10 Supporting Processes

  • Upload
    lte002

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 10 Supporting Processes

    1/84

    SupportingProcessesChapter13

  • 8/13/2019 10 Supporting Processes

    2/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    2

  • 8/13/2019 10 Supporting Processes

    3/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    3

  • 8/13/2019 10 Supporting Processes

    4/84

    SourcesofHydrogeninaRefinery

    Byproductfromotherprocesses

    CatalyticReformer

    Mostimportantsourceofhydrogenfortherefiner

    Continuously

    regenerated

    reformer:

    90

    vol%

    Semicontinuouslyregeneratedreformer:80vol%

    FCCUOffgas

    5vol%hydrogenwithmethane,ethane&propane

    Severalrecoverymethods(canbecombined)

    Cryogenic

    Pressureswingadsorption(PSA)

    Membraneseparation

    Manufactured

    SteamMethaneReforming(SMR)

    Mostcommonmethodofmanufacturinghydrogen

    90 95vol%typicalpurity

    Gasification/PartialOxidation

    Producesynthesisgas(syngas)

    Hydrogenrecovery

    Pressureswingadsorption(PSA)

    Membraneseparation

    Moreexpensivethansteamreformingbut

    canuselowqualitybyproductstreams

    4

  • 8/13/2019 10 Supporting Processes

    5/84

    HydrogenManufacturing

    SteamMethaneReforming(SMR)

    CH4+

    H2O

    CO

    +

    3

    H2

    Highlyendothermic

    PartialOxidation(POx)

    2

    CH4+

    O22

    CO

    +

    4

    H2

    Highlyexothermic

    Autothermal Reforming

    CombinesSMR&POx toachieveanenergyneutralprocess

    Oftenusesoxygenratherthanair

    5

  • 8/13/2019 10 Supporting Processes

    6/84

    SMRBasicProcessDescription

    Reforming. Endothermiccatalyticreactionat1400 1500F.

    CH4+H2O CO+3H2

    Shiftconversion. Exothermicfixedbedcatalyticreactionpossiblyintwosteps(650 700F&450F).

    CO+H2O CO2+H2

    UsuallyonlyHTSRifPSA/membraneforH2purification.

    6

    GasPurification. AbsorbCO2(amine)orseparateintopureH2stream(PSAormembrane).

    Methanation. ConvertresidualCO&CO2backtomethane.Exothermicfixedbedcatalyticreactions

    at700 800F.NotusedifPSA/membraneforH2purification.

    CO+3H2 CH4+H2O

    CO2+4H2 CH4+2H2O

  • 8/13/2019 10 Supporting Processes

    7/84

    SMRAlternateDesigns

    Traditionalwith2stagesshiftreactors 95%to98%purity

    NewerdesignswithPSA(Pressure

    Swing

    Adsorption)

    lower

    capital

    costs,lowerconversion,butvery

    highpurity(99%+)

    7

  • 8/13/2019 10 Supporting Processes

    8/84

    ReformerFurnaceDesign

    8

    HydrogenProductionbySteamReforming

    RayElshout,ChemicalEngineering,May2010

  • 8/13/2019 10 Supporting Processes

    9/84

    AlternateHydrogenPurificationProcesses

    Feedgasexperiencespressuredropacrosscontactingcolumn

    CO2releasednearatmosphericpressure

    Contaminantsadsorbed;releasedatnearatmosphericpressure

    HighconcentrationH2productexperiencespressuredropacrossbedofadsorbentbeads

    9

    HydrogenProductionbySteamReforming

    RayElshout,ChemicalEngineering,May2010

  • 8/13/2019 10 Supporting Processes

    10/84

    ProcessConsiderations

    Kaes [2000] Molburg & Doctor [2003] Nexant Report [2006] Other

    Model as conversion reactor Model as equilibrium reactor.

    Sulfur compounds converted to H2S &

    adsorbed in ZnO bed.

    Small temperature increase 500 - 800F depending on technology.

    700F most typical.

    Typically up to 725 psi (50 bar)

    Reformer 1450 - 1650F exit 1500F 20 - 30 atm (295 - 440 psia)

    Equilibirium Gibbs reactor with 20F

    approach (for design).

    Model as equilibrium reactor. 850-1000F (455-540C) inlet

    1470-1615F (800-880C) outlet

    650 - 700F entrance for HTS + LTS 660F entrance 940F (504C) inlet500 - 535F entrance when no LTS

    Equilibirium Gibbs reactor Fixed 90% CO conversion

    All components inert except CO, H2O,

    CO2, & H2.

    400 - 450F entrance 400F entrance

    Equilibirium Gibbs reactor 480-525F (249-274C) outlet

    All components inert except CO, H2O,

    CO2, & H2.

