33
10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital Converter AD9601 Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved. FEATURES SNR = 59.4 dBFS @ fIN up to 70 MHz @ 250 MSPS ENOB of 9.7 @ fIN up to 70 MHz @ 250 MSPS (−1.0 dBFS) SFDR = 81 dBc @ fIN up to 70 MHz @ 250 MSPS (−1.0 dBFS) Excellent linearity DNL = 0.2 LSB typical INL = 0.2 LSB typical CMOS outputs Single data port at up to 250 MHz Demultiplexed dual port at up to 2 × 125 MHz 700 MHz full power analog bandwidth On-chip reference, no external decoupling required Integrated input buffer and track-and-hold Low power dissipation 274 mW @ 200 MSPS 322 mW @ 250 MSPS Programmable input voltage range 1.0 V to 1.5 V, 1.25 V nominal 1.8 V analog and digital supply operation Selectable output data format (offset binary, twos complement, Gray code) Clock duty cycle stabilizer Integrated data capture clock APPLICATIONS Wireless and wired broadband communications Cable reverse path Communications test equipment Radar and satellite subsystems Power amplifier linearization FUNCTIONAL BLOCK DIAGRAM AGND PWDN RBIAS AVDD (1.8V) VIN+ VIN– CML TRACK-AND-HOLD REFERENCE ADC 10-BIT CORE OUTPUT STAGING LVDS CLK+ CLK– CLOCK MANAGEMENT SERIAL PORT RESET SCLK SDIO CSB DCO– DCO+ OVRB OVRA Dx9 TO Dx0 DRGND DRVDD 10 10 AD9601 07100-001 Figure 1. GENERAL DESCRIPTION The AD9601 is a 10-bit monolithic sampling analog-to-digital converter optimized for high performance, low power, and ease of use. The product operates at up to a 250 MSPS conversion rate and is optimized for outstanding dynamic performance in wideband carrier and broadband systems. All necessary func- tions, including a track-and-hold (T/H) and voltage reference, are included on the chip to provide a complete signal conversion solution. The ADC requires a 1.8 V analog voltage supply and a differen- tial clock for full performance operation. The digital outputs are CMOS compatible and support either twos complement, offset binary format, or Gray code. A data clock output is available for proper output data timing. Fabricated on an advanced CMOS process, the AD9601 is available in a 56-lead LFCSP, specified over the industrial temperature range (−40°C to +85°C). PRODUCT HIGHLIGHTS 1. High Performance—Maintains 59.4 dBFS SNR @ 250 MSPS with a 70 MHz input. 2. Low Power—Consumes only 322 mW @ 250 MSPS. 3. Ease of Use—CMOS output data and output clock signal allow interface to current FPGA technology. The on-chip reference and sample-and-hold provide flexibility in system design. Use of a single 1.8 V supply simplifies system power supply design. 4. Serial Port Control—Standard serial port interface supports various product functions, such as data formatting, power- down, gain adjust, and output test pattern generation. 5. Pin-Compatible Family—12-bit pin-compatible family offered as the AD9626.

10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital Converter

AD9601

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.

FEATURES SNR = 59.4 dBFS @ fIN up to 70 MHz @ 250 MSPS ENOB of 9.7 @ fIN up to 70 MHz @ 250 MSPS (−1.0 dBFS) SFDR = 81 dBc @ fIN up to 70 MHz @ 250 MSPS (−1.0 dBFS) Excellent linearity

DNL = 0.2 LSB typical INL = 0.2 LSB typical

CMOS outputs Single data port at up to 250 MHz Demultiplexed dual port at up to 2 × 125 MHz

700 MHz full power analog bandwidth On-chip reference, no external decoupling required Integrated input buffer and track-and-hold Low power dissipation

274 mW @ 200 MSPS 322 mW @ 250 MSPS

Programmable input voltage range 1.0 V to 1.5 V, 1.25 V nominal

1.8 V analog and digital supply operation Selectable output data format (offset binary, twos

complement, Gray code) Clock duty cycle stabilizer Integrated data capture clock

APPLICATIONS Wireless and wired broadband communications Cable reverse path Communications test equipment Radar and satellite subsystems Power amplifier linearization

FUNCTIONAL BLOCK DIAGRAM AGNDPWDNRBIAS AVDD (1.8V)

VIN+VIN–

CML

TRACK-AND-HOLD

REFERENCE

ADC10-BITCORE

OUTPUTSTAGING

LVDS

CLK+CLK–

CLOCKMANAGEMENT

SERIAL PORT

RESET SCLK SDIO CSB

DCO–DCO+

OVRBOVRA

Dx9 TO Dx0

DRGNDDRVDD

10 10

AD9601

0710

0-00

1

Figure 1.

GENERAL DESCRIPTION The AD9601 is a 10-bit monolithic sampling analog-to-digital converter optimized for high performance, low power, and ease of use. The product operates at up to a 250 MSPS conversion rate and is optimized for outstanding dynamic performance in wideband carrier and broadband systems. All necessary func-tions, including a track-and-hold (T/H) and voltage reference, are included on the chip to provide a complete signal conversion solution.

The ADC requires a 1.8 V analog voltage supply and a differen-tial clock for full performance operation. The digital outputs are CMOS compatible and support either twos complement, offset binary format, or Gray code. A data clock output is available for proper output data timing.

Fabricated on an advanced CMOS process, the AD9601 is available in a 56-lead LFCSP, specified over the industrial temperature range (−40°C to +85°C).

PRODUCT HIGHLIGHTS 1. High Performance—Maintains 59.4 dBFS SNR @ 250 MSPS

with a 70 MHz input.

2. Low Power—Consumes only 322 mW @ 250 MSPS.

3. Ease of Use—CMOS output data and output clock signal allow interface to current FPGA technology. The on-chip reference and sample-and-hold provide flexibility in system design. Use of a single 1.8 V supply simplifies system power supply design.

4. Serial Port Control—Standard serial port interface supports various product functions, such as data formatting, power-down, gain adjust, and output test pattern generation.

5. Pin-Compatible Family—12-bit pin-compatible family offered as the AD9626.

Page 2: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601* PRODUCT PAGE QUICK LINKSLast Content Update: 02/23/2017

COMPARABLE PARTSView a parametric search of comparable parts.

EVALUATION KITS• AD9601 Evaluation Board

DOCUMENTATIONApplication Notes

• AN-1142: Techniques for High Speed ADC PCB Layout

• AN-282: Fundamentals of Sampled Data Systems

• AN-501: Aperture Uncertainty and ADC System Performance

• AN-586: LVDS Outputs for High Speed A/D Converters

• AN-715: A First Approach to IBIS Models: What They Are and How They Are Generated

• AN-737: How ADIsimADC Models an ADC

• AN-741: Little Known Characteristics of Phase Noise

• AN-742: Frequency Domain Response of Switched-Capacitor ADCs

• AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter

• AN-807: Multicarrier WCDMA Feasibility

• AN-808: Multicarrier CDMA2000 Feasibility

• AN-812: MicroController-Based Serial Port Interface (SPI) Boot Circuit

• AN-827: A Resonant Approach to Interfacing Amplifiers to Switched-Capacitor ADCs

• AN-835: Understanding High Speed ADC Testing and Evaluation

• AN-878: High Speed ADC SPI Control Software

• AN-905: Visual Analog Converter Evaluation Tool Version 1.0 User Manual

Data Sheet

• AD9601: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital Converter Data Sheet

TOOLS AND SIMULATIONS• AD9601 IBIS Models

REFERENCE MATERIALSTechnical Articles

• MS-2210: Designing Power Supplies for High Speed ADC

DESIGN RESOURCES• AD9601 Material Declaration

• PCN-PDN Information

• Quality And Reliability

• Symbols and Footprints

DISCUSSIONSView all AD9601 EngineerZone Discussions.

SAMPLE AND BUYVisit the product page to see pricing options.

TECHNICAL SUPPORTSubmit a technical question or find your regional support number.

DOCUMENT FEEDBACKSubmit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

Page 3: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 2 of 32

TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3

DC Specifications ......................................................................... 3 AC Specifications.......................................................................... 4 Digital Specifications ................................................................... 5 Switching Specifications .............................................................. 6 Timing Diagrams.......................................................................... 7

Absolute Maximum Ratings............................................................ 8 Thermal Resistance ...................................................................... 8 ESD Caution.................................................................................. 8

Pin Configurations and Function Descriptions ........................... 9 Equivalent Circuits ......................................................................... 11 Typical Performance Characteristics ........................................... 12 Theory of Operation ...................................................................... 16

Analog Input and Voltage Reference ....................................... 16

Clock Input Considerations...................................................... 17 Power Dissipation and Power-Down Mode ........................... 18 Digital Outputs ........................................................................... 18 Timing—Single Port Mode....................................................... 19 Timing—Interleaved Mode....................................................... 19

Layout Considerations................................................................... 20 Power and Ground Recommendations ................................... 20 CML ............................................................................................. 20 RBIAS........................................................................................... 20 AD9601 Configuration Using the SPI ..................................... 20 Hardware Interface..................................................................... 21 Configuration Without the SPI ................................................ 21

Memory Map .................................................................................. 23 Reading the Memory Map Table.............................................. 23 Reserved Locations .................................................................... 23 Default Values ............................................................................. 23 Logic Levels ................................................................................. 23

Evaluation Board ............................................................................ 25 Outline Dimensions ....................................................................... 31

Ordering Guide .......................................................................... 31

REVISION HISTORY 11/07—Revision 0: Initial Version

Page 4: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 3 of 32

SPECIFICATIONS DC SPECIFICATIONS AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, single port output mode, DCS enabled, unless otherwise noted.

