize

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Concrete Pry-Out ResistanceNon-cracked Concrete

(Load in kN)

ds Lt x ds NRd,cp

M12 50 50 50 7.7 26.8 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0

M16 75 60 60 28.0 47.6 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0

M20 75 80 135 49.2 74.4 104.6 104.6 104.6 104.6 104.6 104.6 104.6 104.6 104.6

M24 100 100 165 76.4 107.0 142.8 150.6 150.6 150.6 150.6 150.6 150.6 150.6

M30 125 125 200 110.8 147.2 188.6 221.4 221.4 221.4 221.4 221.4 221.4

M33 150 150 230 149.4 191.2 238.2 276.0 276.0 276.0 276.0 276.0

Anchorage Length, y (mm) 50 75 100 125 150 175 200 225 250 275 300 325 350

High Tensile Steel: class 8.8

AnchorSize

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Concrete Pry-Out ResistanceNon-cracked Concrete

(Load in kN)

ds Lt x ds NRd,cp

M12 50 50 50 23.0 35.1 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0

M16 75 60 60 51.1 68.6 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7

M20 75 80 135 70.0 90.2 113.1 130.7 130.7 130.7 130.7 130.7 130.7 130.7

M24 100 100 165 91.9 114.9 140.5 183.0 183.0 183.0 183.0 183.0 183.0

M30 125 125 200 143.6 203.1 272.8 276.8 276.8 276.8 276.8 276.8

M33 150 150 230 204.9 274.9 313.8 345.1 345.1 345.1 345.1

Anchorage Length, y (mm) 100 125 150 175 200 225 250 300 375 400 425 450 475

Deformed Bars: BSt 500

AnchorSize

Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Concrete Pry-Out ResistanceNon-cracked Concrete

(Load in kN)

ds Lt x ds NRd,cp

T12 (M12) 50 50 50 46.0 70.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2

T16 (M16) 75 60 60 72.2 102.2 137.2 138.2 138.2 138.2 138.2 138.2 138.2 138.2 138.2 138.2

T20 (M20) 75 80 135 140.0 180.4 215.6 215.6 215.6 215.6 215.6 215.6 215.6 215.6

T25 (M24) 100 100 165 230.8 282.0 310.6 310.6 310.6 310.6 310.6 310.6

T32 (M30) 125 125 200 244.6 293.0 345.8 380.6 380.6 380.6 380.6

T40 (M39) 150 150 230 560.0 722.0 762.8 803.4

Anchorage Length, y (mm) 100 125 150 175 200 225 250 275 300 350 400 425 450

Stainless steel: class A2 / A4

Anchor Size Thread Length (mm)

Bending Length (mm)

Bending Radius (mm)

Design Concrete Pry-Out ResistanceNon-cracked Concrete

(Load in kN)

ds Lt x ds NRd,cp

M12 50 50 50 26.8 46.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0

M16 75 60 60 47.6 72.2 102.2 117.2 117.2 117.2 117.2 117.2 117.2 117.2 117.2 117.2

M20 75 80 135 74.4 104.6 180.4 183.0 183.0 183.0 183.0 183.0 183.0 183.0 183.0

M24 100 100 165 107.0 183.8 229.8 229.8 229.8 229.8 229.8 229.8 229.8 229.8

M30 125 125 200 188.6 207.6 207.6 207.6 207.6 207.6 207.6 207.6 207.6

M33 150 150 230 238.2 258.8 258.8 258.8 258.8 258.8 258.8

Anchorage Length, y (mm) 75 100 125 150 175 200 225 250 275 300 325 350 375

The design concrete cone resistance is derived from V0Rd,cp = V0

Rk,cp / gMc,V where the partial safety factor is 1.5. The recommended load is derived from V0Rec,cp = V0

Rd,cp / gF where the safety factor is 1.4.

Design Concrete Pry-Out Resistance: VRd,cp = V0Rd,cp * fβ,N * fa,N * fe,N

10.0 Mechanical Anchors

Page 6: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

65

Anchor Spacing ‘s’ (mm)

Anchorage Depth, hef (mm)

75 100 125 150 175 200 225 250 275 300 325 350 375

75 0.67

100 0.72 0.67

125 0.78 0.71 0.67

150 0.83 0.75 0.70 0.67

175 0.89 0.79 0.73 0.69 0.67

200 0.94 0.83 0.77 0.72 0.69 0.67

225 1.00 0.88 0.80 0.75 0.71 0.69 0.67

250 0.92 0.83 0.78 0.74 0.71 0.69 0.67

275 0.96 0.87 0.81 0.76 0.73 0.70 0.68 0.67

300 1.00 0.90 0.83 0.79 0.75 0.72 0.70 0.68 0.67

325 0.93 0.86 0.81 0.77 0.74 0.72 0.70 0.68 0.67

350 0.97 0.89 0.83 0.79 0.76 0.73 0.71 0.69 0.68 0.67

375 1.00 0.92 0.86 0.81 0.78 0.75 0.73 0.71 0.69 0.68 0.67

400 0.94 0.88 0.86 0.80 0.77 0.74 0.72 0.71 0.69 0.68

450 1.00 0.93 0.88 0.83 0.80 0.77 0.75 0.73 0.71 0.70

525 1.00 0.94 0.89 0.85 0.82 0.79 0.77 0.75 0.73

600 1.00 0.94 0.90 0.86 0.83 0.81 0.79 0.77

675 1.00 0.95 0.91 0.88 0.85 0.82 0.80

750 1.00 0.95 0.92 0.88 0.86 0.83

825 1.00 0.96 0.92 0.89 0.87

900 1.00 0.96 0.93 0.90

975 1.00 0.96 0.93

1050 1.00 0.97

1125 1.00

CriticalSpacing

‘scr’225 300 375 450 525 600 675 750 825 900 975 1050 1125

AbsoluteMinimum Spacing

‘smin’75 100 125 150 175 200 225 250 275 300 325 350 375

Design Anchor Shear Capacity [VRd]: lower of [ VRd,s ; VRd,c ; VRd,cp ]

Final Design Anchor Shear Capacity [VRd]

Limit state combination of tension and shear must be satisfied the above conditions. The designer must verify the actual required loads if given loading is ultimate load, design load or safe working load. This is to avoid design fault which commonly over design or under capacity.