    Fixed 90% CO conversion

    Methanation 500 - 550F entrance

    Equilibirium Gibbs reactor

    All components inert except CH4, CO,

    H2O, CO2, & H2.Amine Purification Model as component splitter Model as component splitter MDEA circulation, duty, & work estimates

    from GPSA Data Book

    Treated gas 10 - 15F increase, 5 - 10

    psi decrease, water saturated

    Treated gas 100F & 230 psi (16 bar)

    exit

    Rejected CO2 atmospheric pressure &

    water saturated

    95% CO2 recovery

    PSA Model as component splitter Model as component splitter

    100F entrance 90% H2 recovered 75 - 85% recovery for "reasonable"

    capital costs (higher requires more beds)

    H2 puri ty as high as 99.999% H2 contains 0.001% product stream as

    contaminant

    200 - 400 psig feed pressure for refinery

    applications4:1 minimum feed:purge gas ratio. Purge

    gas typically 2 - 5 psig.

    Desulfurization

    Reactors

    High TemperatureShift Reactor

    Low Temperature

    Shift Reactor

    10

  • 8/13/2019 10 Supporting Processes

    11/84

    IntegratedProcess

    11

    HydrogenProductionbySteamReforming

    RayElshout,ChemicalEngineering,May2010

  • 8/13/2019 10 Supporting Processes

    12/84

  • 8/13/2019 10 Supporting Processes

    13/84

    SMRInstalledCost

    Includes

    Feedgasdesulfurization

    Reformer,shiftconverter,methanator,

    wasteheatboiler,MEAunit

    H2deliverytobatterylimits@250psig&

    100F

    Initialcatalystcharge

    Excludes

    BFWtreating

    Coolingwater

    DehydrationofH2product

    Powersupply

    13

    PetroleumRefiningTechnology&Economics,5th ed.Gary,Handwerk,&Kaiser

    CRCPress,2007

  • 8/13/2019 10 Supporting Processes

    14/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    14

  • 8/13/2019 10 Supporting Processes

    15/84

    GasProcessingUnits

    Twoprimaryfunctions

    RecoverC3+componentsfromthevariousgasstreams

    Crudedistillation,cokers,FCCU,reformers,hydrocrackers,

    Producelowsulfur,drygasforuseasfuelorhydrogenfeedstock

    Primarilymethane&ethane

    Leanoilabsorptionwithtreatingtoremoveacidgases

    Deethanizerusesnaphtharangeabsorbingoil

    Spongeoilin2nd absorber

    Relativelynonvolatile,ofkerosene/dieselboilingpointrange

    Sidecutfromcokerorcatcrackerfractionator

    Richspongeoilsentbacktocolumnwherespongeoil

    originates

    OftentherearetwoGPUs thesecondisdedicatedtostreamscontainingolefins

    15

  • 8/13/2019 10 Supporting Processes

    16/84

    GasProcessingUnits

    16

    Petroleum Refining Technology & Economics 5th Ed.by James Gary, Glenn Handwerk, & Mark Kaiser, CRC Press, 2007

  • 8/13/2019 10 Supporting Processes

    17/84

    GasPlantWithFCCFractionator

    17

    Primary

    Absorber

    SecondaryAbsorber

    Fuel Gas

    Stripper

    Separator

    Wash H2O

    Gasoline

    C3'S C4'S

    Rich Sponge Oil

    Rich Oil Recycle

    LCO

    SlurryRx

    Effluent

    Main

    Fractionator

    HCO Return

    Stabilizer

    (Debutanizer)

    Steam

    Lean Sponge Oil

    C3/C4

    Splitter

    Wash H2O

    High Pressure

    HCO Draw

    Stripper Overhead Recycle

    GeraldKaes

    SimulationOfPetroleumRefineryProcessesUsingCommercialSoftwareCoursenotes,2006

  • 8/13/2019 10 Supporting Processes

    18/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    18

  • 8/13/2019 10 Supporting Processes

    19/84

    SourWaterManagement

    SourwatercontainsH2S,NH3,andphenols mustbetreatedbeforedisposal

    SourcesofSourWater:

    Crudeunitoverhead

    Hydrotreaters

    CokerandFCC

    GasPlants

    Sour

    water

    production

    can

    be

    managed

    by

    cascading

    water

    from

    less

    sour

    sources(e.g.NaphthaHDS)tomoresoursources(e.g.Coker)

    SourwateristreatedintheSourWaterStripper

    19

  • 8/13/2019 10 Supporting Processes

    20/84

  • 8/13/2019 10 Supporting Processes

    21/84

    SourWaterStripper

    Strippedwatermaybereusedintherefinery

    RemovedH2SandNH3aresenttheSulfurRecoveryUnit

    Oneproprietaryprocess ChevronsWWT willrecoverasaleableammoniaproduct

    21

  • 8/13/2019 10 Supporting Processes

    22/84

    SourWaterStripper

    22

    Sour Water

    Stripper

    Stripped Water

    Cooler

    Condenser

    Reflux

    Drum

    Steam

    Stripper Reboiler

    Recovered Oil

    Feed Pumps

    Stripped Water

    Pumps

    Reflux PumpsFeed/Bottoms

    ExchangerFeed Surge

    Drum

    Sour Water

    from Refinery

    Stripped Water

    SWS Acid Gas to SRU

  • 8/13/2019 10 Supporting Processes

    23/84

    ChevronWWT Process

    23

    CourtesyofChevron

  • 8/13/2019 10 Supporting Processes

    24/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    24

  • 8/13/2019 10 Supporting Processes

    25/84

    AcidGas(H2SandCO2)Removal

    Chemicalsolventprocesses

    Aminesweetening(MEA,DEA,MDEA,DGA)

