28
173 10 Solution Chemistry Impact on Silica Polymerization by Inhibitors Robert W. Zuhl and Zahid Amjad CONTENTS 10.1. Introduction................................................................................................... 174 10.1.1. Silica.Solution.Chemistry. ............................................................... 174 10.1.2. Silica.Scaling.in.Industrial.Water.Systems..................................... 176 10.1.3. Silica.Scaling.Mechanism. .............................................................. 177 10.1.4. Silica-Based.Scale.Control.Approaches. ......................................... 178 10.2. Experimental................................................................................................. 180 10.3. Results.and.Discussion. ................................................................................. 182 10.3.1. Water.Chemistry.Effect.on.Silica.Polymerization.......................... 182 10.3.1.1. Silica.Supersaturation..................................................... 182 10.3.1.2. Temperature.Effect ......................................................... 183 10.3.1.3. Silica.Polymerization.as.a.Function.of.pH ..................... 184 10.3.2. Inhibitor.Evaluations....................................................................... 185 10.3.2.1. Inhibitor.Concentration.Effect. ....................................... 185 10.3.2.2. Inhibitor.Composition.Effect.......................................... 185 10.3.3. Hardness.Ions.Effect ....................................................................... 187 10.3.4. Total.Dissolved.Solids.Effect.......................................................... 189 10.3.5. Trivalent.Metal.Ions.Effects. ........................................................... 190 10.3.5.1. Fe(III).Effect. .................................................................. 191 10.3.5.2. Al(III).Effect. .................................................................. 191 10.3.6. Cationic.Polymer.Effect.................................................................. 192 10.3.7. Solution.Temperature.Effect ........................................................... 192 10.3.8. Impact.of.Biocides.on.Polymer.Efficacy. ........................................ 194 10.3.9. Impact.of.Thermal.Stress.on.Polymer.Efficacy.............................. 195 10.3.10. Silica.Precipitate.Characterization. ................................................. 196 References .............................................................................................................. 198

10 Solution Chemistry Impact on Silica Polymerization by ... · 10.3.1. Water.Chemistry.Effect.on.Silica ... Solution Chemistry Impact on Silica Polymerization by Inhibitors 175

  • Upload
    dophuc

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

173

10 Solution Chemistry Impact on Silica Polymerization by Inhibitors

Robert W. Zuhl and Zahid Amjad

contents

10.1. Introduction................................................................................................... 17410.1.1. Silica.Solution.Chemistry................................................................ 17410.1.2. Silica.Scaling.in.Industrial.Water.Systems...................................... 17610.1.3. Silica.Scaling.Mechanism............................................................... 17710.1.4. Silica-Based.Scale.Control.Approaches.......................................... 178

10.2. Experimental................................................................................................. 18010.3. Results.and.Discussion.................................................................................. 182

10.3.1. Water.Chemistry.Effect.on.Silica.Polymerization.......................... 18210.3.1.1. Silica.Supersaturation...................................................... 18210.3.1.2. Temperature.Effect.......................................................... 18310.3.1.3. Silica.Polymerization.as.a.Function.of.pH...................... 184

10.3.2. Inhibitor.Evaluations....................................................................... 18510.3.2.1. Inhibitor.Concentration.Effect........................................ 18510.3.2.2. Inhibitor.Composition.Effect.......................................... 185

10.3.3. Hardness.Ions.Effect........................................................................ 18710.3.4. Total.Dissolved.Solids.Effect........................................................... 18910.3.5. Trivalent.Metal.Ions.Effects............................................................ 190

10.3.5.1. Fe(III).Effect................................................................... 19110.3.5.2. Al(III).Effect................................................................... 191

10.3.6. Cationic.Polymer.Effect................................................................... 19210.3.7. Solution.Temperature.Effect............................................................ 19210.3.8. Impact.of.Biocides.on.Polymer.Efficacy......................................... 19410.3.9. Impact.of.Thermal.Stress.on.Polymer.Efficacy............................... 19510.3.10. Silica.Precipitate.Characterization.................................................. 196

References............................................................................................................... 198

174 Mineral Scales in Biological and Industrial Systems

10.1  IntroductIon

Scaling.in.industrial.water.systems.is.caused.by.the.precipitation.of.sparingly.solu-ble.salts.dissolved.in.the.feed.water..During.water.system.(desalination.processes,.boilers,.cooling.loops).operation,.the.solubility.of.sparingly.soluble.salts.(or.miner-als).can.be.exceeded.and.may.cause.precipitation.(scaling).and.deposition.of.these.salts.(or.mineral.scales).on.various.substrates..Common.mineral.scales.encountered.include.calcium.carbonate,.calcium.sulfate,.barium.sulfate,.calcium.phosphate,.sil-ica,.and.metal.silicates..Other.less.commonly.found.scales.include.calcium.fluoride,.calcium.oxalate,.calcium.phosphonate,.strontium.sulfate,.and.cupric.sulfide..Silica-.and.metal.silicate-based.salts.have.been.described.as.the.most.problematic.foulants.in.industrial.water.systems.operating.with.silica-laden.feed.water.[1].

Various.approaches.can.be.used.to.prevent.or.eliminate.mineral.scale.formation..These.methods.include.(1).operating.system.at.low.supersaturation.(low.recovery.or.low.cycles.of.concentration,.(2).removing.hardness.ions.by.ion.exchange,.(3).decreas-ing. system. pH. by. acid. feed,. and. (4). using. scale. inhibitor(s).. Scale. inhibitor. addi-tion.is.generally.considered.the.most.effective.scale.formation.prevention.method.for.industrial.water.systems..Inhibitors.are.commonly.either.non-polymeric.(e.g.,.phos-phonates,. polyphosphates). or. polymeric. (e.g.,. acrylic. acid-. or. maleic. acid-based.homo-. and. copolymers)..These. ionic. inhibitors. effectively. control. ionic. salts. such.as. calcium.carbonate,. calcium.fluoride,. and.calcium.sulfate..However,. silica. scale.(SiO2). is. a. covalent. amorphous. solid. that. cannot. be. effectively. inhibited.by. com-monly.used.anionic.scale.inhibitors..Thus,.controlling.silica.precipitation.and.deposi-tion.on.equipment.surfaces.in.industrial.water.system.remains.a.challenging.problem.

10.1.1  silica soluTion cheMisTry

Silica.solubility.as.a.function.of.solution.pH.and.temperature.is.shown.in.Figures.10.1.and.10.2,.respectively..Silica.scaling.may.occur.when.the.dissolved.silica.level.in.an.aqueous.system.exceeds.the.solubility.limit.(in.the.range.of.120–150.mg/L.at.20°C). for. amorphous. silica.. Exceeding. 150. mg/L. silica. in. cold. water. (<10°C). is.

800

600

Silic

a con

cent

ratio

n (m

g/L)

400

200

04 5 6 7 8 9 10 11

pH

FIgure 10.1  Silica.solubility.as.a.function.of.pH.

175Solution Chemistry Impact on Silica Polymerization by Inhibitors

not.a.serious.problem.because.silica.polymerization.is.a.very.slow.process.at.lower.temperatures..However,.silica.in.excess.of.180.mg/L.presents.a.potential.problem.at.any.temperature.[2].

Silica.solution.chemistry.is.very.complex.and.difficult.to.predict..The.formation.of. silica. and. metal. silicate. (i.e.,. magnesium. silicate,. iron. silicate,. aluminum. sili-cate).in.aqueous.systems.depends.on.several.factors.including.silica.solubility,.pH,.temperature,.water.chemistry,.and.system.operating.conditions.[2]..The.temperature.effect.of.silica.solubility.depends.on.the.form.in.which.it.exists..Unlike.metal.silicate.salts.(e.g.,.magnesium.silicate).that.exhibit.inverse.solubility.behavior.vs..tempera-ture.(i.e.,.solubility.decreases.with.increasing.temperature),.amorphous.silica.solu-bility.increases.with.increasing.temperature.[2].

Amorphous.silica,.based.on.its.reactivity,.is.generally.classified.as.follows:

•. Dissolved.(or.reactive.silica)•. Polymerized.silica.(reacts.slowly)•. Colloidal.(or.unreactive.silica)•. Suspended.(or.particulate.silica)

The.term.reactive.refers.to.silica.that.reacts.with.ammonium.molybdate.within.2.min.to.form.colored.complex..Silica.dissolution.involves.a.chemical.reaction.shown.in.Equation.10.1:

.SiO H O Si OH2 2 4

+ → ( ) . (10.1)

Measuring. silica.concentration. in.aqueous. solutions. requires. an.understanding.of.silica. chemistry. and. attention. to. analytical. detail.. Inability. to. account. for. all. the.silica.in.an.aqueous.system.may.be.attributable.to.a.combination.of.limitations.with.the.measurement.and/or.sampling.method(s).as.well.as.silica.precipitation.in.the.sys-tem..Silica.characterization.and.quantification.terminology.are.discussed.as.follows:

350

300

250

200

150

Silic

a con

cent

ratio

n (m

g/L)

100

50

00 10 20 30 40 50 60 70 80

Temperature (°C)

FIgure 10.2  Silica.solubility.as.a.function.of.temperature.

176 Mineral Scales in Biological and Industrial Systems

. 1..The.total silica.concentration.in.an.aqueous.solution.is.determined.by.one.of.the.following:

. a.. Knowing.how.much.silica.was.added.to.the.system

. b.. Measuring.silica.by.using.the.induced.coupling.plasma.(ICP).method

. c.. Analyzing.an.unfiltered.water.sample.after.addition.of.NaOH.to.pH.>.13.(which.converts.all.silica.to.the.reactive.form).by.the.standard.colori-metric.method

. 2..Soluble silica.consists.of.both.monomeric.silica.[Si(OH)4,.a.k.a.,. reactive.silica.or.silicic.acid].and.polymerized.silica.[(OH)3Si.−.O−]n..The.total sol-uble silica.concentration.is.determined.by.filtering.(typically.with.0.22.μm.membrane.filter).an.aqueous.solution.and.measuring.(as.described.earlier).the.total.silica.concentration.in.the.filtrate..The.filtrate.can.also.be.analyzed.using.the.standard.colorimetric.method.for.silica.to.determine.the.mono-meric silica.concentration..The.amount.of.polymerized.silica.in.the.filtrate.can.be.calculated.as. the.difference.between.the.total.and.the.monomeric.silica.concentration.