Table 1. AD9601-200 AD9601-250 Parameter1 Temp Min Typ Max Min Typ Max Unit RESOLUTION 10 10 Bits ACCURACY

No Missing Codes Full Guaranteed Guaranteed Offset Error 25°C 4.0 4.0 mV Full −12 +12 −12 +12 mV Gain Error 25°C 1.4 1.4 % FS Full −2.1 +4.5 −2.1 +4.5 % FS Differential Nonlinearity (DNL) 25°C 0.2 0.2 LSB Full −0.5 +0.5 −0.5 +0.5 LSB Integral Nonlinearity (INL) 25°C 0.2 0.2 LSB Full −0.5 +0.5 −0.5 +0.5 LSB

TEMPERATURE DRIFT Offset Error Full 8 8 μV/°C Gain Error Full 0.021 0.021 %/°C

ANALOG INPUTS (VIN+, VIN−) Differential Input Voltage Range2 Full 0.98 1.25 1.5 0.98 1.25 1.5 V p-p Input Common-Mode Voltage Full 1.4 1.4 V Input Resistance (Differential) Full 4.3 4.3 kΩ Input Capacitance 25°C 2 2 pF

POWER SUPPLY AVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 V DRVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 V Supply Currents

IAVDD3 Full 133 142 157 167 mA

IDRVDD3/Single Port Mode4 Full 19 20 22 24 mA

IDRVDD3/Interleaved Mode5 Full 16 18 mA

Power Dissipation3 Full mW Single Port Mode4 Full 274 291 322 344 mW

Interleaved Mode5 Full 268 315 mW Power-Down Mode Supply Currents

IAVDD Full 40 40 μA IDRVDD Full 170 170 22 μA

Standby Mode Supply Currents IAVDD Full 19 19 mA IDRVDD Full 170 170 22 μA

1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed. 2 The input range is programmable through the SPI, and the range specified reflects the nominal values of each setting. See the Memory Map section. 3 IAVDD and IDRVDD are measured with a −1 dBFS, 10.3 MHz sine input at rated sample rate. 4 Single data rate mode; this is the default mode of the AD9601. 5 Interleaved mode; user-programmable feature. See the Memory Map section.

Page 5: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 4 of 32

AC SPECIFICATIONS AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted. 1

Table 2. AD9601-200 AD9601-250 Parameter2 Temp Min Typ Max Min Typ Max Unit SNR

fIN = 10 MHz 25°C 59.5 59.4 dB Full 58.5 57.8 dB fIN = 70 MHz 25°C 59.3 59.4 dB

SINAD fIN = 10 MHz 25°C 59.5 59.4 dB Full 58.5 57.7 dB fIN = 70 MHz 25°C 59.3 59.4 dB

EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz 25°C 9.6 9.7 Bits fIN = 70 MHz 25°C 9.6 9.7 Bits

WORST HARMONIC (SECOND OR THIRD) fIN = 10 MHz 25°C 84 84 dBc Full 77 72 dBc fIN = 70 MHz 25°C 78 81 dBc

WORST OTHER (SFDR EXCLUDING SECOND AND THIRD) fIN = 10 MHz 25°C 88 86 dBc Full 80 75 dBc fIN = 70 MHz 25°C 87 85 dBc

TWO-TONE IMD 170.2 MHz/171.3 MHz @ −7 dBFS 25°C 81 81 dBFS

ANALOG INPUT BANDWIDTH 25°C 700 700 MHz 1 All ac specifications tested by driving CLK+ and CLK− differentially. 2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

Page 6: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 5 of 32

DIGITAL SPECIFICATIONS AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.

Table 3. AD9601-200 AD9601-250 Parameter1 Temp Min Typ Max Min Typ Max Unit CLOCK INPUTS

Logic Compliance Full CMOS/LVDS/LVPECL CMOS/LVDS/LVPECL Internal Common-Mode Bias Full 1.2 1.2 V Differential Input Voltage Full 0.2 6 0.2 6 V p-p Input Voltage Range Full AVDD − 0.3 AVDD + 1.6 AVDD − 0.3 AVDD + 1.6 V Input Common-Mode Range Full 1.1 AVDD 1.1 AVDD V High Level Input Voltage (VIH) Full 1.2 3.6 1.2 3.6 V Low Level Input Voltage (VIL) Full 0 0.8 0 0.8 V Input Resistance (Differential) Full 16 20 24 16 20 24 kΩ Input Capacitance Full 4 4 pF

LOGIC INPUTS Logic 1 Voltage Full 0.8 × VDD 0.8 × VDD V Logic 0 Voltage Full 0.2 × AVDD 0.2 × AVDD V Logic 1 Input Current (SDIO) Full 0 0 μA Logic 0 Input Current (SDIO) Full −60 −60 μA Logic 1 Input Current

(SCLK, PDWN, CSB, RESET) Full 55 50 μA

Logic 0 Input Current (SCLK, PDWN, CSB, RESET)

Full 0 0 μA

Input Capacitance 25°C 4 4 pF LOGIC OUTPUTS

High Level Output Voltage Full DRVDD − 0.05 DRVDD − 0.05 V Low Level Output Voltage Full GND + 0.05 GND + 0.05 V Output Coding Twos complement, Gray code, or offset binary (default)

1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

Page 7: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 6 of 32

SWITCHING SPECIFICATIONS AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.

Table 4. AD9601-200 AD9601-250 Parameter (Conditions) Temp Min Typ Max Min Typ Max Unit Maximum Conversion Rate Full 200 250 MSPS Minimum Conversion Rate Full 40 40 MSPS

CLK+ Pulse Width High (tCH) Full 2.15 2.4 1.8 2.0 ns CLK+ Pulse Width Low (tCL) Full 2.15 2.4 1.8 2.0 ns Output, Single Data Port Mode1

Data Propagation Delay (tPD) 25°C 3.7 3.7 ns DCO Propagation Delay (tCPD) 25°C 3.4 3.4 ns Data to DCO Skew (tSKEW) Full 0 0.3 0.55 0 0.3 0.55 ns Latency Full 6 6 Cycles

Output, Interleaved Mode2 Data Propagation Delay (tPDA, tPDB) 25°C 3.5 3.5 ns DCO Propagation Delay (tCPDA, tCPDB) 25°C 3.0 3.0 ns Data to DCO Skew (tSKEWA, tSKEWB ) Full 0 0.5 1.1 0 0.5 1.1 ns Latency Full 6 6 Cycles

Standby Recovery 25°C 250 250 ns Power-Down Recovery 50 50 μs Aperture Delay (tA) 25°C 0.1 0.1 ns Aperture Uncertainty (Jitter, tJ) 25°C 0.2 0.2 ps rms 1 See Figure 2. 2 See Figure 3.

Page 8: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 7 of 32

TIMING DIAGRAMS

CLK+

DCO+

N

CLK–

DAX N – 6 N – 5 N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2N – 7

DCO–

N + 5N + 6 N + 7

N + 8N + 4

N + 3N + 2N + 1

tA

tPD

tSKEW

tCPD

tCLK = 1/fCLK

0710

0-04

2

Figure 2. Single Port Mode

CLK+

DCO–

N

N – 6

N – 5

N – 4

N – 3

N – 2

N – 1

N

N + 1

N + 2

N – 7

CLK–

DCO+

DAX

DBX

N + 1

N + 8

N + 7N + 6N + 5

N + 4

N + 3N + 2

tCPDA

tSKEWB

tPDB

tCPDB

tPDA

tSKEWA

tA

tCLK = 1/fCLK

0710

0-04

3

Figure 3. Interleaved Mode

Page 9: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 8 of 32

ABSOLUTE MAXIMUM RATINGS Table 5.

Parameter Rating ELECTRICAL

AVDD to AGND −0.3 V to +2.0 V DRVDD to DRGND −0.3 V to +2.0 V AGND to DRGND −0.3 V to +0.3 V AVDD to DRVDD −2.0 V to +2.0 V Dx0 Through Dx9 to DRGND −0.3 V to DRVDD + 0.3 V DCO+/DCO− to DRGND −0.3 V to DRVDD + 0.3 V OVRA/OVRB to DGND −0.3 V to DRVDD + 0.3 V CLK+ to AGND −0.3 V to +3.6 V CLK− to AGND −0.3 V to +3.6 V VIN+ to AGND −0.3 V to AVDD + 0.2 V VIN− to AGND −0.3 V to AVDD + 0.2 V SDIO/DCS to DGND −0.3 V to DRVDD + 0.3 V PDWN to AGND −0.3 V to +3.6 V CSB to AGND −0.3 V to +3.6 V SCLK/DFS to AGND −0.3 V to +3.6 V

ENVIRONMENTAL Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +85°C Lead Temperature

(Soldering, 10 sec) 300°C

Junction Temperature 150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE The exposed paddle must be soldered to the ground plane for the LFCSP package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints, maximizing the thermal capability of the package.

Table 6. Package Type θJA θJC Unit 56-Lead LFCSP (CP-56-2) 30.4 2.9 °C/W

Typical θJA and θJC are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θJA. In addition, metal in direct contact with the package leads from metal traces, and through holes, ground, and power planes reduces the θJA.