    Hotpotassiumcarbonate

    Physicalsolventprocesses

    Selexol

    Poly(EthyleneGlycol)DimethylEther

    Rectisol

    Methanol

    Propylenecarbonate

    Hybrid

    Sulfinol

    Sulfolane+amine

    UCARSOL

    Dryabsorbents

    Molecularsieve

    Activatedcharcoal

    Ironsponge

    ZincOxide

    25

  • 8/13/2019 10 Supporting Processes

    26/84

    AcidGasRemoval

    Inarefinery,themostcommonsolventsareMDEA,DEAandMEA

    Eachprocessunit(e.g.Hydrotreater,FCC,Coker,etc.)willhaveoneormoreamineabsorbers

    Richamineisprocessedinaregeneratorcommontoallprocessunits.(However,largerrefineriesmayhaveseveraldifferentsystems,eachwithitsown

    regenerator.)

    26

  • 8/13/2019 10 Supporting Processes

    27/84

    AmineChemistry

    GasTreatingAminesare:

    WeakLewisBases

    H+ fromweakacidsreactwiththeelectronsonN:

    ABCsubstituentsinfluence:

    HowfastacidsreactwithN:

    Temperaturebulgeinabsorber

    Energyrequiredinregenerator

    ChemicalStability

    Unwantedreactions

    27

    AMINE

    N

    A

    B

    C

    Primary amineA = CH2CH2OHB = HC = H

    Secondary amineA = CH2CH2OHB = CH

    2

    CH2

    OHC = H

    Tertiary amineA = CH2CH2OHB = CH2CH2OHC = CH3

    DowOil&Gas GasTreatingTechnologyPresentationtoURSWashingtonDivision,August2009

    RichAckman [email protected]

  • 8/13/2019 10 Supporting Processes

    28/84

    AmineChemistryReview

    BothH2S&CO2areweakacidswhendissolvedinwater

    H2S+H2O H3O+ +HS

    CO2+H2O H3O+ +CO2OH

    Reactionswithprimary&secondaryamines

    R2NH+H2S R2NHH+ +HS

    2

    R2NH

    +

    CO2 R2NHH+

    +

    R2NHCO2

    Reactionswithtertiaryamines

    R3N+H2S R3NH+ +HS

    R3N+CO2+H2O R3NH+ +CO2OH

    28

    Tertiary amine CO2

    hydrolysis slowvs. other reaction

  • 8/13/2019 10 Supporting Processes

    29/84

    AmineChemistryReview

    OtherReactionstoConsider

    H2SandIron(ironsulfide)

    CO2andIron(ironcarbonates)

    AmineCarbamatesandAmines(HEED,HEEUTHEED,diamines,etc.)

    Organicacids&Amine(HeatStableAmineSalts)

    Oxygen&Amine(DEA,Bicine,Acetates,glycolates)

    OtherSpecies

    Mercaptans(RSH)areweakacids

    H2Sisstrongerandwilldisplacethemercaptan

    COS

    NormalmechanismishydrolysistoH2S&CO2

    CS2

    Physicalabsorption

    29

  • 8/13/2019 10 Supporting Processes

    30/84

    GasTreatingAmines

    GenericAmines

    MEA(monoethanolamine)

    15 18%wt.(5 6.1%mol)

    DEA(diethanolamine)

    25 30%wt.(5.4 6.8%mol)

    DIPA(diisopropanolamine)

    30% 50%wt.(5.5 11.9%mol)

    MDEA(methyldiethanolamine)

    35% 50%wt.(7.5 13.1%mol)

    30

  • 8/13/2019 10 Supporting Processes

    31/84

    DowUCARSOLHybridSolvents

    HighSelectivity PreferentiallyAbsorbsH2Svs.CO2 UCARSOLHS115,HS101,HS102,HS103,HS104,HS104B

    HighCapacity H2SRemovalWithTotalCO2Removal

    UCARSOL

    CR

    402 ControlledCO2Removal&LowEnergyRequirements

    UCARSOLAP802,AP804,AP806

    CryogenicCO2Specifications(Ammonia&Hydrogen)