. 3..Determining.the.precipitated silica.concentrations.in.an.aqueous.solution.requires.a.filtration.(typically.with.0.22.μm.membrane.filter).step..The.pre-cipitated.silica.is.the.difference.between.the.total.silica.concentrations.(see.(1)..(b).or.(c).earlier).in.solution.before.and.after.filtering.

. 4..Colloidal silica.concentrations.must.be.calculated.after.determining.other.silica.solutions.values.including.total.silica.(see.1..above),.monomeric.silica.(see. 2.. above),. and. precipitated. silica. (see. 3.. above). using. the. following.equation:

. Colloidal silica total silica monomeric silica precipitate= − − dd silica . (10.2)

10.1.2  silica scaling in indusTrial waTer sysTeMs

In. many. parts. of. the. world. including. the. western. United. States,. Hawaii,. Puerto.Rico,.Mexico,.and.Southeast.Asia,.silica.solubility.limits.the.efficient.use.of.water.in.cooling,.boiler,.geothermal,.and.reverse.osmosis.(RO).applications..Water.supplies.in. these.geographical. areas.may.have. silica. levels. ranging. from.30. to.120.mg/L..Conventional.operation.of.water.treatment.systems.limits.the.silica.concentration.to.150.mg/L.due.to.sparing.solubility.of.amorphous.silica.and.silicates.

In. evaporative. cooling. systems,. water. technologists. must. maintain. silica. at.acceptable.levels.(usually.<180.mg/L.in.the.absence.of.silica.polymerization.inhib-itor).to.avoid.the.formation.and.deposition.of.silica-based.deposits..This.requires.(1). operating. systems. at. low. cycles. of. concentration. that. increases. water. con-sumption.and/or.(2).incorporation.of.silica.polymerization.inhibitor.in.the.water.treatment.formulation..In.geothermal.applications,.silica.scale.formation.typically.occurs.when.brine.is.cooled.in.the.course.of.brine.handling.and.energy.extraction..Factors.contributing.to.silica.scale.include.variable.fluid.composition,.fluctuating.plant.operating. conditions,. and. the. complex.nature.of. the. silica.polymerization.reaction. that. collectively. contribute. to. silica. scaling. problem..The. composition.

177Solution Chemistry Impact on Silica Polymerization by Inhibitors

and. the. amount.of. silica. scale. as.well. as. the. formation. rate.depends.upon. sev-eral.factors.including.mineral.concentration.of.feed.water,.pH,.temperature,.flow.velocity,.and.system.pressure.

In.brackish,.water.RO.systems.membrane.surfaces.and.spacers.are.particularly.susceptible.to.fouling.by.polymerized.silica..These.silica-based.deposits.are.eas-ily.coagulated.by.small.amounts.of.cations.such.as.Ca,.Mg,.Fe,.and.Al.[3,4]..The.deposition.of. silica-based.deposits.on.RO.membrane.surfaces.causes.decreased.produced. water. quality. and. quantity,. increased. pumping. pressure,. and. prema-ture.replacement..Table.10.1.presents.water.system.performance.targets.for.silica.inhibitors.

Once. formed,. silica–silicate-based.deposits.are.particularly.difficult. to. remove.from.heat.exchanger,.RO.membrane,.and.other.equipment.surfaces..Both.chemical.and.mechanical.methods.are.used.to.remove.silica–silicate-based.deposits..However,.strong.chemical.cleaners.(i.e.,.hydrofluoric.acid,.ammonium.bifluoride).pose.serious.environmental.challenges.and.require.care.to.avoid.damaging.equipment,.whereas.mechanical.cleaning.is.labor.intensive.

10.1.3  silica scaling MechanisM

Amorphous.silica.polymerization.follows.a.pattern.of.soluble.silica.unit.breakdown.and.silicate.anion.growth.into.a.larger.macromolecule.via.anionic.polymerization.as.shown.in.the.following.reactions:

.Si OH OH OH SiO H O

4 3 2( ) + → ( ) +− − . (10.3)

.Si OH Si OH OH Si O Si OH OH (dimer)

3 4 3 3( ) + ( ) → ( ) ( ) +− −– – . (10.4)

.Dimer Cyclic Colloidal Amorphous silica Ca /Mg2 2

→ → →+ +

sscale( ) . (10.5)

table 10.1silica Inhibitor performance targets

parameter areverse osmosis

cooling water

boiler water

Silica 350–400 300–400 <10

Temperature.(°C) 25–35 40–60 250

Fe 0.1 2.5 <0.5

Ca.(as.CaCO3) 800 800 50

Mg.(as.CaCO3) 300 300 10

TDS 1500 2000 50

a. Units.are.mg/L.except.where.noted.

178 Mineral Scales in Biological and Industrial Systems

The.equations.earlier.illustrate.that.the.silicic.acid.(monomer).condensation.reaction.is.catalyzed.by.hydroxide.ions.and.accelerated.by.the.presence.of.salts.such.as.CaCl2.and.MgCl2..It.has.been.suggested.[4].that.dissolved.silica.comes.out.of.the.supersatu-rated.solution.in.three.forms:

. 1..Deposits. on. solid. surfaces. where. monomeric. silicic. acid. [Si(OH)4]. con-denses. with. any. solid. surface. that. has. an. −OH. group. with.which. it. can.react.

. 2..Colloidal.particles.after.polymerized.silica.grows. to. form.a.3D.polymer..These. colloidal. particles. form. large. particles. (floc). that. may. deposit. on.equipment.surfaces.

. 3..Biogenic.amorphous.silica.by.living.organisms.

It.should.be.mentioned.that.sessile.microorganisms.in.a.biofilm-fouled.heat.exchanger.can.entrap.colloidal. silica..The.high.affinity.of. soluble. silica. toward.extracellular.biopolymers.such.as.polysaccharides.has.also.been.recognized

The.interaction.of.M–OH.with.silicic.acid.is.shown.in.Equation.10.6.[5]:

.

-M-OH OH M – O OH

O + HO Si OH O Si + 2H2O

-M-OH OH M – O OH

. (10.6)

10.1.4  silica-Based scale conTrol approaches

Approaches.for.combating.silica–silicate.fouling.in.industrial.water.systems.are.as.follows:

. 1..Operating.systems.at.low.silica–silicate.supersaturation.levels

. 2..Reducing.feed.water.silica.concentration.(e.g.,.by.precipitation.processes)

. 3..Additives.to.inhibit.silica.polymerization

. 4..Additives. to. preferentially. form. metal–silica. compounds. with. greater.solubility

. 5..Dispersing.precipitated.silica–silicate.compounds

. 6..Effective.control.of.other.scales.(e.g.,.calcium.carbonate,.calcium.phosphate)

. 7..Effective.carbon.steel.corrosion.control.(<3.MPY)

. 8..Maintaining.system.<pH.8.3.to.avoid.metal–silicate.precipitation

Many.different.chemical.additives.have.been.tested.as.silica.polymerization.inhibi-tors..The.use.of.boric.acid.and/or.its.water.soluble.salts.to.control.silica–based.depos-its. in. cooling.water. systems.operating.at.250–300.mg/L. silica.has.been. reported..Silica.inhibition.presumably.originates.from.the.ability.of.borate.to.condense.with.silicate.to.form.borate–silicate.complexes.that.are.more.soluble.than.silica.[6]..The.use.of.borate-based.inhibitors.to.increase.silica.solubility.is.limited.because.of.the.high.use.levels.required.for.boron-based.compounds.as.well.as.the.associated.costs.and.effluent.discharge.limitations.

179Solution Chemistry Impact on Silica Polymerization by Inhibitors

Amjad.and.Yorke.[7].reported.that.cationic-based.copolymers.are.effective.silica.polymerization. inhibitors..Similar.conclusions.were.also. reported.by.Harrar.et. al..[8]. in. their. investigation.on. the.use.of.cationic.polymers.and.surfactants. in. inhib-iting. silica. polymerization. under. geothermal. conditions..Although. these. cationic-based.homo-.and.copolymers.showed.excellent.silica.polymerization.inhibition,.they.exhibited.poor.silica–silicate.dispersing.activity..Neofotistou.and.Demadis.[9].in.their.study.on.the.evaluation.of.polyaminoamide-based.dendrimers.as.silica.inhibitors.for.cooling.water.applications.reported.that.polymer.performance.as.silica.polymeriza-tion.inhibitor.strongly.depends.on.the.branching.present.in.the.dendrimer.

Polymeric.dispersants.that.impart.negative.charge.via.adsorption.onto.suspended.particles.have.also.been.used.to.minimize.silica–silicate.fouling.in.industrial.water.systems..Because.most.silica-based.deposits.consist.of.amorphous.silica.and/or.mag-nesium.silicate,.the.ideal.candidate(s).must.have.two.distinct.properties:.(1).disperse.both.silica.and.magnesium.silicate.and.(2).disperse.scalant.particles.(e.g.,.calcium.carbonate,.calcium.sulfate).that.can.act.as.nuclei.for.silica–silicate.deposits.[10].