ESD CAUTION

Page 10: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 9 of 32

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

PIN 1INDICATOR

1DA42DA53DA64DA75DA86(MSB) DA97DRVDD8DRGND9OVRA

10NIC11NIC12(LSB) DB013DB114DB2

35 VIN+36 VIN–37 AVDD38 AVDD39 AVDD40 CML41 AVDD42 AVDD

34 AVDD33 AVDD32 AVDD31 RBIAS30 AVDD29 PWDN

15D

B3

16D

B4

17D

B5

19D

B7

21(M

SB) D

B9

20D

B8

22O

VRB

23D

RG

ND

24D

RVD

D25

SDIO

/DC

S26

SCLK

/DFS

27C

SB28

RES

ET

18D

B6

45C

LK–

46A

VDD

47D

RVD

D48

DR

GN

D49

DC

O–

50D

CO

+51

NIC

52N

IC53

DA

0 (L

SB)

54D

A1

44C

LK+

43A

VDD

TOP VIEW(Not to Scale)

PIN 0 (EXPOSED PADDLE) = AGND

AD9601

55D

A2

56D

A3

0710

0-00

2

Figure 4. Pin Configuration

Table 7. Single Data Rate Mode Pin Function Descriptions Pin No. Mnemonic Description 30, 32, 33, 34, 37, 38, 39, 41, 42, 43, 46

AVDD 1.8 V Analog Supply.

7, 24, 47 DRVDD 1.8 V Digital Output Supply. 0 AGND1 Analog Ground. 8, 23, 48 DRGND1 Digital Output Ground. 35 VIN+ Analog Input—True. 36 VIN− Analog Input—Complement. 40 CML Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the

optimized internal bias voltage for VIN+/VIN−. 44 CLK+ Clock Input—True. 45 CLK− Clock Input—Complement. 31 RBIAS Set Pin for Chip Bias Current. (Place 1% 10 kΩ resistor terminated to ground.)

Nominally 0.5 V. 28 RESET CMOS-Compatible Chip Reset (Active Low). 25 SDIO/DCS Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer

Select (External Pin Mode). 26 SCLK/DFS Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode). 27 CSB Serial Port Chip Select (Active Low). 29 PWDN Chip Power-Down. 49 DCO− Data Clock Output—Complement. 50 DCO+ Data Clock Output—True. 53 DA0 (LSB) Output Port A Output Bit 0 (LSB). 54 DA1 Output Port A Output Bit 1. 55 DA2 Output Port A Output Bit 2. 56 DA3 Output Port A Output Bit 3. 1 DA4 Output Port A Output Bit 4. 2 DA5 Output Port A Output Bit 5. 3 DA6 Output Port A Output Bit 6.

Page 11: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 10 of 32

Pin No. Mnemonic Description 4 DA7 Output Port A Output Bit 7. 5 DA8 Output Port A Output Bit 8. 6 DA9 (MSB) Output Port A Output Bit 9 (MSB). 10, 11, 51, 52 NIC Not internally connected. 9 OVRA Output Port A Overrange Output Bit. 12 DB0 (LSB) Output Port B Output Bit 0 (LSB). 13 DB1 Output Port B Output Bit 1. 14 DB2 Output Port B Output Bit 2. 15 DB3 Output Port B Output Bit 3. 16 DB4 Output Port B Output Bit 4. 17 DB5 Output Port B Output Bit 5. 18 DB6 Output Port B Output Bit 6. 19 DB7 Output Port B Output Bit 7. 20 DB8 Output Port B Output Bit 8. 21 DB9 (MSB) Output Port B Output Bit 9 (MSB). 22 OVRB Output Port B Overrange Output Bit. 1 AGND and DRGND should be tied to a common quiet ground plane.

Page 12: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 11 of 32

EQUIVALENT CIRCUITS

1.2V10kΩ 10kΩ

CLK+ CLK–

AVDD

0710

0-00

3

Figure 5. Clock Inputs

VIN+

AVDD

BUF

VIN–

AVDD

BUF

2kΩ

2kΩ

BUF

AVDD

VCML~1.4V

0710

0-00

4

Figure 6. Analog Inputs (VCML = ~1.4 V)

SCLK/DFSRESETPDWN

1kΩ

30kΩ

0710

0-00

5

Figure 7. Equivalent SCLK/DFS, RESET, PDWN Input Circuit

CSB1kΩ26kΩ

AVDD

0710

0-00

6

Figure 8. Equivalent CSB Input Circuit

0710

0-04

4

DRVDD

DRGND

Figure 9. CMOS Outputs (Dx, OVRA, OVRB, DCO+, DCO−)

SDIO/DCS1kΩ

DRVDD

0710

0-00

7

Figure 10. Equivalent SDIO/DCS Input Circuit

Page 13: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 12 of 32

TYPICAL PERFORMANCE CHARACTERISTICS AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS enabled, TA = 25°C, 1.25 V p-p differential input, AIN = −1 dBFS, unless otherwise noted.

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

10010 20 30 40 50 60 70 80 90

200MSPS10.3MHz @ –1.0dBFSSNR: 59.48dBENOB: 9.58 BITSSFDR: 83.79dBc

0710

0-02

0

Figure 11. AD9601-200 64k Point Single-Tone FFT; 200 MSPS, 10.3 MHz

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

10010 20 30 40 50 60 70 80 90

200MSPS70.3MHz @ –1.0dBFSSNR: 59.3dBENOB: 9.7 BITSSFDR: 78dBc

0710

0-02

1

Figure 12. AD9601-200 64k Point Single-Tone FFT; 200 MSPS, 70.3 MHz

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

10010 20 30 40 50 60 70 80 90

200MSPS170.3MHz @ –1.0dBFSSNR: 59.35dBENOB: 9.7 BITSSFDR: 83dBc

0710

0-02

2

Figure 13. AD9601-200 64k Point Single-Tone FFT; 200 MSPS, 170.3 MHz

70k

0

BIN

NU

MB

ER O

F H

ITS

60k

50k

40k

30k

20k

10k

N – 1N – 2 N N + 1

0710

0-02

3

Figure 14. AD9601-200 Grounded Input Histogram; 200 MSPS

90

500 500

ANALOG INPUT FREQUENCY (MHz)

SNR

/SFD

R (d

B)

85

80

75

70

65

60

55

50 100 150 200 250 300 350 400 450

SFDR (+85°C)

SFDR (+25°C)

SFDR (–40°C)

SNR (–40°C)SNR (+25°C)

SNR (+85°C)

0710

0-02

4

Figure 15. AD9601-200 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and

Temperature with 1.25 V p-p Full Scale; 200 MSPS

090 0

AMPLITUDE (–dBFS)

SNR

/SFD

R (d

B)

90

80

70

60

50

40

30

20

10

80 70 60 50 40 30 20 10

SNR (dB)

SFDR (dBc)

SNR (dBFS)

SFDR (dBFS)

0710

0-02

5

Figure 16. AD9601-200 SNR/SFDR vs. Input Amplitude; 170.3 MHz

Page 14: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 13 of 32

OUTPUT CODE

INL

(LSB

)

1.0

–1.00 1024

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

128 256 384 512 640 768 896

0710

0-02

6

Figure 17. AD9601-200 INL; 200 MSPS

400

05 245

SAMPLE RATE (MSPS)

CU

RR

ENT

(mA

)

350

300

250

200

150

100

50

25 45 65 85 105 125 145 165 185 205 225

TOTAL POWER (mW)

IAVDD (mA)

IDVDD (mA)

0710

0-02

7

Figure 18. AD9601-200 Power Supply Current vs. Sample Rate

1.0

–1.00 1024

0710

0-02

8

90

500 500

ANALOG INPUT FREQUENCY (MHz)

SNR

/SFD

R (d

B)

OUTPUT CODE

DN

L (L

SB)

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

128 256 384 512 640 768 896

Figure 19. AD9601-200 DNL; 200 MSPS

85

80

75

70

65

60

55

SFDR (+25°C)

SFDR (–40°C)SFDR (+85°C)

SNR (+85°C) SNR (+25°C) SNR (–40°C)

0710

0-02

9

50 100 150 200 250 300 350 400 450

Figure 20. SNR/SFDR vs. Analog Input Frequency, Interleaved Mode vs.

Temperature

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

20 40 60 80 100 120

250MSPS10.3MHz @ –1.0dBFSSNR: 59.4dBENOB: 9.7 BITSSFDR: 84dBc

0710

0-03

0

Figure 21. AD9601-250 64k Point Single-Tone FFT; 250 MSPS, 10.3 MHz

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

20 40 60 80 100 120

250MSPS70.3MHz @ –1.0dBFSSNR: 59.4dBENOB: 9.7 BITSSFDR: 81dBc

0710

0-03

1

Figure 22. AD9601-250 64k Point Single-Tone FFT; 250 MSPS, 70.3 MHz

Page 15: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 14 of 32

0

–1400

FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

–20

–40

–60

–80

–100

–120

20 40 60 80 100 120

250MSPS170.3MHz @ –1.0dBFSSNR: 59.1dBENOB: 9.60 BITSSFDR: 73dBc

0710

0-03

2

Figure 23. AD9601-250 64k Point Single-Tone FFT; 250 MSPS, 170.3 MHz

70k

0

BIN

NU

MB

ER O

F H

ITS

60k

50k

40k

30k

20k

10k

N – 2 N – 1 N N + 1 N + 2

0710

0-03

3

Figure 24. AD9601-250 Grounded Input Histogram; 250 MSPS

90

500 500

ANALOG INPUT FREQUENCY (MHz)

SNR

/SFD

R (d

B)

85

80

75

70

65

60

55

50 100 150 200 250 300 350 400 450

SFDR (+85°C)

SFDR (+25°C)

SFDR (–40°C)

SNR (+85°C) SNR (–40°C)

SNR (+25°C)

0710

0-03

4

Figure 25. AD9601-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and

Temperature with 1.25 V p-p Full Scale; 250 MSPS

100

090 0

AMPLITUDE (–dBFS)