    UCARSOLAP810,AP814,NH605,NH608

    HybridSolventsforCOS&MercaptanRemoval

    UCARSOLLE701,LE702

    HighCapacitySolventsforRefineryUse NoSlip;LowSolubilityinCrackedLPGService

    UCARSOL LE713,LE714,LE777,LE801

    31

  • 8/13/2019 10 Supporting Processes

    32/84

    AmineSolventCapacity&Performance

    AdvantagesofUCARSOLSolvents

    Higherholdingcapacityvs.mostcompetitiveproducts

    ControlledCO2slip

    DonotremoveextraCO2anddilutesulfurplantfeed

    MorecapacityinsolventforH2S

    Usuallylessenergyconsumption

    AccuratemodelingtoassessperformanceInitialdesignand

    Initialdesignandserviceinexistingplants

    Howhighcanasolventbeloaded

    Flashing/hydraulicissues

    32

    DowOil&Gas GasTreatingTechnologyPresentationtoURSWashingtonDivision,August2009

    RichAckman [email protected]

  • 8/13/2019 10 Supporting Processes

    33/84

    AmineSolventCapacityComparison

    33

    Wt% Mol%Load

    Range

    Relative

    Capacity

    MEA 18% 6.1% 0.35 1DGA 50% 14.6% 0.45 3.09

    DEA 28% 6.3% 0.48 1.41

    MDEA 50% 13.1% 0.49 3.02

    CompSol 20 50% 10.4% 0.485 2.37

    CR 402 50% 14.7% 0.49 3.38

    AP 814 50% 13.9% 0.485 3.16

    DowOil&Gas GasTreatingTechnologyPresentationtoURSWashingtonDivision,August2009

    RichAckman [email protected]

  • 8/13/2019 10 Supporting Processes

    34/84

    TypicalAmineTreatingPlant

    Typicalplantconfiguration

    Broad

    range

    of

    treating

    applications Lowtointermediatespecifications

    Selectivetreating,lowH2S

    Lowinstalledcost

    34

  • 8/13/2019 10 Supporting Processes

    35/84

    AlternateAminePlantConfigurations

    35

    AbsorberwithIntercooler

    Intercoolerincreasestherichloading/solventutility

    Musthavestainlesssteelforreliability

    Higherinstalledcostthantypicalplant

  • 8/13/2019 10 Supporting Processes

    36/84

    AlternateAminePlantConfigurations

    36

    FlashRegenerationPlant

    Highpartialpressurespecification(CO2

    >16psi)

    Usuallylowerenergycost

    Highcirculationrates

    Needhighpartialpressureacidgasinfeedforeconomics

  • 8/13/2019 10 Supporting Processes

    37/84

    AlternateAminePlantConfigurations

    37

    Lean/SemiLeanwithRegeneratorSideDraw

    Lower

    reboiler

    energy

    than

    typical

    plant Lowercirculationratevs.flashregeneration

    Lowertreatedgasacidgasspecvs.flashregen

    Higherinstalledcost

  • 8/13/2019 10 Supporting Processes

    38/84

    AlternateAminePlantConfigurations

    Lean/SemiLeanwithAssistedFlash

    Lowestregenerationenergyconfiguration

    Highcirculationrate

    Lowtreatedgasspecification

    Highestinstalledcost

    Mostcomplextooperate

    38

  • 8/13/2019 10 Supporting Processes

    39/84

    AmineTowerParameters

    TowerDesignConsiderations

    GasComposition

    Trays

    SystemFactorBubbleArea

    o MEA/DEA 0.75abs(0.85reg)

    o MDEA&FormulatedSolvents 0.70abs(0.85reg)

    SystemFactorDowncomer

    o MEA/DEA 0.73abs(0.85reg)

    o MDEA&FormulatedSolvents 0.70abs(0.85reg)

    o Standard

    Cross

    Flow

    vs.

    High

    Capacity CalmingSection,MDTrays

    Packings

    RandomPacking

    o Capacityvs.efficiency,GPDCoverlay

    Structured

    Packing

    39

    DowOil&Gas GasTreatingTechnologyPresentationtoURSWashingtonDivision,August2009

    RichAckman [email protected]

  • 8/13/2019 10 Supporting Processes

    40/84

    AmineTowerParameters

    Absorberdesignconsiderations

    Pinchpointslimit

    Topoftowerleanpinch

    Temperaturebulgemaximum

    Bottomoftowerrichpinch

    ConfidencelevelinVLE

    Temperatureprofileindicator

    40

    AbsorberTemperature Profiles

    Liquid Phase

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    80 100 120 140 160 180 200

    Temperature [F]

    Stage

    C-1 Conservative

    C-2 Controlled Efficient

    C-3 Intercooler

  • 8/13/2019 10 Supporting Processes

    41/84

    AmineTowerParameters

    RegeneratorEnergyRequirement

    StrippingRatio(molewater/molAG)

    Strongfunctionofrichfeedtemp

    Strongfunctionofrichloading

    TowerTraffic(lbssteam/gallean)