The. performance. of. a. formulated. product. containing. hydroxylphosphono. ace-tic.acid.and.a.copolymer.of.acrylic.acid–hydroxyl.sulfonate.ether.in.high-hardness.waters. containing. high. alkalinity. and. 225. mg/L. silica. was. reported. [11].. Heat.exchanger.inspection.showed.essentially.no.deposits.in.the.presence.of.a.formulated.product.compared.to.heavy.scaling.and.silicate.deposits.in.the.control.(no.treatment)..Momozaki.et.al..[12].reported.the.use.of.a.poly(acrylamide)-based.treatment.program.to.control.silica.in.recirculating.cooling.water..Gill.[13].in.a.study.using.high-silica.water.at.above.pH.9.documented.that.a.blend.of.phosphonate.and.a.copolymer.of.acrylic.acid.and.2-acrylamido-2-methyl.propane.sulfonic.acid.can.effectively.extend.the.operating.limits.for.silica.from.120.to.300.mg/L.

The.influence.of.anionic.and.nonionic.polymers.as.silica.polymerization.inhibi-tors. has. been. reported. [14].. This. study. reveals. that. anionic. polymers. containing.carboxyl. group. are. ineffective. silica. polymerization. inhibitors.. Performance. data.for. nonionic. polymers. such. as. poly(2-ethyloxazoline). suggest. that. polymerization.inhibition.strongly.depends.on.polymer.molecular.weight.(MW)..The.results.on.the.evaluation.of.–NH2-terminated.(polyaminoamide).dendrimer.of.varying.MW.sug-gest.that.these.dendrimers.are.effective.silica.scale.inhibitors..Experimental.results.reveal.that.inhibition.efficiency.largely.depends.upon.dendrimer.structural.features.such.as.generation.number.and.nature.of.end.groups.as.well.as.dosage.levels.[9].

Zhang.et.al..[15].investigated.the.inhibitory.effect.of.cationic.and.anionic.poly-mers.and.polymer.blends..The.results.show.that.copolymers.of.adipic.acid–amine-terminated. polyethers. D230–diethylenetriamine. (AA:AT:DE). exhibit. excellent.silica.polymerization.inhibition..However,.a.small.amount.of.silica-AA:AT:DE.floc.appears. in. the. solution.. Performance. data. also. show. that. a. blend. of. AA:AT:DE/PESA.(polyepoxysuccinic.acid).prevents.floc.formation.and.also.improves.the.per-formance. of. copolymer.. However,. under. similar. experimental. conditions,. PESA.shows.poor.performance.as.silica.polymerization.inhibitor.

Previous.papers.reported.the.results.of.laboratory.experiments.designed.to.deter-mine.the.efficacy.of.various.commercially.available.polymeric.additives.touted.as.silica.polymerization.inhibitors.and.meta–silicate.dispersants.[16,17]..It.was.shown.that. acrylic. acid-based.homo-.and.copolymers.commonly.used.as.deposit. control.

180 Mineral Scales in Biological and Industrial Systems

agents.are.ineffective.as.silica.polymerization.inhibitors..Earlier.studies.indicate.that.low.levels.of.metal.ions.(e.g.,.Al,.Fe,.cationic.polymeric.flocculants).markedly.reduce.the.effectiveness.of.silica.polymerization.inhibitors.[18].

It. is. generally. accepted. that. lowest. limit. of. amorphous. silica. saturation. level.in.industrial.water.systems.is.≈1.2×..Based.on.previously.published.data,.it.can.be.assumed.that.a.conservative.maximum.treated.silica.saturation.level.in.cooling.water.systems. is. ≈2.2×.. For. the. purposes. of. evaluating. silica. polymerization. inhibitors.herein,.we.selected.more.challenging.water.chemistry.with.≈3.0×.silica.saturation..This. chapter. presents. results. for. evaluations. of. polymers. with. varying. composi-tions. and.non-polymeric. additives..The. additives. tested. fall. into. three. categories:.(1).synthetic.polymers,.(2).proprietary.polymer.blends,.and.(3).non-polymeric.mate-rials..The.impacts.of.solution.chemistry.(i.e.,.pH,.temperature,. type,.and.levels.of.mono-,.di-,.and.trivalent.metal.ions),.biocides,.and.thermal.stress.on.silica.polym-erization. inhibitor. performance. are. discussed.. X-ray. diffraction. (XRD). and. elec-tromagnetic.dispersion.spectroscopy.(EDS).characterizations.of.silica.precipitates.formed.in.the.absence.and.presence.of.polymers.are.also.presented.

10.2  experImental

Reagent-grade.chemicals.and.distilled.water.were.used.throughout.this.study..Silica.stock.solutions.were.prepared.from.sodium.metasilicate.nonahydrate,.standardized.spectrophotometrically,. and. stored. in. plastic. bottles.. Calcium. chloride. and. mag-nesium. chloride. stock. solutions. were. prepared. from. calcium. chloride. dihydrate.and. magnesium. chloride. hexahydrate. and. were. standardized. by. EDTA. titration..Standard.Fe3+.and.Al3+.solutions.were.purchased.from.Fisher.Scientific..Table.10.2.

table 10.2polymeric and non-polymeric additives evaluated

additive composition acronym

HEDP 1-Hydroxyethylidine-1,1-diphosphonic.acid HEDP

PBTC 2-Phosphonobutane.1,2.4-tricarboxylic.acid PBTC

BA Boric.acid BA

PMA Poly(maleic.acid) PMA

K-732a 6.k.MW.solvent.polymerized.poly(acrylic.acid) PAA

K-775a Poly(acrylic.acid:.2-acrylamido-2-methylpropane.sulfonic.acid) CP1

K-798a Poly(AA:SA:.2-acrylamido-2-methylpropane.sulfonic.acid–sulfonated.styrene)

CP2

Competitive-1 Poly(AA:SA:.2-acrylamido-2-methylpropane.sulfonic.acid–nonionic) CP3

Competitive-2 Poly(maleic.acid–ethyl.acrylate–vinyl.acetate) CP4

Competitive-3 Proprietary.acrylic.copolymer CP5

K-XP212a Proprietary.copolymer.blend CP6

K-XP229a Proprietary.copolymer.blend CP7

a. Carbosperse™.K-700.polymer.supplied.by.The.Lubrizol.Corporation.

181Solution Chemistry Impact on Silica Polymerization by Inhibitors

lists. the.commercial. inhibitors.used. in. this.study.along.with. the.composition.and.acronym..Stock.inhibitor.solutions.were.prepared.on.active.solids.basis.

Silica. polymerization. experiments. were. performed. in. polyethylene. containers.placed. in.double-walled.glass. cells.maintained.at.40°C..The. supersaturated. solu-tions.were.prepared.by.adding.known.volumes.of.stock.solution.of.sodium.silicate.(expressed.as.SiO2).solution.and.water.in.polyethylene.containers..After.allowing.the.temperature.to.equilibrate,.the.silicate.solutions.were.quickly.adjusted.to.pH.7.0.using.dilute.hydrochloric.acid.(HCl)..The.solution.pH.was.monitored.using.Brinkmann/Metrohm.pH.meter.equipped.with.a.combination.electrode..The.electrode.was.cali-brated.before.each.experiment.with.standard.buffers..After.pH.adjustment,.known.volumes. of. calcium. chloride. and. magnesium. chloride. stock. solution. were. added.to. the. silicate. solutions.. The. supersaturated. silicate. solutions. were. readjusted. to.pH.7.0.with.dilute.HCl.and/or.NaOH.and.maintained.constant.throughout.the.silica.polymerization.experiments..For.experiments.involving.the.effect.of.solution.ionic.strength,.a.known.volume.of.standard.NaCl.or.Na2SO4.solution.was.added.to.sodium.silicate. solution.. Figure. 10.3. schematically. illustrates. the. experimental. protocol.and.Figure.10.4.shows.the.experimental.set-up.used.to.study.silica.polymerization.inhibition.

Distilled water+ sodium silicate

+ inhibitor solution

Adjust topH 7.0

Sample andfilter through 0.22 µm

Analyzefor SiO2

+ Calcium andmagnesium

solution

Adjust topH 7.0

FIgure 10.3  Silica.polymerization.inhibition.experimental.protocol.

Sample

0.22 µm filter

Retentate

Samplingport

Thermostattedwater out

Thermostattedwater in

Magnetic stirrer pH meter

7.00

Precipitated silicaSoluble silica

O

Filtrate

FIgure 10.4  Silica.polymerization.inhibition.test.equipment.setup.

182 Mineral Scales in Biological and Industrial Systems

Experiments. involving.inhibitors.were.performed.by.adding.inhibitor.solutions.to.the.silicate.solutions.before.adding.the.calcium.chloride.and.magnesium.chloride.solutions..The.reaction.containers.were.capped.and.kept.at.constant.temperature.and.pH.during.the.experiments..Silicate.polymerization.in.these.supersaturated.solutions.was.monitored.by.analyzing. the. aliquots.of. the.filtrate. from.0.22.μm.filter.paper.for.soluble.silica.using.the.standard.colorimetric.method.[16]..Silica.polymerization.inhibition.values.were.calculated.according.to.the.following.equation:

.

% Inhibition =[SiO2] [SiO2]sample – control

[SiO2][SiO2] initial – control

´ 100. (10.7)

where.the.terms.earlier.are.as.follows:%.Inhibition.is.the.percent.silica.polymerization.inhibition.or.%SI[SiO2]sample.is.the.silica.concentration.in.the.presence.of.inhibitor.at.22.h[SiO2]control.is.the.silica.concentration.in.the.absence.of.inhibitor.at.22.h[SiO2]initial.is.the.silica.concentration.at.the.beginning.of.test

The.membrane.filtration.residues.were.analyzed.by.SEM.(Model.Zeiss.EVO.50).and.XRD.spectrometry.(Model.Rigaku.Geigerflex).