SNR

/SFD

R (d

B)

90

80

70

60

50

40

30

20

10

80 70 60 50 40 30 20 10

SNR (dB)SFDR (dBc)

SNR (dBFS)

SFDR (dBFS)

0710

0-03

5

Figure 26. AD9601-250 SNR/SFDR vs. Input Amplitude; 250 MSPS, 170.3 MHz

1.0

–1.00 1

OUTPUT CODE

INL

(LSB

)

024

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

128 256 384 512 640 768 896

0710

0-03

6

Figure 27. AD9601-250 DNL; 250 MSPS

400

05 245

SAMPLE RATE (MSPS)

CU

RR

ENT

(mA

)

350

300

250

200

150

100

50

25 45 65 85 105 125 145 165 185 205 225

TOTAL POWER (mW)

IAVDD (mA)

IDVDD (mA)

0710

0-03

7

Figure 28. AD9601 Power Supply Current vs. Sample Rate

Page 16: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 15 of 32

1.0

–1.00

OUTPUT CODE

DN

L (L

SB)

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

128 256 384 512 640 768 896

0710

0-03

8

Figure 29. AD9601-250 DNL; 250 MSPS

90

0

SAMPLE RATE (MSPS)

SNR

/SFD

R (d

B)

80

70

60

50

40

30

20

10

SFDR

SNR

12575 175 225 275

0710

0-03

9

Figure 30. SNR/SFDR vs. Sample Rate; AD9626-250 , 170.3 MHz @ −1 dBFS

2.5

2.0

1.5

1.0

0.5

0

–0.5–60 120100806040200–20–40

GA

IN (%

FS)

TEMPERATURE (°C)

AD9601-210

AD9601-250

AD9601-170

0710

0-04

0

Figure 31. Gain vs. Temperature

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0–40 –30 –20 –10 0 908070605040302010

OFF

SET

(mV)

TEMPERATURE (°C)

AD9601-170

AD9601-210

AD9601-250

0710

0-04

1

Figure 32. Offset vs. Temperature

Page 17: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 16 of 32

THEORY OF OPERATION The AD9601 architecture consists of a front-end sample-and-hold amplifier (SHA) followed by a pipelined switched capacitor ADC. The quantized outputs from each stage are combined into a final 10-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample, while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock.

Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.

The input stage contains a differential SHA that can be ac- or dc-coupled. The output-staging block aligns the data, carries out the error correction, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.

ANALOG INPUT AND VOLTAGE REFERENCE The analog input to the AD9601 is a differential buffer. For best dynamic performance, the source impedances driving VIN+ and VIN− should be matched such that common-mode settling errors are symmetrical. The analog input is optimized to provide superior wideband performance and requires that the analog inputs be driven differentially.

A wideband transformer, such as Mini-Circuits® ADT1-1WT, can provide the differential analog inputs for applications that require a single-ended-to-differential conversion. Both analog inputs are self-biased by an on-chip resistor divider to a nominal 1.4 V.

An internal differential voltage reference creates positive and negative reference voltages that define the 1.25 V p-p fixed span of the ADC core. This internal voltage reference can be adjusted by means of SPI control. See the AD9601 Configuration Using the SPI section for more details.

Differential Input Configurations

Optimum performance is achieved while driving the AD9601 in a differential input configuration. For baseband applications, the AD8138 differential driver provides excellent performance and a flexible interface to the ADC. The output common-mode voltage of the AD8138 is easily set to AVDD/2 + 0.5 V, and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal.

VIN+

VIN–

AVDD

CML

AD8138523Ω

499Ω

499Ω

499Ω33Ω

33Ω

49.9Ω1V p-p

0.1µF

20pF AD9601

0710

0-00

8

Figure 33. Differential Input Configuration Using the AD8138

At input frequencies in the second Nyquist zone and above, the performance of most amplifiers may not be adequate to achieve the true performance of the AD9601. This is especially true in IF undersampling applications where frequencies in the 70 MHz to 100 MHz range are being sampled. For these applications, differential transformer coupling is the recommended input configuration. The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few millihertz, and excessive signal power can also cause core saturation, which leads to distortion.

In any configuration, the value of the shunt capacitor, C, is dependent on the input frequency and may need to be reduced or removed.

VIN+

VIN–

15Ω

15Ω

50Ω1.25V p-p

0.1µF

2pF AD9601

0710

0-00

9

Figure 34. Differential Transformer-Coupled Configuration

As an alternative to using a transformer-coupled input at frequencies in the second Nyquist zone, the AD8352 differential driver can be used (see Figure 35).

AD9601AD8352

R

CD RD RG

0.1µF

0.1µF

0.1µF

VIN+

VIN– CML

C

0.1µF

0.1µF

1612

345

11

R0.1µF

0.1µF

10

8, 13

14

VCC

200Ω

200Ω

ANALOG INPUT

ANALOG INPUT

0710

0-01

0

Figure 35. Differential Input Configuration Using the AD8352

Page 18: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 17 of 32

CLOCK INPUT CONSIDERATIONS For optimum performance, the AD9601 sample clock inputs (CLK+ and CLK−) should be clocked with a differential signal. This signal is typically ac-coupled into the CLK+ pin and the CLK− pin via a transformer or capacitors. These pins are biased internally and require no additional bias.

Figure 36 shows one preferred method for clocking the AD9601. The low jitter clock source is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the secondary transformer limit clock excursions into the AD9601 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9601 and preserves the fast rise and fall times of the signal, which are critical to low jitter performance.

0.1µF

0.1µF

0.1µF0.1µFCLOCK

INPUT50Ω 100Ω

CLK–

CLK+ADC

AD9601

MINI-CIRCUITSADT1–1WT, 1:1Z

XFMR

SCHOTTKYDIODES:HSM2812 07

100-

011

Figure 36. Transformer-Coupled Differential Clock

If a low jitter clock is available, another option is to ac couple a differential PECL signal to the sample clock input pins, as shown in Figure 37. The AD9510/AD9511/AD9512/AD9513/ AD9514/AD9515 family of clock drivers offers excellent jitter performance.

100Ω0.1µF

0.1µF0.1µF

0.1µF

240Ω240Ω

AD9510/AD9511/AD9512/AD9513/AD9514/AD9515

50Ω* 50Ω*CLK

CLK

*50Ω RESISTORS ARE OPTIONAL.

CLK–

CLK+

ADCAD9601PECL DRIVER

CLOCKINPUT

CLOCKINPUT

0710

0-01

2

Figure 37. Differential PECL Sample Clock

AD9510/AD9511/AD9512/AD9513/AD9514/AD9515

100Ω0.1µF

0.1µF0.1µF

0.1µF

50Ω* 50Ω*CLK

CLK

*50Ω RESISTORS ARE OPTIONAL.

CLK–

CLK+

ADCAD9601LVDS DRIVER

CLOCKINPUT

CLOCKINPUT

0710

0-01

3

Figure 38. Differential LVDS Sample Clock

In some applications, it is acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, CLK+ should be directly driven from a CMOS gate, and the CLK− pin should be bypassed to ground with a 0.1 μF capacitor in parallel with a 39 kΩ resistor (see Figure 39). Although the CLK+ input circuit supply is AVDD (1.8 V), this input is designed to withstand input voltages up to 3.3 V, making the selection of the drive logic voltage very flexible.

0.1µF

0.1µF

0.1µF

39kΩ

CMOS DRIVER50Ω*

OPTIONAL100Ω

0.1µFCLK

CLK

*50Ω RESISTOR IS OPTIONAL.

CLK–

CLK+

ADCAD9601

AD9510/AD9511/AD9512/AD9513/AD9514/AD9515

CLOCKINPUT

0710

0-01

4

Figure 39. Single-Ended 1.8 V CMOS Sample Clock

0.1µF

0.1µF

0.1µF

CMOS DRIVER

CLK

CLK

*50Ω RESISTOR IS OPTIONAL.

0.1µFCLK–

CLK+

AD9510/AD9511/AD9512/AD9513/AD9514/AD9515

ADCAD9601

CLOCKINPUT

50Ω*OPTIONAL

100Ω

0710

0-01

5

Figure 40. Single-Ended 3.3 V CMOS Sample Clock

Clock Duty Cycle Considerations

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to the clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic per-formance characteristics. The AD9601 contains a duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD9601. When the DCS is on, noise and distortion performance are nearly flat for a wide range of duty cycles. However, some applications may require the DCS function to be off. If so, keep in mind that the dynamic range performance can be affected when operated in this mode. See the AD9601 Configuration Using the SPI section for more details on using this feature.

The duty cycle stabilizer uses a delay-locked loop (DLL) to create the nonsampling edge. As a result, any changes to the sampling frequency require approximately eight clock cycles to allow the DLL to acquire and lock to the new rate.

Page 19: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 18 of 32

Clock Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR for a full-scale input signal at a given input frequency (fA) due only to aperture jitter (tJ) can be calculated by

SNR Degradation = 20 × log10[1/2 × π × fA × tJ]

In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 41).

The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9601. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step.

Refer to the AN-501 Application Note and the AN-756 Application Note for more in-depth information about jitter performance as it relates to ADCs (visit www.analog.com).