    Masstransferdriven,leanendpinch

    UnitEnergy

    Btu/lb.molacidgas

    Functionofrichloadingandplantconfiguration

    41

  • 8/13/2019 10 Supporting Processes

    42/84

    AmineApproximateGuidelines

    MEA DEA DGA

    Acid gas pickup scf/gal @ 100F 3.1 - 4.3 6.7 - 7.5 4.7 - 7.3

    Acid gas pickup mol/mol amine 0.33 - 0.40 0.20 - 0.80 0.25 - 0.38

    Lean solution residual acid gas mol/mol amine 0.12 0.01 0.06

    Solution concentration wt% 15 - 25 30 - 40 50 - 60

    Reboiler duty BTU/gal lean solution 1,000 - 2,000 840 - 1,000 1,100 - 1,300

    Steam heated reboiler tube bundle flux Btu/hr-ft 9,000 - 10,000 6,300 - 7,400 9,000 - 10,000

    Direct fired reboiler tube bundle flux Btu/hr-ft 8,000 - 10,000 6,300 - 7,400 8,000 - 10,000

    Reclaimer steam bundle or fire tube flux Btu/hr-ft 6 - 9 N/A 6 - 8

    Reboiler temperature F 225 - 260 230 - 260 250 - 270

    Heat of reaction Btu/lb H2S 610 720 674

    Btu/lb CO2 660 945 850

    42

  • 8/13/2019 10 Supporting Processes

    43/84

    SimplifiedDesignCalculations

    GPM

    QyC

    x

    43

    Estimateaminecirculationrate

    C = 41 if MEA

    45 ifDEA

    32 ifDEA(highloading)

    55.8 ifDGA

    Q = Sourgastobeprocessed[MMscfd]

    y = Acidgasconcentrationininletgas[mol%]

    x = Amineconcentrationinliquidsolution[wt%]

    UseonlyifcombinedH2S+CO2ingasbelow5mol%

    Amineconcentrationlimitedto30wt%

  • 8/13/2019 10 Supporting Processes

    44/84

    PhysicalSolvents Selexol

    Characteristics

    Poly(EthyleneGlycol)DimethylEther

    CH3 O (CH2 CH2 O)n CH3 wherenisfrom3to10

    Clearfluidthatlooksliketintedwater

    Capabilities

    H2Sselectiveornonselectiveremoval verylowspec. 4ppm

    CO2selectiveornonselectiveremoval 2%to0.1%

    Waterdewpointcontrol

    Hydrocarbondewpointcontrol

    Seerelativesolubilities;moreefficienttoremovehydrocarbonvs.refrigeration

    Organic

    sulfur

    removal

    mercaptans,

    disulfides,

    COS

    44

  • 8/13/2019 10 Supporting Processes

    45/84

    SelexolProcesses

    Physicalsolventsfavorhighpressure&highpartialpressure

    Configurations

    H2S&organicsulfurremoval

    Steamstrippingforregeneration

    CO2removal

    Flashregeneration

    ChillerforlowCO2

    Specialapplications

    Siloxanesareremovedfromlandfillgas

    Metalcarbonylareremovedfromgasifiergas

    45

  • 8/13/2019 10 Supporting Processes

    46/84

    SelexolProcess

    46

    http://www.uop.com/objects/97%20Selexol.pdf

  • 8/13/2019 10 Supporting Processes

    47/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sour

    water

    management

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Water

    treatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuel

    gas

    Flaresystems

    Instrumentair

    Powergeneration

    Fire

    protection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    47

  • 8/13/2019 10 Supporting Processes

    48/84

    SulfurPrices

    48

    SpecialReport:Moreproductsulfurreductiononhorizon

    Oil&GasJournal,Oct.12,2009

  • 8/13/2019 10 Supporting Processes

    49/84

    SulfurRecovery

    MosttypicallyamodifiedClausprocess

    H2Srichstreamburnedwith1/3stoichiometric air. Hotgasesarethenpassedover

    aluminacatalysttoproducefreesulfur

    Combustion: H2S+1.5O

    2H

    2O+SO

    2

    ClausReaction: 2H2S+SO2 2H2O+3S

    Sulfurformationreactionmildlyexothermic

    Sulfurconversionreactorskeptabove400F(sulfurdewpoint)

    TheClausreactionisreversible therefore,100%conversioncanneverbeachieved

    Practically,Clausunitsarelimitedtoabout96%recovery

    Tailgasunitsareusedtoprovideimprovedconversion

    49

  • 8/13/2019 10 Supporting Processes

    50/84

    ModifiedClausProcess

    50

    PetroleumRefiningTechnology&Economics 5th Ed.byJamesGary,GlennHandwerk,&MarkKaiser,CRCPress,2007

  • 8/13/2019 10 Supporting Processes

    51/84

    VariationsoftheClausProcess

    SinglezoneortwozoneReactionFurnace

    Singlezonemostcommon

    Twozoneusuallyprovidedtoprocessammonia

    Numberofcatalyticstages

    2stageand3stageunitsarecommon

    Converterreheatmethod

    IndirectheatingbyHPsteam(mostcommon)

    Hotgasbypass(shownonthepreviousslide)