For. studying. thermal. stability,. solutions. were. prepared. containing. neutralized.10%.polymer.(as.active.solids).at.pH.10.5.using.sodium.hydroxide..Sodium.sulfite.was.used.as.an.oxygen.scavenger..Known.polymer.solution.quantities.were.retained.for.characterization.and.performance.testing..The.balance.of.the.polymer.solutions.was.charged.to.stainless.tubes..The.headspace.was.purged.with.nitrogen.followed.by.tightening.the.fittings..The.tubes.were.then.placed.in.the.oven.maintained.at.the.required.temperature.(either.at.150°C.or.200°C)..At.known.times,. the. tubes.were.removed.from.the.oven.and.cooled.at.room.temperature,.and.the.polymer.solutions.transferred.to.vials.for.characterization.and.performance.testing..Nuclear.magnetic.resonance. (NMR). spectra. of. polymers. before. and. after. thermal. treatment. were.obtained.on.a.Brubaker.AV-500.NMR.

10.3  results and dIscussIon

Using. the. experimental. protocol. described. earlier,. a. series. of. experiments. were.conducted.to.investigate.the.influence.of.various.factors.(i.e.,.solution.supersatura-tion,.pH,.temperature,.ionic.strength,.type,.and.concentrations.of.metal.ions,.biocides,.polymerization.inhibitors)..The.following.sections.present.results.and.discussion.on.these.factors.on.the.performance.of.various.inhibitors.

10.3.1  waTer cheMisTry eFFecT on silica polyMerizaTion

10.3.1.1  silica supersaturationUsing.the.experimental.setup.described.earlier,.a.series.of.experiments.were.con-ducted. at. various. silica. supersaturation. (SS). conditions. and. standard. test. condi-tions.(200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C)..Figure.10.5.shows.soluble.silica.

183Solution Chemistry Impact on Silica Polymerization by Inhibitors

concentrations.as.a.function.of.time.for.various.SS.solutions..Figure.10.5.illustrates.that. a. 550. mg/L. silica. solution. reacts. instantaneously,. whereas. lower. silica. con-centrations.react.at.a.much.slower.rate..At.low.degrees.of.SS,.a.decrease.in.silica.concentration.is.preceded.by.a.slow.polymerization.reaction.(induction.time.or.α)..Figure.10.5.shows.that.the.soluble.silica.concentration.does.not.change.significantly.during.the.induction.period..However,.once.polymerization.is.underway,.the.soluble.silica.concentration.begins.decreasing..Figure.10.5.illustrates.α.values.for.various.SS.solutions:.3.h.for.525.mg/L,.8.h.for.450.mg/L.silica,.and.>20.h.for.300.mg/L.silica.compared.to.<5.min.for.high.SS.solution.(550.mg/L.silica)..The.baseline.silica.satu-ration.(solubility).level.appears.to.be.approximately.150.mg/L.that.is.consistent.with.previously.reported.silica.equilibrium.concentrations.

10.3.1.2  temperature effectThe. solubility. of. scale-forming. salts. such. as. calcium. carbonate,. calcium. sulfate,.and. calcium. phosphates. is. inversely. dependent. on. solution. temperature. [19]..The.solubility–temperature.relationship.suggests.that.the.scaling.tendency.will.be.higher.at.the.heat.exchanger.surfaces.than.in.other.parts.of.the.recirculating.water.systems..It.was.also.reported.[20].that.calcium.ion.tolerance.of.anionic.scale.control.polymer.decreases.markedly.as.solution.temperature.increases.from.25°C.to.70°C..However,.silica.solubility.increases.with.increasing.temperature.and.silica.saturation.limits.go.up. [2]..The. influence.of. solution. temperature.on. inhibitor.performance.was.deter-mined.by.conducting.a.series.of.experiments.using.the.silica.polymerization.test.con-ditions.(i.e.,.550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0).and.temperatures.ranging.from.25°C.to.68°C.(i.e.,.25°C,.40°C,.55°C,.and.68°C)..The.results.are.shown.in.Figure.10.6.and.illustrate.the.time-dependent.silica.concentration.profiles.in.the.absence.of.inhibitor.indicating.that.solution.temperature.significantly.influences.silica.

Silic

a con

cent

ratio

n (m

g/L)

600

500

400

300

200

100

0

550 mg/L 450 mg/L 320 mg/L 150 mg/L

Time (h)

Equilibrium solubility

0 2 4 6 8 10 12 14 16 18 20 22

FIgure 10.5  Silica.polymerization.vs.. time.as.a. function.of. initial. silica.concentration.(variable.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

184 Mineral Scales in Biological and Industrial Systems

polymerization..There.are.two.competing.factors.contributing.to.temperature.influ-ence:.(1).silica.saturation.limits.increase.with.increasing.temperature.due.to.increased.silica.solubility.and.(2).the.silica.polymerization.rate.increases.with.increasing.tem-perature..Figure.10.6.data.suggest.that.temperature.is.the.primary.driver.for.changing.silica.saturation.limits.impacting.silica.solubility.in.these.test.conditions.

10.3.1.3  silica polymerization as a Function of pHAs.previously.indicated.and.shown.in.Figure.10.1,.solution.pH.has.a.profound.effect.on. silica. solubility.. A. series. of. experiments. was. conducted. to. evaluate. the. solu-tion.pH.effect.on.soluble.silica.concentration.using.Lubrizol’s.silica.polymerization.inhibition.test.procedure..The.experiments.were.conducted.at.solution.pH.ranging.from.6.5.to.8.75.using.550.mg/L.silica.and.at.40°C..In.order.to.avoid.metal–silicate.salt.precipitation.especially.at.high.alkaline.pH,.these.experiments.were.conducted.in.the.absence.of.CaCl2.and.MgCl2..Figure.10.7.presents.T1/2.(time.needed.for.50%.depletion.of.soluble.silica).as.a.function.of.solution.pH..It.is.evident.from.Figure.10.7.that.soluble.silica.decreases.within.the.pH.6.5–8.3.range.but.decreases.above.pH.8.3..The.observed.T1/2.from.pH.6.5.to.8.3.is.due.to.the.increased.amount.of.hydroxide.that.catalyzes.the.silica.polymerization.reaction..At.pH.>.8.3,.the.observed.T1/2.decrease.is.caused.by.the.lower.driving.force.resulting.from.a.slight.silica.solubility.increase.and.a.depletion.of.unionized.monomeric.silica.because.of. ionization..Figure.10.7.illustrates,.above.pH.8.5,.that.T1/2.values.increase.further.due.to.decreased.SS.

Figure.10.7.can.also.be.used.to.help.determine.the.optimum.pH.range.to.minimize.the. rate. of. silica. polymerization. and. deposition. of. polymerized. silica. or. fouling..

SiO

2 (m

g/L)

600

500

400

300

200

100

0

25°C

55°C

40°C

68°C

Time (h)0 2 4 6 8 10 12 14 16 18 20 22

FIgure 10.6  Silica.concentration.vs..time.as.a.function.of.solution.temperature.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

185Solution Chemistry Impact on Silica Polymerization by Inhibitors

At.pH.>.8.5.the.potential.of.Ca.and/or.Mg.silicate.formation.increases..At.pH.<.6.5,.there. is.virtually.no. ionization.and.no.mono-ionized. (H3SiO4

−). that.can.polymer-ize.with.unionized.silicic.acid. (H4SiO4)..Therefore,. industrial.water. systems. (e.g.,.recirculating.cooling.loops,.RO.systems).should.be.operated.at.pH.<.8.3..Figure.10.7.clearly.indicates.that.solution.pH.dramatically.impacts.the.soluble.silica.concentra-tion.decline.with.time.that.agrees.with.other.researchers’.observations.[21,22]..Thus,.for.systems.operating.at.high.alkaline.pH.conditions,.the.focus.should.be.inhibiting.metal.silicates.because.the.silica.polymerization.rate.will.be.comparatively.slower.than.the.metal–silicate.precipitation.rate.

10.3.2  inhiBiTor evaluaTions

10.3.2.1  Inhibitor concentration effectAs.discussed.in.previous.papers.[17–22],. it. is.very.important.to.understand.the.rela-tionship.between.polymer.dosage.and.silica.polymerization.inhibitor.performance.par-ticularly. at. the.high. silica. saturation. (3.0×). test. conditions..Figure.10.8. shows. silica.concentration.as.a.function.of.time.at.varying.CP6.(copolymer.blend).dosages..Figure.10.8.data.indicate.(1).that.CP6.dosage.strongly.affects.silica.polymerization.inhibitor.per-formance.and.(2).that.both.50.and.75.mg/L.CP6.dosages.provide.similar.performance.

10.3.2.2  Inhibitor composition effectTo.evaluate. the.efficacy.of.various.additives.as.silica.polymerization. inhibitors,.a.series.of.experiments.was.conducted.in.the.presence.of.25.and.350.mg/L.inhibitor.dosages..The.results.that.appear.in.Figure.10.9.clearly.show.that.the.performance.of.copolymer.blends.(i.e.,.CP6.and.CP7).is.superior.to.the.other.additives.evaluated..The.data. for. the.non-polymeric. additives. (i.e.,.HEDP,.PBTC,.BA). tested. indicate.

400

350

300

250

200

150

100

50

06.5

Tim

e 1/2

(min

)*

7 7.5Solution pH

8 8.25 8.5 8.75

FIgure  10.7  Solution. pH. impact. on. soluble. silica. (550. mg/L. silica,. 40°C,. and. with-out.Ca,.Mg,.or. inhibitor).. *Time. required. to.decrease. the. soluble. silica. concentration.by.50%;.i.e.,.to.355.mg/L.or.1/2.the.difference.between.the.initial.550.mg/L.and.equilibrium.160.mg/L.levels.

186 Mineral Scales in Biological and Industrial Systems

these.materials.are.ineffective.silica.inhibitors.compared.to.CP6.and.CP7..Although.HEDP.and.PBTC.are.excellent.calcium.carbonate.inhibitors.[23],.their.poor.perfor-mance.as.silica.polymerization.inhibitors.suggests.that.phosphonate.groups.do.not.inhibit.silica.polymerization.in.aqueous.solutions.