1 10 100 1000

16 BITS

14 BITS

12 BITS

30

40

50

60

70

80

90

100

110

120

130

0.125ps0.25ps0.5ps1.0ps2.0ps

ANALOG INPUT FREQUENCY (MHz)

10 BITS

8 BITS

RMS CLOCK JITTER REQUIREMENT

SNR

(dB

)

0710

0-01

6

Figure 41. Ideal SNR vs. Input Frequency and Jitter for 0 dBFS Input Signal

POWER DISSIPATION AND POWER-DOWN MODE As shown in Figure 28, the power dissipated by the AD9601 is proportional to its sample rate. The digital power dissipation does not vary much because it is determined primarily by the DRVDD supply and bias current of the LVDS output drivers.

By asserting PDWN (Pin 29) high, the AD9601 is placed in standby mode or full power-down mode, as determined by the contents of Serial Port Register 08. Reasserting the PDWN pin low returns the AD9601 into its normal operational mode.

An additional standby mode is supported by means of varying the clock input. When the clock rate falls below 20 MHz, the AD9601 assumes a standby state. In this case, the biasing network

and internal reference remain on, but digital circuitry is powered down. Upon reactivating the clock, the AD9601 resumes normal operation after allowing for the pipeline latency.

DIGITAL OUTPUTS Digital Outputs and Timing

The off-chip drivers on the AD9601 are CMOS-compatible output levels. The outputs are biased from a separate supply (DRVDD), allowing isolation from the analog supply and easy interface to external logic. The outputs are CMOS devices that swing from ground to DRVDD (with no dc load). It is recom-mended to minimize the capacitive load the ADC drives by keeping the output traces short (<1 inch, for a total CLOAD < 5 pF). When operating in CMOS mode, it is also recommended to place low value (20 Ω) series damping resistors on the data lines to reduce switching transient effects on performance.

The format of the output data is offset binary by default. An example of the output coding format can be found in Table 11. If it is desired to change the output data format to twos comple-ment, see the AD9601 Configuration Using the SPI section.

An output clock signal is provided to assist in capturing data from the AD9601. The DCO+/DCO− signal is used to clock the output data and is equal to the sampling clock (CLK) rate in single port mode, and one-half the clock rate in interleaved output mode. See the timing diagrams shown in Figure 2 and Figure 3 for more information.

Out-of-Range

An out-of-range condition exists when the analog input voltage is beyond the input range of the ADC. OVRA/OVRB is a digital output that is updated along with the data output corresponding to the particular sampled input voltage. Thus, OVRA/OVRB has the same pipeline latency as the digital data. OVRA/OVRB is low when the analog input voltage is within the analog input range and high when the analog input voltage exceeds the input range, as shown in Figure 42. OVRA/OVRB remains high until the analog input returns to within the input range and another conversion is completed. By logically AND-ing OVRA/OVRB with the MSB and its complement, overrange high or under-range low conditions can be detected.

100

001

OVRA/OVRBDATA OUTPUTS

OVRA/OVRB

+FS – 1 LSB

+FS – 1/2 LSB+FS–FS

–FS + 1/2 LSB

–FS – 1/2 LSB

111111111111

000000000000

111111111111

000000000000

111111111110

000100000000

0710

0-01

7

Figure 42. OVRA/OVRB Relation to Input Voltage and Output Data

Page 20: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 19 of 32

TIMING—SINGLE PORT MODE In single port mode, the CMOS output data is available from Data Port A (DA0 to DA9). The outputs for Port B (DB0 to DB9) are unused, and are high impedance in this mode. The Port A outputs and the differential output data clock (DCO+/DCO−) switch nearly simultaneously during the rising edge of DCO+. In this mode, it is recommended to use the rising edge of DCO− to capture the data from Port A. The setup and hold time depends on the input sample clock period, and is approximately 1/fCLK ± tSKEW.

TIMING—INTERLEAVED MODE In interleaved mode, the output data of the AD9601 is de-multiplexed onto two data port buses, Port A (DA0 to DA9) and Port B (DB0 to DB9). The output data and differential data capture clock switch at one-half the rate of the sample clock input (CLK+/CLK−), increasing the setup and hold time for the external data capture circuit relative to single port mode (see Figure 3, interleaved mode timing diagram). The two ports switch on alternating sample clock cycles, with the data for Port A being valid during the rising edge of DCO+, and the data for Port B being valid during the rising edge of DCO−. The pipeline latency for both ports is six sample clock cycles. Due to the random nature of the ÷2 circuit that generates the timing for the output stage in interleaved mode, the first data sample during power-up can be assigned to either Data Port A or Port B. The user cannot control the polarity of the output data clock relative to the input sample clock. In this mode, it is recom-

mended to use the rising edge of DCO+ to capture the data from Port A, and the rising edge of DCO− to capture the data from Port B. In both cases, the setup and hold time depends on the input sample clock period, and both are approximately 2/fS ± tSKEW.

fS/2 Spurious

Because the AD9601 output data rate is at one-half the sampling frequency in interleaved output mode, there is significant fS/2 energy in the outputs of the part, and there is significant energy in the ADC output spectrum at fS/2. Care must be taken to be certain that this fS/2 energy does not couple into either the clock circuit or the analog inputs of the AD9601. When fS/2 energy is coupled in this fashion, it appears as a spurious tone reflected around fS/4, 3fS/4, 5fS/4, and so on. For example, in a 125 MSPS sampling application with a 90 MHz single-tone analog input, this energy generates a tone at 97.5 MHz.

[(3 × 125 MSPS/4 − 90 MHz) + 3 × 125 MSPS/4]

Depending on the relationship of the IF frequency to the center of the Nyquist zone, this spurious tone may or may not be in the user’s band of interest. Some residual fS/2 energy is present in the AD9601, and the level of this spur is typically below the level of the harmonics at clock rates. Figure 20 shows a plot of the fS/2 spur level vs. the analog input frequency for the AD9601-250. For the specifications provided in Table 2, the fS/2 spur effect is not a factor, as the device is specified in single port output mode.

Page 21: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 20 of 32

LAYOUT CONSIDERATIONS POWER AND GROUND RECOMMENDATIONS When connecting power to the AD9601, it is recommended that two separate supplies be used: one for analog (AVDD, 1.8 V nominal) and one for digital (DRVDD, 1.8 V nominal). If only a single 1.8 V supply is available, it is routed to AVDD first, then tapped off and isolated with a ferrite bead or filter choke with decoupling capacitors proceeding connection to DRVDD. The user can employ several different decoupling capacitors to cover both high and low frequencies. These should be located close to the point of entry at the PC board level and close to the parts with minimal trace length.

A single PC board ground plane is sufficient when using the AD9601. With proper decoupling and smart partitioning of analog, digital, and clock sections of the PC board, optimum performance is easily achieved.

Exposed Paddle Thermal Heat Slug Recommendations

It is required that the exposed paddle on the underside of the ADC be connected to analog ground (AGND) to achieve the best electrical and thermal performance of the AD9601. An exposed, continuous copper plane on the PCB should mate to the AD9601 exposed paddle, Pin 0. The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. These vias should be solder-filled or plugged.

To maximize the coverage and adhesion between the ADC and PCB, partition the continuous plane by overlaying a silkscreen on the PCB into several uniform sections. This provides several tie points between the two during the reflow process. Using one continuous plane with no partitions guarantees only one tie point between the ADC and PCB. See Figure 43 for a PCB layout example. For detailed information on packaging and the PCB layout of chip scale packages, see Application Note AN-772, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package.

SILKSCREEN PARTITIONPIN 1 INDICATOR

0710

0-01

8

Figure 43. Typical PCB Layout

CML The CML pin should be decoupled to ground with a 0.1 μF capacitor, as shown in Figure 45.

RBIAS The AD9601 requires the user to place a 10 kΩ resistor between the RBIAS pin and ground. This resistor sets the master current reference of the ADC core and should have at least a 1% tolerance.

AD9601 CONFIGURATION USING THE SPI The AD9601 SPI allows the user to configure the converter for specific functions or operations through a structured register space inside the ADC. This gives the user added flexibility to customize device operation depending on the application. Addresses are accessed (programmed or read back) serially in one-byte words. Each byte can be further divided down into fields, which are documented in the Memory Map section.

There are three pins that define the serial port interface or SPI to this particular ADC. They are the SPI SCLK/DFS, SPI SDIO/DCS, and CSB pins. The SCLK/DFS (serial clock) is used to synchronize the read and write data presented the ADC. The SDIO/DCS (serial data input/output) is a dual-purpose pin that allows data to be sent and read from the internal ADC memory map registers. The CSB is an active low control that enables or disables the read and write cycles (see Table 8).

Table 8. Serial Port Pins Mnemonic Function SCLK SCLK (Serial Clock) is the serial shift clock in.

SCLK is used to synchronize serial interface reads and writes.

SDIO SDIO (Serial Data Input/Output) is a dual-purpose pin. The typical role for this pin is an input and output depending on the instruction being sent and the relative position in the timing frame.

CSB CSB (Chip Select Bar) is an active low control that gates the read and write cycles.

RESET Master Device Reset. When asserted, device assumes default settings. Active low.

The falling edge of the CSB, in conjunction with the rising edge of the SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Figure 44 and Table 10.

During an instruction phase, a 16-bit instruction is transmitted. Data then follows the instruction phase and is determined by the W0 and W1 bits, which is 1 or more bytes of data. All data is composed of 8-bit words. The first bit of each individual byte of serial data indicates whether this is a read or write command. This allows the serial data input/output (SDIO) pin to change direction from an input to an output.

Data can be sent in MSB or in LSB first mode. MSB first is default on power-up and can be changed by changing the configuration register. For more information about this feature and others, see Interfacing to High Speed ADCs via SPI at www.analog.com.