    Directheatingbyinlineburnerfiringfuelgasoracidgas

    51

  • 8/13/2019 10 Supporting Processes

    52/84

    ClausTailGasTreating

    Themostcommonprocessconsistsof:

    Hydrogenation toconvertoxidizedsulfurspeciestoH2S

    Quench toremoveandrecoverprocessheatandtoremovewater

    AmineTreating toremoveH2SandrecycleittotheSRU TheSCOT processisoneexample

    Othertailgastreatingprocesses: CBA (ColdBedAdsorption) Stretford

    SuperClaus

    Selectox

    55

  • 8/13/2019 10 Supporting Processes

    53/84

    TailGasHydrogenation&Quench

    QUENCH

    COLUMN

    QUENCH WATER

    PUMPS

    PARTICULATE

    FILTER

    QUENCH WATER

    COOLER

    TRIM

    COOLER

    SOUR QUENCH

    WATER

    SOUR GAS TO

    TGU ABSORBER

    WASTE HEAT

    EXCHANGER

    LPSTEAM

    BLOWDOWN BFW

    HYDROGENATIONREACTOR

    RECYCLE

    BLOWER

    K.O. DRUMINLINE HEATER

    RECYCLE

    BLOWER

    (OPTIONAL)

    FUEL GAS

    TEMPERING

    STEAM

    COMBUSTION

    AIR

    REDUCING

    HYDROGEN

    CLAUSTAIL GAS

    56

  • 8/13/2019 10 Supporting Processes

    54/84

    TailGasAmineTreating

    57

  • 8/13/2019 10 Supporting Processes

    55/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sour

    water

    management Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Water

    treatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuel

    gas Flaresystems

    Instrumentair

    Powergeneration

    Fire

    protection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemical

    storage

    Shopsandwarehouses

    Powerdistribution

    59

    Li id S i

  • 8/13/2019 10 Supporting Processes

    56/84

    LiquidSweetening

    Conversionofsulfurbearingmercaptans todisulfides

    Cheaperthandirecthydroprocessing

    UOPsMerox processisverycommon

    Catalyticoxidationprocess.Carriedoutinanalkalineenvironmentwithaqueous

    solutionofNaOH (strongbase)orNH3(weakbase).

    Reactions(usingNaOH)

    Extraction: 4RSH+4NaOH 4NaSR+4H2O

    Regeneration: 4NaSR+O2+2H2O 2RSSR+4NaOH

    Overall: 4RSH+O2 2RSSR+2H2O

    Cancontroltolessthan10ppmw mercaptanlevel

    60

    M li d t LPG (N OH t l t)

  • 8/13/2019 10 Supporting Processes

    57/84

    Merox appliedtoLPG(NaOH catalyst)

    61

    http://www.uop.com/uopmeroxgastreatingflowscheme/

    M li d t k ( lid t l t & NH )

  • 8/13/2019 10 Supporting Processes

    58/84

    Merox appliedtokerosene(solidcatalyst&NH3)

    62

    http://www.uop.com/uopkerojetfuelsweeteningprocess/

    Supporting Processes

  • 8/13/2019 10 Supporting Processes

    59/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sour

    water

    management Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Water

    treatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuel

    gas Flaresystems

    Instrumentair

    Powergeneration

    Fire

    protection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemical

    storage

    Shopsandwarehouses

    Powerdistribution

    63

    Waste Water Treatment

  • 8/13/2019 10 Supporting Processes

    60/84

    WasteWaterTreatment

    Potentialsourcesofwastewater

    Surfacerunoff

    Leaks,opendrains,spills,rain

    Crude&productstoragetankwaterdrains

    Desalterwater

    Waterdrainsfromatmosphericstillrefluxdrums

    Waterdrainsfrombarometricsumpsoraccumulatorsonvacuumtowerejectors

    Waterfromhydraulicdecokingofcokedrums

    Condensedsteamformcokedrumpurgingoperations

    Product fractionatorrefluxdrumsoncatcrackers,hydrotreaters,alkylationunits,lightends