It.has.been.reported.[24].that.solvent.polymerized.polyacrylates.are.more.tolerant.to.calcium.ions.than.the.water.polymerized.polyacrylates..For.carboxylic.acid-containing.polymers,.it.appears.that.precipitation.inhibition.is.greatest.for.MW.of.below.20,000.(daltons.or.DA).with.the.optimum.MW.dependent.on.the.polymer.composition.and.the.salts.being.inhibited..For.calcium.phosphate.and.calcium.phosphonates.inhibition,.acrylic.acid-.and/or.maleic.acid-based.copolymers.have.been.shown.to.perform.better.than.homopolymers.of.either.acrylic.acid.or.maleic.acid.[25].

600

500

400

300

200

100Silic

a con

cent

ratio

n (m

g/L)

00 5

Time (h)

0 mg/L 15 mg/L 25 mg/L 50 mg/L 75 mg/L

10 15 20 25

FIgure 10.8  Silica.polymerization.vs..time.as.a.function.of.CP6.dosage.(mg/L).

10025 ppm 350 ppm

80

60

40

20

% Si

lica i

nhib

ition

0HEDP PBTC BA PAAPMA CP1 CP2 CP3 CP4 CP5 CP6 CP7

FIgure 10.9  Silica.polymerization. inhibition. as. a. function.of. additive.dosage. for. non-polymeric.and.polymeric.additives.

187Solution Chemistry Impact on Silica Polymerization by Inhibitors

Figure.10.9.also.presents.performance.data.for.polymeric.inhibitors.containing.different.functional.groups.(e.g.,.carboxylic.acid,.sulfonic.acid)..It.is.evident.that.the.homopolymers.(PMA.and.PAA),.copolymer.(CP1),.and.terpolymers.(CP2,.CP3,.CP4,.CP5).commonly.used.for.controlling.mineral.scales.and.dispersing.suspended.mat-ter.are.poor.(<20%.inhibition).silica.inhibitors..The.performance.data.clearly.show.that.carboxylic.acid,.sulfonic.acid,.ester,.and.nonionic.groups.present.in.the.com-monly.used.polymers.exhibit.poor.interaction.with.silane.groups.present.in.silica.

Figure.10.10.takes.a.closer.look.at.the.silica.polymerization.inhibition.performance.of.CP2,.CP6,.and.CP7.as.a.function.of.polymer.dosages.in.the.10–50.mg/L.range..CP2.was.selected.as.being.representative.of.all.the.other.homopolymers.(PMA.and.PAA).and.copolymers.(CP1,.CP3,.CP4,.and.CP5).tested.because.carboxylic.monomer.groups.dominate.(>50%).all.these.polymer.compositions..On.the.other.hand,.the.CP6.and.CP7.copolymer.blends.(patented.and.patent.pending,.respectively).are.distinctly.different.(contain.<50%.carboxylic.acid.monomer.groups).from.the.other.polymers.

Figure.10.10.indicates.that.at.12.5.mg/L.dosages,.CP7.provides.35%.SI.or.more.than.double.the.performance.of.either.CP6.or.CP2..At.≥15.mg/L.dosages,.the.CP6.performance.and.dosage.response.are.superior. to.all.other.additives. tested.except.CP7.that.is.dramatically.better.than.all.the.other.materials.tested..Table.10.3.sum-marizes.observations.about.the.data.in.Figures.10.7.and.10.8.

10.3.3  hardness ions eFFecT

The.impact.of.hardness.ions.on.silica.polymerization.has.been.previously.investigated..Sheikholeslami.et.al..[26].studied.the.impact.of.Ca2+.and.Mg2+.on.silica.polymeriza-tion.at.pH.6.5,.20°C,.360.mg/L.silica,.and.as.a.function.of.time.(0–200.h)..Results.of.their.study.show.that.the.rate.of.silica.polymerization.increases.with.increase.in.Ca2+.concentrations. in. the. range.100–300.mg/L..Adding.high.Ca2+.concentrations.to.200.mg/L.silica.solutions.did.not.affect.the.solution.metastability..Furthermore,.

100

80

60

40

20

00 10

Active polymer dosage (mg/L)

% Si

lica i

nhib

ition

20 30 40

CP2CP6CP7

50

FIgure  10.10  Silica. polymerization. inhibition. by. copolymers. as. a. function. of. dosage.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

188 Mineral Scales in Biological and Industrial Systems

at.500.mg/L.silica.concentrations.where.polymerization.was.very.rapid,.Ca2+.addi-tion.did.not.seem.to.show.any.obvious.trend..Sahachaiyunta.et.al..[27].in.their.study.on.the.effect.of.Ba2+,.Ni2+,.and.Mn2+.ions.on.RO.system.silica.scaling.reported.that.these.ions.exhibit.accelerating.effect.on.silica.polymerization.but.do.not.show.any.influence.on.the.structure.of.precipitated.amorphous.silica.

To.understand.the.impact.of.hardness.ions.on.performance.of.polymers,.several.silica.polymerization.experiments.were.carried.out.in.the.presence.of.50.mg/L.CP7.and.varying.total.hardness.(“TH”.or.Ca2+/Mg2+.at.a.2:1.ratio).concentrations..Figure.10.11.data.clearly.show.that.silica.polymerization.inhibition.increases.as.a.function.TH.concentration.ranging.from.0.to.320.mg/L.

A.series.of.experiments.was.conducted.to.determine.whether.or.not.hardness.ions.are.coprecipitated.during.silica.polymerization.in.the.presence.of.CP7..Figure.10.12.

table 10.3observations from the data in Figures 10.7 and 10.8

additive silica polymerization Inhibition performance

Containing.>50%.carboxylic.monomersa

Provide.poor.(<20%).performance.at.all.dosages.tested.up.to.350.mg/L.(only.up.to.50.mg/L.dosage.shown.in.Figure.10.8)

CP6 Performance.increases.dramatically.from.poor.to.excellent.with.dosage.up.to.35.mg/L.and.improves.incrementally.thereafter

CP7 Performance.increases.dramatically.as.dosage.increases.from.5.mg/L.(7%.SI).to.25.mg/L.(85%.SI).and.improves.incrementally.thereafter

a. See.TABLE.10.1.including.PMA,.PAA,.CP1,.CP2,.CP3,.CP4,.and.CP5.

600

500

400

300

200

100

00 5

0 ppm TH160 mg/L TH

64 mg/L TH320 mg/L TH

10Time (h)

Silic

a (m

g/L)

15 20 25

FIgure 10.11  Silica.concentration.vs..time.in.presence.of.50.mg/L.CP7.and.varying.TH.levels. (550. mg/L. silica,. pH. 7.0,. 40°C).. (Modified. from. Paper. Number. 10048,. Presented.at. CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 7..Reproduced.with.permission.from.NACE.International.)

189Solution Chemistry Impact on Silica Polymerization by Inhibitors

presents.silica,.Ca2+,.and.Mg2+.vs..time.profiles.in.the.presence.of.15.mg/L.CP7..As.shown,.the.initial.calcium.(200.mg/L).and.magnesium.(120.mg/L).concentra-tions.remain.essentially.constant.(within.the.experimental.error.of.±3%).during.the.silica.polymerization.experiments,.while.silica.concentration.decreases.with.time..Figure.10.12.data.suggest.that.neither.Ca.nor.Mg.precipitated.out.of.the.solutions.in.the.presence.of.CP7..Although.not.presented.herein,.similar.results.for.calcium.and. magnesium. concentrations. were. also. observed. with. higher. silica. super-saturated. solutions. and. higher. calcium. (280. mg/L). and. magnesium. (168. mg/L).concentrations.

10.3.4  ToTal dissolved solids eFFecT

The.influence.of.total.dissolved.solids.(TDSs).on.silica.polymerization.inhibition.in.the.presence.of.50.mg/L.CP7.was.investigated..Figure.10.13.presents.%.silica.inhibi-tion.values.at.22.h.in.the.presence.of.50.mg/L.CP7.and.varying.TDS.concentrations.(either.Ca2+/Mg2+.[2:1].as.described.earlier.or.sodium.chloride.[NaCl])..As.indicated,.silica. polymerization. inhibition. strongly. depends. on. the. Ca2+/Mg2+. concentration.present.in.the.silica.supersaturated.solutions.

Figure.10.13.also. shows. that.divalent.metal. ions. (i.e.,.Ca2+,.Mg2+). in. the.pres-ence.of.constant.ionic.strength.exhibit.a.greater.effect.on.silica.polymerization.inhi-bition. than. monovalent. cations. (i.e.,. Na+).. Specifically,. %. silica. inhibition. values.obtained.using.50.mg/L.CP7.in.the.presence.of.similar.ionic.strength.but.different.TDSs.levels.(i.e.,.Na+.[1755.mg/L.NaCl].and.Ca2+/Mg2+.[320.mg/L.TH]).at.similar.ionic.strength.are.16%.and.92%,.respectively..These.performance.variations.caused.by.TDSs.(i.e.,.Na+.and.TH.[either.Ca2+.or.Mg2+]).on.silica.polymerization.may.be.attributed.to.different.charge.density.of.these.metal.ions.

600

500

400

300

200

100

SiO

2, Ca

, and

Mg

(mg/

L)

00

2 4 6 8 10Time (h)

12 14 16 18

SiO2 (mg/L)

Ca (mg/L)

Mg (mg/L)

20 22

FIgure  10.12  Silica,. Ca,. and. Mg. concentrations. vs.. time. in. the. presence. of. 15. mg/L.CP7..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.6..Reproduced.with.permission.from.the.International.Water.Conference®.)