Page 22: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 21 of 32

HARDWARE INTERFACE The pins described in Table 8 comprise the physical interface between the user’s programming device and the serial port of the AD9601. All serial pins are inputs, which is an open-drain output and should be tied to an external pull-up or pull-down resistor (suggested value of 10 kΩ).

This interface is flexible enough to be controlled by either PROMS or PIC microcontrollers as well. This provides the user with an alternate method to program the ADC other than a SPI controller.

If the user chooses not to use the SPI interface, some pins serve a dual function and are associated with a specific function when strapped externally to AVDD or ground during device power-on. The Configuration Without the SPI section describes the strappable functions supported on the AD9601.

CONFIGURATION WITHOUT THE SPI In applications that do not interface to the SPI control registers, the SPI SDIO/DCS and SPI SCLK/DFS pins can alternately serve as standalone CMOS-compatible control pins. When the device is powered up, it is assumed that the user intends to use the pins as static control lines for the duty cycle stabilizer. In this mode, the SPI CSB chip select should be connected to ground, which disables the serial port interface.

Table 9. Mode Selection

Mnemonic External Voltage Configuration AVDD Duty cycle stabilizer enabled SPI SDIO/DCS AGND Duty cycle stabilizer disabled AVDD Twos complement enabled SPI SCLK/DFS AGND Offset binary enabled

DON’T CARE

DON’T CAREDON’T CARE

DON’T CARE

SDIO

SCLK

CSB

tS tDH

tHI tCLK

tLO

tDS tH

R/W W1 W0 A12 A11 A10 A9 A8 A7 D5 D4 D3 D2 D1 D0

0710

0-01

9

Figure 44. Serial Port Interface Timing Diagram

Page 23: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 22 of 32

Table 10. Serial Timing Definitions Parameter Timing (minimum, ns) Description tDS 5 Setup time between the data and the rising edge of SCLK tDH 2 Hold time between the data and the rising edge of SCLK tCLK 40 Period of the clock tS 5 Setup time between CSB and SCLK tH 2 Hold time between CSB and SCLK tHI 16 Minimum period that SCLK should be in a logic high state tLO 16 Minimum period that SCLK should be in a logic low state tEN_SDIO 1 Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK

falling edge (not shown in Figure 44) tDIS_SDIO 5 Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK

rising edge (not shown in Figure 44)

Table 11. Output Data Format

Input (V) Condition (V) Offset Binary Output Mode D11 to D0

Twos Complement Mode D11 to D0

Gray Code Mode (SPI Accessible) D11 to D0 OR

VIN+ − VIN− < 0.62 0000 0000 0000 0000 0000 0000 0000 0000 0000 1 VIN+ − VIN− = 0.62 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 VIN+ − VIN− = 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 VIN+ − VIN− = 0.62 1111 1111 1111 1111 1111 1111 0000 0000 0000 0 VIN+ − VIN− > 0.62 + 0.5 LSB 1111 1111 1111 1111 1111 1111 0000 0000 0000 1

Page 24: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 23 of 32

MEMORY MAP READING THE MEMORY MAP TABLE Each row in the memory map table has eight address locations. The memory map is roughly divided into three sections: chip configuration register map (Address 0x00 to Address 0x02), transfer register map (Address 0xFF), and program register map (Address 0x08 to Address 0x2A).

The Addr (Hex) column of the memory map indicates the register address in hexadecimal, and the Default Value (Hex) column shows the default hexadecimal value that is already written into the register. The Bit 7 (MSB) column is the start of the default hexadecimal value given. For example, Hexadecimal Address 0x09, clock, has a hexadecimal default value of 0x01. This means Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. The default value enables the duty cycle stabilizer. Overwriting this default so that Bit 0 = 0 disables the duty cycle stabilizer. For more information on this and other functions, consult the Interfacing to High Speed ADCs via SPI user manual at www.analog.com.

RESERVED LOCATIONS Undefined memory locations should not be written to other than their default values suggested in this data sheet. Addresses that have values marked as 0 should be considered reserved and have a 0 written into their registers during power-up.

DEFAULT VALUES Coming out of reset, critical registers are preloaded with default values. These values are indicated in Table 12. Other registers do not have default values and retain the previous value when exiting reset.

LOGIC LEVELS An explanation of various registers follows: “Bit is set” is synonymous with “bit is set to Logic 1” or “writing Logic 1 for the bit.” Similarly, “clear a bit” is synonymous with “bit is set to Logic 0” or “writing Logic 0 for the bit.”

Table 12. Memory Map Register

Addr (Hex) Parameter Name

Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0 (LSB)

DefaultValue (Hex)

Default Notes/ Comments

Chip Configuration Registers

00 chip_port_config 0 LSB first

Soft reset 1 1 Soft reset LSB first 0 0x18 The nibbles should be mirrored by the user so that LSB or MSB first mode registers correctly, regardless of shift mode.

01 chip_id 8-bit chip ID, Bits[7:0] AD9601 = 0x36

Read-only

Default is unique chip ID, different for each device. This is a read-only register.

02 chip_grade 0 0 0 Speed grade: 01 = 200 MSPS 10 = 250 MSPS

X X X Read-only

Child ID used to differentiate graded devices.

Transfer Register

FF device_update 0 0 0 0 0 0 0 SW transfer

0x00 Synchronously transfers data from the master shift register to the slave.

ADC Functions

08 modes 0 0 PDWN: 0 = full (default) 1 = standby

0 0 Internal power-down mode: 000 = normal (power-up, default)

001 = full power-down 010 = standby

011 = normal (power-up) Note: external PDWN pin overrides

this setting

0x00 Determines various generic modes of chip operation.

Page 25: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 24 of 32

Addr (Hex) Parameter Name

Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0 (LSB)

Default Value (Hex)

Default Notes/ Comments

09 clock 0 0 0 0 0 0 0 Duty cycle stabilizer: 0 = disabled 1 = enabled (default)

0x01

OD test_io Reset PN23 gen:1 = on 0 = off (default)

Reset PN9 gen:1 = on 0 = off (default)

Output test mode: 0000 = off (default)

0001 = midscale short 0010 = +FS short 0011 = −FS short

0100 = checker board output 0101 = PN 23 sequence

0110 = PN 9 0111 = one/zero word toggle

1000 = unused 1001 = unused 1010 = unused 1011 = unused 1100 = unused

(Format determined by output_mode)

0x00 When set, the test data is placed on the output pins in place of normal data.

OF ain_config 0 0 0 0 0 Analog input disable: 1 = on 0 = off (default)

CML enable: 1 = on 0 = off (default)

0 0x00

14 output_mode 0 0 Interleave output mode: 1 = enabled 0 = disabled (default)

Output enable: 0 = enable (default)1 = disable

0 Output invert: 1 = on 0 = off (default)

Data format select: 00 = offset binary

(default) 01 = twos

complement 10 = Gray code

0x00

16 output_phase Output clock polarity 1 = inverted 0 = normal (default)

0 0 0 0x03

17 flex_output_delay Output delay enable: 0 = enable 1 = disable

Output clock delay: 00000 = 0.1 ns 00001 = 0.2 ns 00010 = 0.3 ns

… 11101 = 3.0 ns 11110 = 3.1 ns 11111 = 3.2 ns

0x00

18 flex_vref Input voltage range setting: 10000 = 0.98 V 10001 =1.00 V 10010 = 1.02 V 10011 =1.04 V