    recovery,

    Coolingtower&boilerwaterblowdown

    64

    Waste Water Treatment

  • 8/13/2019 10 Supporting Processes

    61/84

    WasteWaterTreatment

    Water

    accidentally

    contaminated

    byoil

    Oilfreewater

    Waterexpected

    tobe

    contaminated

    byoil

    Sewage

    Processunits

    Ballastwater

    Sourwater

    stripper

    Gravityoil

    separator

    Gravityoil

    separator

    Homogenization

    tank

    Biotreatment

    Aerationbasin

    Holdingbasin

    Bufferbasin

    Processareas

    Gravityoil

    separator

    Receivingtanks

    Intermittent

    Oiltrap Communitors

    Drainage

    ContinuousContinuous

    exutilityplant

    Flocculation

    flotationunit

    Metering/samplepoint

    Dischargeof

    treatedeffluent

    tomarineoutfall

    65

    Source:http://www.nzic.org.nz/ChemProcesses/energy/7A.pdf

    Waste Water Treatment

  • 8/13/2019 10 Supporting Processes

    62/84

    WasteWaterTreatment

    OilcontaminatedwaterskimmedinAPIseparators

    Largeconcretesumps

    Skimmedoilpumpedtosloptanks&reprocessed

    Somewaterusedindesalters. Balancefurtherpurified

    Flotationtanks

    Mixtureferrichydroxide&aluminumhydroxideaddedtocauseimpuritiestocoagulate

    Frothfurtherthickened&sludgeincinerated

    66

    Waste Water Treatment

  • 8/13/2019 10 Supporting Processes

    63/84

    WasteWaterTreatment

    Digestiontanks

    WaterfromFlotationTanksoxygenatedunderpressure

    Maybemixedwithsanitarysewage

    Controlled

    amount

    of

    bacteria

    consumes

    remaining

    oil

    or

    phenolics

    Bacteriacontinuouslyremoved&incinerated

    Finalpolishinginsandfilters

    Reusedinrefinery

    Furtheroxidized&discharged

    67

    Waste Water Treatment

  • 8/13/2019 10 Supporting Processes

    64/84

    WasteWaterTreatment

    Oilfreewaterhassimplerprocessing

    Fromcoolingtowerorboilerblowdown

    Highsolidscontent

    Neutralized

    Variousoptions

    Evaporatedinsolarponds

    Injectedintodisposalwells

    Furtheroxidized&mixedwithotherwater&discharged

    Acidsludges&sourwater

    Acidsludgemustbeneutralized

    Acidgasesstrippedfromsourwater

    SenttoAPIseparators

    68

    Supporting Processes

  • 8/13/2019 10 Supporting Processes

    65/84

    SupportingProcesses

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Water

    treatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fire

    protectionOffsites

    Tankfarm

    Truckandrailloading

    Chemical

    storage Shopsandwarehouses

    Powerdistribution

    69

    Steam Boiler

  • 8/13/2019 10 Supporting Processes

    66/84

    SteamBoiler

    70

    http://www.spiraxsarco.com/resources/steamengineeringtutorials/theboilerhouse/shellboilers.asp

    SteamBoilerwithSuperheater

  • 8/13/2019 10 Supporting Processes

    67/84

    p

    71

    http://www.spiraxsarco.com/resources/steamengineeringtutorials/theboilerhouse/miscellaneousboilertypeseconomisersandsuperheaters.asp

    Burner

  • 8/13/2019 10 Supporting Processes

    68/84

    72

    gas

    Air

    Air

    oil

  • 8/13/2019 10 Supporting Processes

    69/84

    SteamGeneration CombustionAirPreheat

  • 8/13/2019 10 Supporting Processes

    70/84

    74

    SteamGeneration CombustionAirPreheat

  • 8/13/2019 10 Supporting Processes

    71/84

    75

    SteamBoiler BoilerFeedwaterPreheat

  • 8/13/2019 10 Supporting Processes

    72/84

    76

    http://www.spiraxsarco.com/resources/steamengineeringtutorials/theboilerhouse/miscellaneousboilertypeseconomisersandsuperheaters.asp

    NOx ReductioninFlueGas

  • 8/13/2019 10 Supporting Processes

    73/84

    RefineriesandPetrochemicalUnits:

    SignificantNOxReduction previousregulatoryrequirements

    NOxproducedwhencombustingin:

    Processfiredheaters

    Utilityboilers

    FluidCatCrackingUnit(FCCU) regenerators

    NOxReduction:

    Burnerreplacement

    LowNOx

    UltralowNOxburners

    Fluegas

    SelectiveCatalyticReduction(SCR)

    SelectiveNonCatalyticReduction(SNCR)

    FCCUFlueGasScrubberSystems(i.e.BelcoLoTOx,etc.)

    77

    NOx UltraLowNOx Burner

  • 8/13/2019 10 Supporting Processes

    74/84

    78

    NOxSCR

  • 8/13/2019 10 Supporting Processes

    75/84

    Steam

    Soot Blower

    To Stack

    From Furnace

    Ammonia

    Compressed Air

    Ductwork

    CatalystBed

    79

    NOxReduction

  • 8/13/2019 10 Supporting Processes

    76/84

    Appliestocombustionsources

    Firedheaters

    Boilers

    FCCU

    regenerator

    flue

    gas

    NOxreductionsubstantiallyreducesCO2(e)

    OnetonofN2Oisequivalentto310tonsofCO2

    Muchreductionhasalreadybeenimplemented

    80

    SuperheatedSteam

  • 8/13/2019 10 Supporting Processes

    77/84

    Advantages

    Nowaterdropletsinturbines

    Lowererosionoftheturbineblades

    Lowerfriction

    Higherpipelinevelocities(upto100m/s)

    Smallerdistributionpipelines

    Nocondensationinpipework steamtrappingonlyduringstartup

    Disadvantages heattransfermedium

    Inaccuratesizing&difficultcontrolofheattransferequipment

    Superheatedsteamheattransfercoefficientssmall,variable,&difficulttoquantifyaccurately