190 Mineral Scales in Biological and Industrial Systems

10.3.5  TrivalenT MeTal ions eFFecTs

Aluminum.(Al)-.and.iron.(Fe)-based.compounds.(e.g.,.alum,.sodium.aluminate,.fer-ric.chloride).have.been.used.for.years.as.flocculating/coagulant.aids.to.clarify.munic-ipal.and.industrial.waters.[28]..These.compounds.neutralize.the.charge.of.suspended.particles.in.water.and.they.hydrolyze.to.form.insoluble.hydroxide.precipitates.that.entrap.additional.particles..In.most.cases,.these.large.particles.(or.flocs).are.removed.via.settling.in.a.clarifier.and.are.collected.as.sludge..Occasionally,.clarifier.upsets.cause.the.metal-containing.flocs.to.“carry.over.”

Among. the. various. dissolved. impurities. present. in. natural. waters,. iron-based.compounds. present. the. most. serious. problems. in. many. domestic. and. industrial.applications..In.the.reduced.state,.iron.(II).or.ferrous.(Fe2+).ions.are.very.stable.and.pose.no.serious.problems,.especially.at.low.pH.values..However,.upon.contact.with.air,.ferrous.ions.are.oxidized.to.higher.valence.state.and.readily.undergo.hydrolysis.to.form.insoluble.hydroxides.as.shown.as.follows:

. Fe Fe2 air 3+ + → . (10.8)

.Fe 3H O Fe OH 3H3

2 3+ ++ → ( ) + . (10.9)

When.ferric.or.ferrous.ions.precipitate.in.water,.an.amorphous.or.gelatinous.solid.is.usually.formed..At.low.corrosion.rates,.the.iron.hydroxide.formed.may.deposit.on. the.heat.exchanger.surface.as.a.permeable.or. impermeable.film.at. the.corro-sion.site..Under.these.conditions,.the.iron.hydroxides.that.form.are.colloidal.and.form.stable.suspensions..Other.types.of.iron-based.compounds.that.can.potentially.deposit.on. the.heat.exchanger. surfaces. include. iron.carbonate,. iron.silicate,.and.iron.sulfide.

100

80

60

40

% Si

lica i

nhib

ition

0

Total dissolved solids (TH = Total hardness)64 mg/L TH 160 mg/L TH 320 mg/L TH 1755 mg/L NaC1

20

FIgure 10.13  Influence.of.TDSs. levels.on.silica.polymerization. inhibition.by.50.mg/L.CP7.(550.mg/L.silica,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at. CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 8..Reproduced.with.permission.from.NACE.International.)

191Solution Chemistry Impact on Silica Polymerization by Inhibitors

The.presence.of.iron.in.recirculating.waters.and/or.brine.in.RO.system,.whether.originating. from. the. feed. water,. as. a. result. of. iron-based. metal. corrosion. in. the.system,.or. the.carryover.from.a.clarifier.using.iron-based.flocculating.agents,.can.have.profound.effects.on.the.performance.of.polymers.used.as.scale.inhibitors.and.dispersants..It.has.been.previously.reported.that.polymer.performance.as.a.calcium.phosphate.inhibitor.is.negatively.impacted.by.Fe(III).[29].

10.3.5.1  Fe(III) effectIt. is. well. established. that. low. levels. of. coagulating/flocculating. additives. present. in.recirculating. waters. are. antagonistic. to. scale. inhibitor. and. dispersant. performance..To. understand. the. impact. of. inorganic. and. organic. coagulants/flocculants. on. silica.polymerization.inhibitor.performance,.several.experiments.were.carried.out.in.the.pres-ence.of.varying.Fe(III).concentrations..As.shown.in.Figure.10.14,. low.Fe(III). levels.(e.g.,.0.25.mg/L).exhibit.a.negative.or.antagonistic.influence.on.the.silica.polymerization.inhibition.by.CP6.and.CP7..Increasing.Fe(III).levels.to.the.0.50–1.0.mg/L.range.further.decreases.silica.inhibition.(%Si).values..It.is.evident.from.Figure.10.14.that.CP7.is.more.tolerant.to.Fe(III).than.is.CP6..Similar.antagonistic.effects.caused.by.Fe(III).have.been.reported.[30,31].in.studies.involving.calcium.phosphate.inhibition.by.anionic.polymers.

10.3.5.2  al(III) effectThe. influence.of. low.Al3+. levels.was.also. investigated.by.carrying.out.a. series.of.silica. polymerization. experiments. in. the. presence. of. 50. mg/L. copolymer. blend.dosages..Results.presented.in.Figure.10.15.clearly.show.that.silica.polymerization.inhibitor.performance.is.strongly.impacted.by.the.presence.of.Al3+..As.illustrated,.silica.polymerization.inhibition.values.for.both.CP6.and.CP7.decreased.≥20%.by.adding.0.1.mg/L.Al3+.and.more.pronounced.antagonistic.effects.occurred.when.add-ing.0.25.mg/L.Al3+..By.comparing.the.CP6.and.CP7.silica.polymerization.inhibition.

% Si

lica i

nhib

ition

100

60

80

40

20

00.00 0.25 0.50

Fe(III) dosage (mg/L)

1.00

CP6 CP7

FIgure 10.14  Effect.of.Fe(III).concentration.on.silica.polymerization.inhibition.by.polymers.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.50.mg/L.polymer,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at.CORROSION/2010 Annual Conference and Exhibition,.Houston,.TX,.2010;.Figure.4..Reproduced.with.permission.from.NACE.International.)

192 Mineral Scales in Biological and Industrial Systems

in.the.presence.of.metal.ions.(see.Figures.10.14.and.10.15),.it. is.evident.that.Al3+.exhibits.a.more.antagonistic.effect.than.Fe3+..The.markedly.greater.silica.polymeriza-tion.inhibition.antagonism.caused.by.Al3+.compared.to.Fe3+.may.be.attributed.to.the.different.cationic.charge.density.present.on.metal.salts.hydroxides.

10.3.6  caTionic polyMer eFFecT

As.previously.discussed,.the.use.of.flocculating.agents.(inorganic.and.organic.types).to.remove.suspended.matter.from.feed.water.and.wastewater.streams.is.well.known..Commonly.used.inorganic.salts.(e.g.,.aluminum.chloride,.aluminum.sulfate,.and.fer-ric.chloride).while.very.effective.are.corrosive.and.generate.large.sludge.volumes..These.metal.salts.treatments.can.be.augmented.by.the.use.of.cationic.polymers.such.as.diallyldimethylammonium.chloride.(DADMAC).

Figure.10.16.presents.silica.polymerization.inhibition.data.for.CP6.and.CP7.in.the.presence.of.varying.DADMAC.concentrations..Figure.10.16.data.indicate.that.DADMAC.dosages.up.to.3.0.mg/L.cause.slightly.antagonistic.effects.on.CP6.and.CP7.silica.polymerization.inhibition.performance..This.is.very.interesting.because.cationic.polymers.such.as.DADMAC.have.previously.been.shown.to.exhibit.strong.antagonistic.effects.on.the.performance.of.calcium.phosphate.[32].and.calcium.phos-phonate.[33].inhibitors..The.silica.polymerization.inhibition.performance.differences.observed.in.Figure.10.16.may.be.attributed.to.different.ionic.charges.

10.3.7  soluTion TeMperaTure eFFecT

The.impact.of.solution.temperature.on.silica.polymerization.inhibition.was.investi-gated.as.a.function.of.inhibitor.dosage..For.example,.Figure.10.17.compares.silica.inhibition.(%SI).as.a.function.of.CP7.dosage.at.40°C.and.55°C.and.clearly.shows.that.

100

80

60

40

20

00 0.1

A1(III) dosage (mg/L)

% Si

lica i

nhib

ition

0.25

CP6 CP7

FIgure 10.15  Effect.of.Al(III).concentration.on.silica.polymerization.inhibition.by.polymers.(50.mg/L,.550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented. at.CORROSION/2010 Annual Conference and Exhibition,.Houston,.TX,.2010;.Figure.5..Reproduced.with.permission.from.NACE.International.)

193Solution Chemistry Impact on Silica Polymerization by Inhibitors

increasing.solution.temperature.(or.reducing.SS).reduces.the.CP7.dosage.necessary.to.inhibit.silica.polymerization.

Similarly,.the.influence.of.solution.temperature.on.silica.polymerization.is.clearly.evident.from.the.data.in.Figure.10.18..Table.10.4.summarizes.the.observations.from.Figure.10.18.data.and. the.CP6.and.CP7.polymer.dosages.needed.for.>80%.silica.inhibition.are.functions.of.both.temperature.(decrease.as.temperature.increases).and.time.(increase.with.time).

% Si

lica i

nhib

ition

100

80

60

40

20

0

Cationic polymer dosage (mg/L)0.0 1.5 3.0

CP6

CP7

FIgure  10.16  Effect. of. cationic. polymer. on. silica. polymerization. inhibition. by. poly-mers.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.50.mg/L.polymer,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at.CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 6.. Reproduced. with. permission. from. NACE.International.)

% Si

lica i

nhib

ition

40°C55°C

CP7 dosge (mg/L)0 10 20 30 40 50

100

80

60

40

20

0

FIgure 10.17  Silica.polymerization.inhibition.by.CP7.vs..solution.temperature.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0)..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.8..Reproduced.with.permission.from.the.International.Water.Conference®,.www.eswp.com/water/)

194 Mineral Scales in Biological and Industrial Systems

10.3.8  iMpacT oF Biocides on polyMer eFFicacy

Microbial. growth. on. heat. exchanger. and. RO. membrane. surfaces. is. a. major. con-cern.in.industrial.water.systems.that.causes.operational.problems.including.microbi-ally.influenced.corrosion,.reduced.heat.transfer.rates,.decreased.flow.rates,.reduced.system. cleanliness,. and. potential. health. concerns. [30]..To. overcome. these. opera-tional.challenges,.microbiocides.are.often.incorporated.into.the.water.treatment.pro-grams..The.principles.of.applications,.mechanisms.of.action,.monitoring.techniques,.and. response. to. system. contamination. differ. significantly. between. biocide. types..Biocides.are.often.classified.as.either.oxidizing.or.non-oxidizing.