… 11111 = 1.23 V 00000 = 1.25 V 00001 = 1.27 V

… 01110 = 1.48 V 01111 = 1.50 V

0x00

Page 26: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 25 of 32

EVALUATION BOARD

AD

T1-1

WT

PR

IS

EC

nc

ETC

1-1-

13P

RI

SE

C

INO

UT

EV

Q-Q

2

ETC1-1-13PRI SEC

0.1UF

VO

LT_C

ON

TRO

L

VC

LK

TRI_

STA

TE

GN

D

NC

OU

TPU

T

A1

A10

A2

A3

A4

A5

A6

A7

A8

A9

B1

B10 B

2

B3

B4

B5

B6

B7

B8

B9

C1

C10

C2

C3

C4

C5

C6

C7

C8

C9

D1

D10 D

2

D3

D4

D5

D6

D7

D8

D9

GN

DA

B1

GN

DA

B10

GN

DA

B2

GN

DA

B3

GN

DA

B4

GN

DA

B5

GN

DA

B6

GN

DA

B7

GN

DA

B8

GN

DA

B9

GN

DC

D1

GN

DC

D10

GN

DC

D2

GN

DC

D3

GN

DC

D4

GN

DC

D5

GN

DC

D6

GN

DC

D7

GN

DC

D8

GN

DC

D9

HE

AD

ER

M14

6916

9_1

A1

A10

A2

A3

A4

A5

A6

A7

A8

A9

B1

B10 B

2

B3

B4

B5

B6

B7

B8

B9

C1

C10

C2

C3

C4

C5

C6

C7

C8

C9

D1

D10 D2

D3

D4

D5

D6

D7

D8

D9

GN

DA

B1

GN

DA

B10

GN

DA

B2

GN

DA

B3

GN

DA

B4

GN

DA

B5

GN

DA

B6

GN

DA

B7

GN

DA

B8

GN

DA

B9

GN

DC

D1

GN

DC

D10

GN

DC

D2

GN

DC

D3

GN

DC

D4

GN

DC

D5

GN

DC

D6

GN

DC

D7

GN

DC

D8

GN

DC

D9

HE

AD

ER

M14

6916

9_1

AIN

AIN

B

AV

DD

_CLK

AVDD_CLK1

AV

DD

_FL

AV

DD

_FL1

AV

DD

_PIP

E

AV

DD

_PIP

E1

AV

DD

_PIP

E2

AV

DD

_PIP

E3

AV

DD

_PIP

E4

AV

DD

_PIP

E5

AV

DD

_RE

F

CLK

CLKB

CM

L

D0

D0B

D1

D10

D10B

D11

D11B

D1B

D2D2B

D3

D3BD

4D

4B

D5BD

6

D6BD

7

D7BD

8

D8B

D9

D9B

DCO

DCOB

DG

ND

DGND1 DGND2

DOR

DORB

DV

DD

DVDD1 DVDD2

PA

D

PD

N

RB

IAS

RE

SE

TB

SPCSB

SPSCLK/DFS

SPSDIO/DCS

D5

PR

IS

EC

nc

50_O

HM

S

50_O

HM

S

Alte

rnat

e O

ptio

ns

DN

P

optional

EN

CO

DE

CR

2 TO

MA

KE

LA

YO

UT

AN

D P

AR

AS

ITIC

LO

AD

ING

SY

MM

ETR

ICA

L

AN

ALO

G

Inpu

t

CV

HD

_956

Cry

stek

Cry

stal

U6

OPT

ION

AL E

NC

OD

E C

IRC

UIT

S

D1

D1B

D0

D0B

DC

OB

DC

O

D2B

D2

910121314152 3 4 5 6 7 81

16 11

RN

3

910121314152 3 4 5 6 7 81

16 11

RN

2

910121314152 3 4 5 6 7 81

16 11

D9B

D9

D10

B

D10

D11

B

D11

DO

RB

D10

B

DO

RB

DO

R

D10

910121314152 3 4 5 6 7 81

16 11

CMLX

12

34

56

T3A

DT1

-1W

T

35 36

43

46

424139383734333230

44

45

40

52

51

54

18

17

20

19

53

56

55

2 14 3510 912 1114 13

16

15

50

49

8

23 48

22

21

7

24 47

57

29 31

28

27

26

25

6

U4

AD96

01_C

SP

C17DNP

R9

DN

P

AM

PO

UT-

AM

PO

UT+

TOU

T TOU

TB

0.1UFC21 G

ND

00R90

00R89

00R8

R1

50

D1B

D1

GN

D

10KR12

L80 L9

0

R6 36R5 36

R733

DN

PR

4

R1633

CS

B1_

CH

A

110 23456789

1120 1213141516171819

3140 3233343536373839

4150 4243444546474849

2130 22232425262728295160 5253545556575859

SD

O_C

HA

SD

I_C

HA

SC

LK_C

HA

1

10 23456789

1120 1213141516171819

3140 3233343536373839

4150 4243444546474849

2130 22232425262728295160 5253545556575859

P7

CO

NN

EC

TS T

O J

2

P17

GN

DP

5

P9

GN

D

0.1UF

C75

R17

0 D

NP

VO

LT_C

ON

TRO

L

C74

0.1U

F

GN

D

1

6

2 3

54

E20

C61

0.1U

FE

19

0R87

XTA

LIN

PU

T50R3C15

R86

10K

R85

10K

J3 J4

J2

R13

1KR

101K

1

3 2

CR3

13

2CR2

CS

B

GN

D

VS

PI

E10

E5

E4

DN

PR

15

E7

E6

1

3 425

T6

12

SW

3

C22

0.1U

F

C20

DN

P

0.1U

FC

23

DN

PR

14

R11

1K

E9

L110

NH

0.1U

F

C19

0.1U

FC

18

E8

0.1U

FC

161 3

425T5

12

34

56

T2

E3

E2E1

P4

P3

P2

P1

CM

L

GN

D

GN

D

CLK

CT

CLK

CTG

ND

AV

DD

CM

LC

ML

SDIO_ODM

SCLK_DTP

TOU

TBTI

NB

TOU

TG

ND

GN

D

VS

PI

GN

D

GN

D

GN

D

VS

PI

GN

D

E33

E32

E31

CS

B_D

UT

VS

PI

CSB

GND

DRVDD

DRVDD

DR

VD

D

GNDGND

GN

D

AV

DD

AV

DD

AV

DD

AV

DD

AV

DD

AV

DD

AV

DD

AV

DD

AV

DD

AVDD

AVDD

E18

GN

D

VC

LK

GN

D

GN

D

GND

VC

LK

XTA

LIN

PU

T

VC

LK

GN

DG

ND

GN

D

GN

DG

ND

P16

P10

GN

DG

ND

GN

D

D8B

D6B

D4B

D2B

D0B

D0

D2

D4

D6

D8

D11

B

D9B

D7B

D5B

D3B

D3

D5

D7

D9

D11

DC

OB

DC

O

GN

D

CLK

CLK

GN

D

TIN

B

CM

L

CM

L

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

DO

R

D8B

D8

D7B

D7

D6B

D6

D5

D5B

D4B

D4

D3B

D3

P11

CO

NN

EC

TS T

O J

1

RN

150

_OH

MS

RN

450

_OH

MS

07100-045

Figure 45. AD9601 Evaluation Board Schematic Page 1

Page 27: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 26 of 32

++

+

+

IN

OUT OUT1

AD

P33

38U

9

GND

IN

OUT OUT1

AD

P33

38U

12

GND

IN

OUT

AD

P33

38U

11

GND

IN

OUT OUT1

AD

P33

38U

10

GND+

+

PJ-

102A

+5.0

V

1.8V

1.8V

3.3V

1.8V

1.8V

3.3V

+5V

PO

WE

R O

PTI

ON

S12 3

P8

VIN

VCLK

VSPIEXT1

L6

FERRITE

L2

FERRITE

VSPIEXTX

OUT1VSPIEXTX

DRVDDX1

DR

VD

DX

VSPI

DRVDD1

L3

FERRITE

L5

FERRITE

AVDD1

L4

FERRITE

AVDDX

L7

FERRITE

VAMP1VAMPX

0

R88

C11

10U

F

AV

DD

1

VS

PIE

XT1

VA

MP

1

DR

VD

D1

GN

D

100PF

C730.1UF

C72

0.1UF

C69

VC

LK

C54

10U

F

0.1UFC65 0.1UF

C68

0.1UF

C59

VS

PI

GN

D

0.1U

FC

39

0.1UFC63

0.1UFC62

0.1UFC27

EGND

DR

VD

D

GN

D

3

4 2

1

3

4 2

1

3

4 2

1

3

4 2

1

0.1UFC33

0.1UFC31

C8

10U

F

C9

10U

F

GND

GND

GND

VIN

GND

U7

VA

MP

X

C12

10U

F0.

1UF

C34

EG

ND

3 214

T1

U8

R2499

0.1UFC32

0.1UFC30

0.1UFC29

0.1UFC28

0.1UF

C26

0.1UF

C25

0.1UF

C24

GN

D

VS

PIE

XTX

VIN

VIN

GN

D

GN

D

GN

D

GN

D

GN

D

DR

VD

DX

1

GN

D

AV

DD

X

C14

10U

F

0.1UF

C58

0.1UF

C57

0.1UF

C56

GN

D

VA

MP

0.1UF

C60

0.1U

F

C36

0.1U

F

C35

VS

PIE

XT

0.1UFC64

0.1UF

C13

0.1UF

C66

0.1UF

C67

GN

D

0.1UFC70

0.1UFC71

GN

D

AV

DD

GN

D

C6

1UFC5

1UF

C7

1UF

C10

1UF

C1

1UF

C3

1UF

C2

1UF

C4

1UFG

ND

GN

D

GN

D

GN

D

2 1345678

P6

VA

MP

DR

VD

D

VS

PIE

XT

AV

DD

L12

FER

RIT

EL13

FER

RIT

EL14

FER

RIT

EL15

FER

RIT

E

H4

MTH

OLE

6

H3

MTH

OLE

6

H2

MTH

OLE

6

H1

MTH

OLE

6G

ND

GN

D

EG

ND

EG

ND

VIN

GN

D

07100-046

Figure 46. AD9601 Evaluation Board Schematic Page 2

Page 28: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 27 of 32

AD

T1-1

WT

PR

IS

EC

nc

VO

P

VO

N

VIP

VIN

VC

ME

NB

AD83

52 VC

C

GN

D

GN

DG

ND

VC

C

RG

N

RD

N

RG

P

RD

P

ETC

1-1-

13P

RI

SE

COpe

ratio

nal A

mpl

ifier

AD

9515

Log

ic S

etup

GN

DC

37.1

UF

GN

DC

46.1

UF

1 3425

T7

00R46

00R41

00R91

DNP

C76

DNPL10L11

DNP

10K

R42

00R36

912

67

15

41 32

813

51614

1011

Z1

C44DNP

C45DNP

P13

SM

BM

ST

P12

SM

BM

ST

1

2

34

5

6

T4

C47

.1U

F

00R47

E14

5R45

00R

44

10K

R43

C43

DN

P

E13

E12

DN

PR

40

C42

.1U

F5R39

R38

25

C41

DNP

R37

25C40

DNP

DN

PR

35

DN

PR

34R

3349

.9

00R94

TIN

B1

TOU

T2

TIN

B1

TIN

B2

TOU

TB2

TOU

TB2

TIN

B2

TOU

T2

GN

D

AM

PO

UT-

AM

PO

UT+

CM

L

GN

D

GN

DV

AM

P

GN

D

GN

D

VA

MP

GN

D

GN

D

GN

D

VA

MP

GN

D

GND

0.1UF

SM

BM

ST

SM

BM

ST

DN

C; 2

7, 2

8

CLK

CLK

B

GND

GND_PAD

OU

T0O

UT0

B

S0S1

S10

S2S3S4S5S6S7S8S9

SY

NC

B VREF

RSET

OU

T1O

UT1

BAD

9515

AD

9515

(Opt

_Clk

Circ

uit)