Combined Load Capacity

Combined Tension and Shear: NSd

NRd

VSd

VRd+ < 1.2

Concrete [Cube] Compressive Strength (MPa) fck,cube 25 30 37 45 50 55 60

Concrete [Cylinder] Compressive Strength (MPa) fck,cyl 20 25 30 35 40 45 50

Concrete Strength Designation [ENV 206] C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60

Concrete Strength Factor fβ,N 1.00 1.10 1.22 1.34 1.41 1.48 1.55

Influencing Factors (by C-C method)

Influence of Anchorage Depth [fh,N]

Influence of Concrete Strength [fβ,N]

fh,N = ( )1.5 Limits: hact ≥ hefhact

hef

fck,cube

25fβ,N = Limits: 25 MPa < fck,cube < 60 MPa

Influence of Anchor Spacing [fa,N]

fa,N = 0.5 + s6 * hef

Cone FailureAnchor

s s

Limits: smin ≤ s ≤ scr

smin = 1.0 * hef scr = 3.0 * hef

Page 7: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

66

Influence of Concrete Strength [fß,V]

fck,cube

25fβ,V = Limits: 25 MPa < fck,cube < 60 MPa

Concrete [Cube] Compressive Strength (MPa) fck,cube 25 30 37 45 50 55 60

Concrete [Cylinder] Compressive Strength (MPa) fck,cyl 20 25 30 35 40 45 50

Concrete Strength Designation [ENV 206] C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60

Concrete Strength Factor fβ,V 1.00 1.10 1.22 1.34 1.41 1.48 1.55

10.0 Mechanical Anchors

Edge Distance ‘c’ (mm)

Anchorage Depth, hef (mm)

75 100 125 150 175 200 225 250 275 300 325 350 375

75 0.76

100 0.92 0.76

125 1.00 0.88 0.76

150 1.00 0.85 0.76

175 0.95 0.84 0.76

200 1.00 0.92 0.83 0.76

225 1.00 0.89 0.82 0.76

250 0.96 0.88 0.81 0.76

275 1.00 0.94 0.86 0.81 0.76

300 1.00 0.92 0.85 0.80 0.76

325 0.97 0.90 0.85 0.80 0.76

350 1.00 0.95 0.89 0.84 0.80 0.76

375 1.00 0.93 0.88 0.83 0.79 0.76

415 1.00 0.94 0.89 0.85 0.81

450 1.00 0.94 0.89 0.85

490 1.00 0.95 0.90

525 1.00 0.95

565 1.00

Critical Edge

distance‘ccr’

115 150 190 225 265 300 340 375 415 450 490 525 565

Absolute Minimum

Edge Distance

‘cmin’

75 100 125 150 175 200 225 250 275 300 325 350 375

Influence of Edge Distance [fe,N]

Cone Failure

Anchorc

c

c hef

fe,N = 0.29 + 0.47 * Limits: cmin ≤ c ≤ ccr

cmin = 1.0 * hef ccr = 1.5 * hef

Influence of Shear Load Direction [fα,V]

Load Type Oblique 0° Oblique 30° Oblique 45° Oblique 60° Oblique 90°

Angle, α [ ° ] 0° < α < 15° 15° < α < 37.5° 37.5° < α < 52.5° 52.5° < α < 67.5° 67.5° < α < 90°

fα,V 1.00 1.14 1.35 1.71 2.00

Formulae

K = 0.28 (oblique 30°)

= 0.50 (oblique 45°)

= 0.83 (oblique 60°)

fα,V = 1 fα,V = 1 + K sin α fα,V = 2

Page 8: 10.0 Mechanical Anchors - rfmcp.com hold down bolt.pdf · Anchor design method and notation are in accordance to the safety . ... Design Steel Shear (kN) d: s: L: t: x d: s: N:

67

fae,V

c/cmin

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Edge influence with single anchor 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00

s/cmin

1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.331.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.502.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.672.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.833.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.003.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.174.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.334.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.505.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.675.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.836.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.006.5 3.24 3.53 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.177.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.337.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.508.0 4.57 4.91 5.25 5.59 5.95 6.30 6.678.5 5.05 5.40 5.75 6.10 6.47 6.839.0 5.20 5.55 5.90 6.26 6.63 7.009.5 5.69 6.05 6.42 6.79 7.17

10.0 6.21 6.58 6.95 7.3310.5 6.74 7.12 7.5011.0 7.28 7.6711.5 7.8312.0 8.00

fae,V =

fae,V =

fae,V = ccmin

*3c + s1 + s2 + sn-1

3ncmin

ccmin

*3c + s6cmin

ccmin

ccmin

*

V

h>1.5c

c

c2,1sn-1

c2,2

s1

s2

s3

for single anchor towards a concrete edge

for two anchors when s < 3c

for multiple anchors when s1 to sn-1 < 3c and c2 > 1.5c

Influence of Spacing and Edge Distance [fae,V]