The. influence. of. hypochlorite,. a. widely. used. oxidizing. biocide. on. the. perfor-mance.of.deposit.control.polymers,.has.been.the.subject.of.numerous.investigations.[34–36]..Results.of.these.studies.reveal.that.acrylic.acid,.maleic.acid,.and.aspartic.acid.homo-.and.copolymers.are.resistant.to.degradation.by.hypochlorite..To.study.hypochlorite’s. impact.on.CP2,.CP6,.and.CP7.silica.polymerization.inhibition.per-formance,.a.series.of.experiments.were.conducted. in. the.presence.of.4.mg/L.Cl2..

>100 mg/LPo

lym

er d

osag

e (m

g/L)

for >

80%

SI 25°C 40°C68°C55°C

>100 mg/L

80

100

60

40

20

0CP6 @ 5 h CP6 @ 22 h CP7 @ 5 h CP7 @ 22 h

FIgure 10.18  Minimum.polymer.dosage.needed.for.>80%.SiO2.inhibition.vs..temperature.and.time.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0)..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.9..Reproduced.with.permission.from.the.International.Water.Conference®.)

table 10.4temperature and time Impacts on polymer dosage requirements to achieve >80% silica Inhibition

temperature Impact on polymer dosage time Impact on polymer dosage

>3×.higher.at.25°C.than.at.40°C ≈2×.higher.at.24.vs..5.h

195Solution Chemistry Impact on Silica Polymerization by Inhibitors

Experiment.results.include.negligible.polymer.performance.change.(<2%.loss).and.residual.chlorine. loss.(<3%).thus. indicating.that. these.polymers.are.not.adversely.impacted.by.chlorine.nor.consume.chlorine.

10.3.9  iMpacT oF TherMal sTress on polyMer eFFicacy

Polymer.thermal.degradation.is.a.well-investigated.area..However,.there.is.little.practical.information.available.to.water.treatment.technologists.pertaining.to.the.thermal. stability. of. low. MW. polymers. used. in. high-temperature. applications..Polymers. used. in. high-temperature. applications. should. be. able. to. sustain. per-formance. where. exposed. to. high-temperature. and. high-pressure. environments.associated.with.boiler.and. thermal.desalination.processes..McGaugh.and.Kottle.[37].studied.the.thermal.degradation.of.PAA.and.later.the.thermal.degradation.of.an.acrylic.acid–ethylene.copolymer..They.used.infrared.and.mass.spectrographic.analysis.to.examine.the.degradation.processes.that.occurred.in.several.temperature.regions:. 25°C–150°C,. 150°C–275°C,. 275°C–350°C,. and. >350°C.. Their. results.in.air.(min.heating).suggest.that.dry.PAA.decomposes.by.forming.an.anhydride,.probably. a. six-membered. glutaric. anhydride-type. structure. up. to. 150°C.. At.350°C,.there.is.drastic.unmeasurable.change.and.strong.unsaturation.absorption..Mass.spectrographic.analysis.showed.that.carbon.dioxide.was.the.major.volatile.product.at.350°C.

In.an.earlier.paper.[38],.we.reported.the.effects.of.thermal.treatment.(i.e.,.a.vari-able.temperature.[150°C,.200°C,.and.230°C],.pH.10.5,.and.20.h).on.the.silica.polym-erization. inhibition.performance.of. the.polymers.herein.designated.as.PAA,.CP3,.CP5,.and.CP6..The.results.of.that.study.clearly.show.that.the.PAA.and.copolymers.CP3.and.CP5.(promoted.as.silica–silicate.deposit.control.agents).performed.poorly.(<5%. inhibition). as. silica. polymerization. inhibitors. when. exposed. to. 150°C. and.200°C,.whereas.CP6.retained.>95%.of.its.performance.(vs..no.thermal.stress).

To.understand. the. impact.of. thermal. treatment.on. the.performance.of.CP7.as.well.as.the.other.polymers.discussed.herein,.we.conducted.a.series.of.experiments.exposing.the.polymer.to.thermal.stress.(variable.temperature.[200°C,.230°C,.250°C,.and.300°C],.pH.10.5,.and.20.h).before.evaluating.the.silica.polymerization.inhibitor.performance.[39]..Figure.10.19.presents.comparative.silica.polymerization.inhibition.data.before.and.after.thermal.stress.at.50.mg/L.polymer.dosages.

Figure. 10.19. silica. polymerization. inhibition. data. in. the. absence. of. thermal.stress. show. that. the. copolymer. blends. (i.e.,. CP6. and. CP7). are. effective. but. the.other. polymers. evaluated. are. ineffective. inhibitors. under. the. high. silica. satura-tion.level.(3.0×).test.conditions..More.specifically.the.%SI.values.obtained.for.the.homo-.(i.e.,.PMA.and.PAA).and.copolymers.(i.e.,.CP2,.CP3,.and.CP5).are.<20%.compared. to.>80%.obtained.for. the.copolymer.blends. (CP6.and.CP7)..The.data.clearly. show. that. the.deposit. control.polymers. containing.>50%.carboxylic. acid.monomer.groups.(i.e.,.PMA,.PAA,.CP2,.CP3,.and.CP5).exhibit.poor.performance.as. silica. polymerization. inhibitors.. By. contrast,. the. copolymer. blends. (CP6. and.CP7).that.contain.<50%.carboxylic.acid.monomer.groups.are.significantly.better.silica.polymerization.inhibitors.and.a.significant.improvement.over.current.silica.inhibitor.technology.

196 Mineral Scales in Biological and Industrial Systems

Silica.inhibition.data.for.polymers.after.thermal.stress.presented.in.Figure.10.19.indicate.the.following:

. 1..The.homopolymers.(PAA.and.PMA).and.copolymers.(CP2,.CP3,.and.CP5).are.ineffective.(<10%).silica.polymerization.inhibitors.

. 2..The. copolymer. blends. (CP6. and. CP7). are. very. effective. (≈80%). silica.polymerization.inhibitors.after.thermal.stress.at.200°C.

. 3..Thermal. stress. above. 230°C. for. CP6. causes. a. significant. reduction.performance.

. 4..Thermal.stress.above.250°C.for.CP7.causes.a. reduction. in.performance..However,.the.CP7.silica.polymerization.inhibitions.after.thermal.stress.at.250°C.and.300°C.were.>70%.and.>60%,.respectively.

Figure.10.20. takes. a. closer. look.at. the. silica.polymerization. inhibition.performance.of.CP6.and.CP7.after. thermal.stress.as.a. function.of.polymer.dosages. in. the.10–50.mg/L.range..The.post-thermal.stress.results.shown.in.Figure.10.20.indicate.that.(a).both.CP6.and.CP7.experience.a.modest.(<15%).performance.reduction.(suggesting.some.degradation.of.the.polymer.functional.groups).and.(b).CP7.is.a.more.effective.silica.polymerization.inhibitor.than.CP6.at.lower.dosages.both.before.and.after.thermal.stress..Collectively,. the. results.discussed.earlier.as.well.as.Figures.10.19.and.10.20.clearly.show.that.CP7.is.a.superior.silica.polymerization.inhibitor.over.a.wide.range.of.dosages.and.after.thermal.stress..Thus,.CP7.because.of.its.superior.thermal.stability.at.high.tem-perature.may.be.a.suitable.candidate.for.high-temperature.silica.control.applications.

10.3.10  silica precipiTaTe characTerizaTion

The. silica. precipitates. formed. during. the. silica. polymerization. experiments. were.investigated. using. XRD. and. EDS.. Figure. 10.21. shows. the. XRD. spectra. of. the.

23°C 200°C 230°C 250°C 300°C

PMA PAA CP2 CP3 CP5 CP6 CP7

% Si

lica i

nhib

ition

100

80

60

40

20

0

FIgure 10.19  Silica.polymerization.inhibition.by.polymers.as.a.function.of.thermal.stress.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C,.50.mg/L.polymer).

197Solution Chemistry Impact on Silica Polymerization by Inhibitors

100CP6 @23°CCP6 @200°C

CP7 @200°CCP7 @23°C80

% Si

lica i

nhib

ition

60

40

20

00 10

Polymer dosage (mg/L)20 30 40 50

FIgure 10.20  Silica.polymerization.inhibition.as.a.function.of.polymer.thermal.stress.and.dosage.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

750

500

Inte

nsity

(cou

nts)

250

010 20 30 40 50

2-Theta (deg)60 70 80

1000

FIgure 10.21  XRD.spectra.of.amorphous.silica.formed.in.the.absence.and.presence.of.CP6.and.CP7.

198 Mineral Scales in Biological and Industrial Systems

precipitates.formed.in.the.absence.of.polymer.and.in.the.presence.of.15.mg/L.poly-mer.(CP6.and.CP7)..The.spectra.suggest.that.the.silica.precipitates.formed.during.polymerization.process.are.amorphous.

Figure.10.22.presents.EDS.spectrum.of.precipitated.amorphous.silica..From.the.spectrum,.it.is.apparent.that.the.precipitates.consist.essentially.of.silicon.and.oxygen.with.only.trace.amounts.of.calcium.and.magnesium.present.in.the.silica.precipitates..This.observation.was.confirmed.by.analyzing.calcium.and.magnesium.ions.before.and.after.filtration.wherein. there.was.no.significant.concentration.difference..The.trace.levels.of.Ca.and.Mg.shown.in.the.EDS.spectra.may.be.due.to.surface.adsorp-tion.of.Ca.and.Mg.on.the.unwashed.precipitated.silica.

reFerences

. 1.. Amjad,.Z..The Science and Technology of Industrial Water Treatment..CRC.Press,.Boca.Raton,.FL.(2010).