    Condensingsteammuchhigherheattransfercoefficients&thesteamtemperatureisconstant

    o Accuratesizing

    o Bettercontrolofequipment.

    o Smallerequipment

    Saturatedsteamleadstosmaller&cheaperheatexchangers

    Someprocesseslessefficientusingsuperheatedsteam

    Highertemperaturesmaymeanthathigherrated&moreexpensiveequipment

    Highertemperaturesmaydamagesensitiveequipment

    81

    http://www.spiraxsarco.com/resources/steamengineeringtutorials/desuperheating/basicdesuperheatingtheory.asp

    SteamDesuperheating

  • 8/13/2019 10 Supporting Processes

    78/84

    Superheatedsteamrestoredtoitssaturatedstate

    DirectContact

    Superheatedsteamdirectlymixedwithcoolingmedium

    Usuallysamefluidasthevaporbutintheliquidstate

    Coolingwater

    Steamcondensate

    82

    WaterBathTypeDesuperheater

  • 8/13/2019 10 Supporting Processes

    79/84

    Advantages

    Simple

    Steamproducedatsaturation

    temperature

    Turndownonlylimitedbythecontrols

    Disadvantages

    Bulky

    Notpracticalforhightemperatures

    Applications

    Widevariationsinflowrate

    Noresidualsuperheatcanbetolerated

    83

    SinglePointRadialInjectionSpray

  • 8/13/2019 10 Supporting Processes

    80/84

    Advantages:

    Simpleinoperation

    Costeffective

    Minimumsteampressuredrop

    Disadvantages:

    Lowturndownratio(~3:1max)onbothsteam&coolingwaterflow

    Desuperheatedsteamtemperaturecanonlybereducedto10Cabovesaturationtemperature

    Longerabsorptionlengththanthesteamatomisingtype

    Pronetoerosiondamage

    Overcomebyuseofathermalsleeve

    Limitedpipesizes

    Applications:

    Constantsteamload

    Constantsteamtemperature

    Constantcoolanttemperature

    84

    AxialInjectionSpray

  • 8/13/2019 10 Supporting Processes

    81/84

    Advantages:

    Simpleinoperation

    Nomovingparts

    Costeffectiveacrossrangeofsizes

    Minimalsteampressuredrop

    Disadvantages:

    Lowturndownratio(~3:1max)onbothsteam&coolingwaterflow

    Desuperheatedsteamtemperaturecanonlybereducedto10Cabovesaturationtemperature

    Longer

    absorption

    length

    than

    the

    steam

    atomisingtype,butlessthantheradialtypedesuperheaters

    Pronetoerosiondamage overcomebyuseofathermalsleeve

    Applications:

    Constantsteamload

    Constantsteamtemperature

    Constantcoolanttemperature

    85

    MultipleNozzleAxialInjection Advantages:

  • 8/13/2019 10 Supporting Processes

    82/84

    Advantages:

    8:1to12:1turndownratios

    Absorptionlengthlessthansinglenozzledevices

    Betterdispersionofwaterdroplets

    Minimalsteampressuredrop

    Disadvantages: Temperatureonlyreducedto8Cabove

    saturationtemperature

    Longerabsorptionlengththanthesteamatomisingtype

    Pronetocauseerosiondamage

    Thermal

    sleeve

    used Notsuitableforsmallpipesizes

    Requireshighpressurecoolingwater

    Canbeexpensive

    Applications:

    Highturndownratiorequired

    Constantsteamload

    Constantsteamtemperature

    Constantcoolanttemperature

    86

    FixedArea

    VariableArea

    VenturiType

  • 8/13/2019 10 Supporting Processes

    83/84

    Advantages

    5:1steamturndownratio&over20:1coolingwaterturndownratio

    Simpleoperatingprinciple

    Nomovingparts

    Accurate

    control

    within

    3

    C

    of

    saturation

    temperature

    Suitableforsteadyorvariablesteamconditions

    Reducedwearindownstreampipework

    coolingwateremergesasamist

    Disadvantages Pressuredrop

    Generallysmall&acceptable

    Absorptionlengthislongerthansteamatomisingtype

    Minimumcoolingwaterflowrequired

    Applications Mostgeneralplantapplications

    87

    SupportingProcesses

  • 8/13/2019 10 Supporting Processes

    84/84

    Processes

    Hydrogenproduction&purification

    Gasprocessingunits

    Sourwatermanagement

    Acidgastreating

    Sulfurrecovery&tailgastreating

    Liquidsweetening

    Watertreatment

    Utilities

    Steamandcondensate

    Coolingwater

    Fuelgas

    Flaresystems

    Instrumentair

    Powergeneration

    Fireprotection

    Offsites

    Tankfarm

    Truckandrailloading

    Chemicalstorage

    Shopsandwarehouses

    Powerdistribution

    88