. 2.. Iler,.R..K..The Chemistry of Silica..John.Wiley.&.Sons,.New.York.(1979).

. 3.. Bremere,. I.,. Kennedy,. M.,. Mhyio,. S.,. Jalijuli,.A.,.Witkamp,. G.-J.,. and. Schippers,. J..Prevention. of. silica. scale. in. membrane. systems:. Removal. of. monomer. and. polymer.silica..Desalination.132,.89–100.(2000).

. 4.. Sheikholeslami,.R..and.Bright,.J..Silica.and.metals.removal.by.pretreatment.to.prevent.fouling.of.reverse.osmosis.membrane..Desalination.143,.255–267.(2002).

. 5.. Dubin,.L.,.Dammeier,.R..L.,.and.Hart,.R..A..Deposit.control.in.high.silica.water..Paper.No..131,.CORROSION/85,.NACE.International,.Houston,.TX.(1985).

. 6.. Meier,.D..A..and.Dubin,.L..A.novel.approach.to.silica.scale.inhibition..Paper.No..334,.CORROSION/87,.NACE.International,.Houston,.TX.(1987).

. 7.. Yorke,.M..and.Amjad,.Z..Carboxylic.functional.polyampholytes.as.silica.polymerization.inhibitors..U.S..Patent.No..4510059.(1985).

. 8.. Harrar,.J..E.,.Lorensen,.L..E.,.and.Locke,.F..E..Method.for.inhibiting.silica.precipitation.and.scaling.in.geothermal.flow.systems..US.Patent.No..4328106.(1982).

. 9.. Neofotistou,.E..and.Demadis,.K..Use.of.antiscalants.for.mitigation.of.silica.(SiO2).fouling.and.deposition:.Fundamentals. and.applications. in.desalination. systems..Desalination.167,.257–272.(2004).

0.0000

11000Co

unts

Si

keV 10.240C

C1C1 Ca Ca

O

NaMg

FIgure 10.22  EDS.spectra.of.amorphous.silica.

199Solution Chemistry Impact on Silica Polymerization by Inhibitors

. 10.. Hann,.W.. F.,. Robertson,. S.. T.,. and. Bardsley,. J.. H.. Recent. experience. in. controlling.silica.and.magnesium.silicate.deposits.with.polymeric.dispersants..Paper.No..93–59,.International Water Conference,.Pittsburgh,.PA.(1993).

. 11.. Perez,.L..A.,.Brown,.J..M.,.and.Nguyen,.K..T..Method.for.controlling.silica.and.water.soluble.silicate.deposition..US.Patent.No..5256302.(1993).

. 12.. Momozaki,.K.,.Kira,.M.,.Murano,.Y.,.Okamoto,.M.,.and.Kawamura,.F..Polyacrylamide.based.treatment.program.for.open.recirculating.cooling.water.system.with.high.silica.content..Paper.No..92–11,.International Water Conference,.Pittsburgh,.PA.(1992).

. 13.. Gill,. J.. S.. Inhibition. of. silica-silicate. deposit. in. industrial. waters.. Colloid Surf A: Physiochem Eng Aspects.74,.101–106.(1994).

. 14.. Amjad,.Z..and.Zuhl,.R..W..Silica.control.in.industrial.water.systems.with.a.new.polymeric.dispersant.. Association of Water Technologies Annual Convention,. Hollywood,. FL.(2009).

. 15.. Zhang,.B.,.Xin,.S.,.Chen,.Y.,.and.Li,.F..Synergistic.effect.of.polycation.and.polyanion.on.silica.polymerization..J Colloid Interf Sci.368,.181–190.(2012).

. 16.. Nicholas,.P..P..and.Amjad,.Z..Method.for.inhibiting.and.deposition.of.silica.and.silicate.compounds..US.Patent.No..5658465.(1997).

. 17.. Amjad,.Z..and.Zuhl,.R..W..Factors.impacting.silica-silicate.control.agent.performance.in.industrial.water.systems..International Water Conference,.Orlando,.FL.(2011).

. 18.. Amjad,.Z..and.Zuhl,.R..W..Laboratory.evaluation.of.process.variables. impacting. the.performance.of.silica.control.agents.in.industrial.water.treatment.programs..Association of Water Technologies Annual Convention,.Austin,.TX.(2008).

. 19.. Cowan,.J..C..and.Weintritt,.D..J..(Eds.)..Water Formed Scale Deposits..Gulf.Publishing,.Houston,.TX.(1976).

. 20.. Amjad,.Z.,.Zuhl,.R..W.,.and.Zibrida,.J..Factors.influencing.the.precipitation.of.calcium-inhibitor. salts. in. industrial.water. systems..Association of Water Technologies Annual Convention,.Phoenix,.AZ.(2003).

. 21.. Sheikholeslami,.R.,.Al-Mutaz,.I..S.,.Koo,.T.,.and.Young,.A..Pretreatment.and.the.effect.of.cations.and.anions.on.prevention.of.silica.fouling..Desalination.139,.83–95.(2001).

. 22.. Icopini,.G..A.,.Brantley,.S..L.,.and.Heaney,.P..J..Kinetics.of.silica.oligomerization.and.nanocolloid.formation.as.a.function.of.pH.and.ionic.strength.at.25°C..Geochimica et Cosmochimica Acta.69(2).293–303.(2005).

. 23.. Amjad,.Z..and.Zuhl,.R..W..The.use.of.polymers.to.improve.control.of.calcium.phos-phonates.and.calcium.carbonate.in.high.stressed.cooling.water.systems..Association of Water Technologies Annual Convention,.Nashville,.TN.(2004).

. 24.. Amjad,.Z..Interactions.of.hardness.ions.with.polymeric.scale.inhibitors.in.aqueous.sys-tems..Tenside Surf Det.45,.71–77.(2005).

. 25.. Amjad,. Z.,. Zuhl,. R..W.,. and. Huang,. S.. Deposit. control. polymers:. Types,. character-ization,.and.applications..Chapter.No..22.in.The Science and Technology of Industrial Water Treatment,.Z..Amjad.(Ed.)..CRC.Press,.Boca.Raton,.FL.(2010).

. 26.. Sheikholeslami,. R.,.Al-Mutaz,. I.. S.,. Tan,.A.,. and. Tan,. S.. D.. Some. aspects. of. silica.polymerization.and.fouling.and.its.pretreatment.by.sodium.aluminate,.lime,.and.soda.ash..Desalination.150,.85–92.(2002).

. 27.. Sahachaiyunta,.P.,.Koo,.T.,.and.Sheikholeslami,.R..Effect.of.several.inorganic.species.on.silica.fouling.in.RO.membranes..Desalination.144,.373–378.(2002).

. 28.. Kemmer,. F.. N.. and. McCallion,. J.. (Eds.).. The Nalco Handbook.. McGraw-Hill. Book.Company,.New.York.(1979).

. 29.. Amjad,.Z.,.Zuhl,.R..W.,.and.Zibrida,.J..F..Performance.of.polymers.in.industrial.water.systems:.The.influence.of.process.variables..Mat Perf.36(1).32–37.(1997).

. 30.. Kessler,.S..M..Advanced.scale.control.technology.for.cooling.water.systems..Paper.No..02402,.CORROSION/2002,.NACE.International,.Houston,.TX.(2002).

200 Mineral Scales in Biological and Industrial Systems

. 31.. Smyk,.E..B.,.Hoots,.J..E.,.Fivizzani,.K..P.,.and.Fulks,.K..E..The.design.and.applica-tion.of.polymers. in. cooling.water. programs..Paper.No..14,.CORROSION/84,.NACE.International,.Houston,.TX.(1988).

. 32.. Amjad,.Z..and.Zuhl,.R..W..Influence.of.cationic.polymers.on.the.performance.of.anionic.polymers.as.precipitation.inhibitors.for.calcium.phosphonates..Phos Res Bull.13,.59–65.(2002).

. 33.. Nalepa,.C..J..and.Williams,.T..W..Biocides:.Selection.and.application..Chapter.No..19,.in.The Science and Technology of Industrial Water Treatment,.Z..Amjad. (Ed.)..CRC.Press,.Boca.Raton,.FL.(2010).

. 34.. Wilson,. D.,. Harris,. K.,. and.Toole,. M..Towards. a. better. environment:. Improved. bio-degradability.from.a.polymeric.scale.inhibitor..Paper.No..10047,.CORROSION/2010,.NACE.International,.Houston,.TX.(2010).

. 35.. Patel,. S..An. investigation. of. sulfonated. polymers. for. deposit. and. corrosion. control..Paper.No..225,.CORROSION/98,.NACE.International,.Houston,.TX.(1998).

. 36.. Bain,.D..I.,.Fan,.G.,.and.Fan,.J..Laboratory.and.field.development.of.a.novel.environ-mentally.acceptable.scale.and.corrosion.inhibitor..Paper.No..02230,.CORROSION/2002,.Houston,.TX.(2002).

. 37.. McGaugh,.M..C..and.Kottle,.S..The.thermal.degradation.of.poly(acrylic.acids)..Polm Lett.5,.817–823.(1967).

. 38.. Amjad,. Z.. and. Zuhl,. R.. W.. Effects. of. thermal. stress. on. silica-silicate. deposit. con-trol. deposit. control. agent. performance.. Association of Water Technologies Annual Convention,.Reno,.NV.(2010).

. 39.. Amjad,.Z.. and.Zuhl,.R..W..The. role.of.water. chemistry.on.preventing. silica. fouling.in. industrial. water. systems.. Paper. Number. 10048,. Presented. at. CORROSION/2010,.NACE.International,.Houston,.TX.(2010).

. 40.. Amjad,.Z..and.Zuhl,.R..W..Factors.impacting.silica-silicate.control.agent.performance.in.industrial.water.systems..Paper.number.IWC-11-61..Presented.at.the.International.Water.Conference,.Orlando,.FL.(2011).