2 3 5

6789

1011121314151625

18192223

31

32

33

U1

VC

LK; 1

, 4, 1

7, 2

0, 2

1, 2

4, 2

6, 2

9, 3

0

P14

P15

0.1U

F

C53

R62

4.12

K

E17 E16

R61

240

R60

240

R59

100

0.1U

F

C52

0.1U

F

C51

0.1U

F

C50

R58

100

R57

00

R56

00R

5500

R54

10K

R53

00R

5200

00 R51 D

NP

R50

DNPR49

C49DNP

C48

50R

48E

15

GN

D

S9

S3

S1S0

S8

VC

LK

GN

D

GN

DG

ND

GN

DG

ND

GN

D

CLK

CLK

S10

S7

S5S6

S4

S2

00

R84

00R83

00R82

00R81

00R80

00R79

00R78

00R77

00R76

00R75

00R74

00R73

00R72

00R71

00R70

00R69

00R68

00R67

00R66

00R65

00R64

00R63

VC

LK

S6

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

S10

S9

VC

LK

S8

S7

S5

S4

S3

S2

S1

S0

VC

LK

VC

LK

VC

LK

VC

LK

VC

LK

VC

LK

VC

LK

VC

LK

VC

LK

07100-047

Figure 47. AD9601 Evaluation Board Schematic Page 3

Page 29: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 28 of 32

SP

I CIR

CU

ITR

Y

Y2

Y1

VC

CG

ND

A2

A1

NC

7WZ1

6

Y2

Y1

VC

CG

ND

A2

A1

NC

7WZ0

7

45

3216

U5

45

3216

U31K

R27

10K

R26

1KR25

1KR24

10K

R19

10K

R18

CSB1_CHA

SDO_CHA

SD

IO_O

DM

CS

B_D

UT

GN

D

GN

D

SC

LK_D

TP

GN

D

GN

D

VS

PI

VS

PI

VS

PI

VS

PIE

XT

VS

PIE

XT

SDI_CHA

SCLK_CHA

07100-048

Figure 48. AD9601 Evaluation Board Schematic Page 4

Table 13. Bill of Materials

Qty Reference Designator Package Description Vendor Part Number

1 PCB PCB, AD9230 customer evaluation board, Rev. G Moog AD9230revG 7 C1, C3, C4, C5,

C6, C7, C10 603 Capacitor, 1 μF, 0603, X5R, ceramic, 6.3 V, 10% Panasonic ECJ-1VB0J105K

6 C8, C9, C11, C12, C14, C55

6032-28 Capacitor, 10 μF, tantalum, 16 V, 10% Kemet T491C106K016AS

1 C17 402 Capacitor, 2.0 pF, 50 V, ceramic, 0402, SMD Murata GRM1555C1H2R0GZ01D 7 C27, C32, C33,

C62, C63, C64, C71

402 Capacitor, 0.33 μF, ceramic, X5R, 10 V, 10% Murata GRM155R61A334KE15D

6 C28, C29, C30, C31, C65, C70

402 Capacitor, 120 pF, ceramic, C0G, 25 V, 5% Murata GRM1555C1H121JA01J

10 C21, C22, C23, C24, C25, C26, C34, C35, C36, C39

402 Capacitor, 0.1 μF, ceramic, X5R, 10 V, 10% Murata GRM155R71C104KA88D

1 CR4 603 LED green, SMT, 0603, SS-TYPE Panasonic LNJ314G8TRA 1 CR2 Mini 3P Diode, 30 V, 20 mA Agilent HSMS2812 1 F1 1210 Fuse, 6.0 V, 2.2 A trip current resettable fuse Tyco/Raychem NANOSMDC110F-2 15 E1, E2, E3, E4,

E5, E7, E8, E9, E10, E12, E13, E14, E31, E32, E33

Connector, header, 0.1" Samtec TSW-150-08-G-S

2 J2, J3 SMA end launch

Connector, SMA PCB coax end launch, Johnson 142

Johnson 142-0701-851

10 L2, L3, L4, L5, L7, L12, L13, L14, L15, R88

1206 Ferrite bead, BLM, 3 A, 50 Ω @ 100 MHz Murata BLM31PG500SN1L

1 P8 Power jack, male, 2.1 mm power jack dc CUI Inc CP-102A-ND 1 R1 201 Resistor, 100 Ω, 0201, 1/20 W, 1% NIC Components NRC02F1000TRF 1 R2 603 Resistor, 499 Ω, 0603, 1/10 W, 1% NIC Components NRC06F4990TRF

Page 30: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 29 of 32

Qty Reference Designator Package Description Vendor Part Number

2 R5, R6 402 Resistor, 36 Ω, 0402, 1/16 W, 1% Panasonic ERJ-2GEJ360X 2 R7, R16 402 Resistor, 15 Ω, 0402, 1/16 W, 5% Panasonic ERJ-2RKF15R0X 6 R10, R11, R13,

R24, R25, R27 402 Resistor, 1 kΩ, 0402, 1/16 W, 1% NIC Components NRC04F1001TRF

4 R12, R18, R19, R26,

402 Resistor, 10 kΩ, 0402, 1/16 W, 5% NIC Components NRC04J103TRF

7 R15, C16, C18, C19, C20, R89, R90

402 Resistor, 0 Ω, 0402, 1/16 W, 5% NIC Components NRC04ZOTRF

4 RN1, RN2, RN3, RN4

0402x8 Resistor array, SMT 0402; 0 Ω, ¼ W, 5%, RESNEXB-2HV

Panasonic EXB2HV050JV

3 L1, L8, L9 603 Resistor, 0 Ω, 0603, 1/10 W, 5% NIC Components NRC06ZOTRF 1 P9, P10 805 Resistor, 0 Ω, 0805, 1/8 W, 1% NIC Components NRC10ZOTRF 1 SW3 EVQ-

Q2F03W Switch, light touch SMD Panasonic P12937SCT-ND

1 T1 2020 Ferrite bead, 5 A, 50 V, 190 Ω @ 100 MHz Murata DLW5BSN191SQ2L 2 T2,T3 CD542 Transformer, 0.5 W, 30 mA Mini-Circuits ADT1-1WT+ 1 U3 6-SC70 IC, buffer, inverter, UHS dual SC70-6 Fairchild NC7WZ16P6X 1 U5 6-SC70 IC, buffer, inverter, UHS dual OD out SC70-6 Fairchild NC7WZ07P6X 1 U7 DO-214AA Diode, 50 V, 2 A Micro Commercial S2A-TPMSTR-ND 1 U8 DO-214AB Diode, 30 V, 3 A (SMC) Micro Commercial SK33-TPMSCT-ND 1 U11 SOT-223 Voltage regulator, 3.3 V, 1.5 A Analog Devices ADP3339AKCZ-3.3 2 U9, U12 SOT-223 Voltage regulator, 1.8 V, 1.5 A Analog Devices ADP3339AKCZ-1.8 1 U4 LFCSP56 AD9230 12-bit, 170 MSPS/210 MSPS/250 MSPS,

1.8 V ADC, LFCSP-56 Analog Devices AD9230BCPZ-xxx

2 P7, P11 HM-Zd PCB Connector, 2-Pr, 10-column, high speed, HM-Zd, PCB-mounted

Tyco 6469169-1

Do not install the following: 0 C2, C54 TAJD Capacitor, tantalum, SMT 6032, 10 μF, 16 V, 10% Kemet T491C106K016AS 0 C15, C37, C38,

C40, C41, C61, C42, C43, C44, C45, C46, C47, C48, C49, C50, C51, C52, C53, C39, C56, C57, C58, C59, C74, C75, C60, C66, C67, C68, C69, C72

402 Capacitor, 0.1 μF, ceramic, 10% Murata GRM155R71C104KA88D

0 CR1 Led_ss LED green, USS type 0603 Panasonic LNJ314G8TRA 0 CR3 Diode Schottky diode Agilent HSMS2812 0 805 Tyco/Raychem NANOSMDC110F-2 0 E6, E15, E16,

E17, E18, E19, E20

Connector, header, 0.1" Samtec TSW-150-08-G-S

0 J1 10-pin header

TSW-110-08-G-D Samtec TSW-110-08-G-D

0 J4 SMA Connector, PCB coax SMA end launch, Johnson 142

Johnson 142-0701-851

0 L6 1206 Inductor, 10 nH Murata BLM31P500S 0 P12, P13, P14,

P15 SMA Amphenol RF ARFX1231-ND

Page 31: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 30 of 32

Qty Reference Designator Package Description Vendor Part Number

0 R3, R14, R33, R34, R35, R48, R49

402 Resistor, 49.9 Ω Susumu RR0510R-49R9-D

0 R42, R43, R54, R85, R86

402 Resistor, 10 kΩ NIC Components NRC04J103TRF

0 R28, R29, R30, R31, R32

402 Resistor, 5 kΩ NIC Components NRC04F4991TRF

0 R37, R38 402 Resistor, 25 Ω NIC Components NRC04F24R9TRF 0 R39, R45 402 Resistor, 5 Ω NIC Components NRC04J5R1TRF 0 R58, R59 402 Resistor, 100 Ω NIC Components NRC04F1000TRF 0 R60, R61 402 Resistor, 240 Ω NIC Components NRC04J241TRF 0 R8, R9, R17,

R36, R40, R41, R44, R46, R47, R87, R50, R51, R52, R53, R55, R56, R57, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, R74, R75, R76, R77, R78, R79, R80, R81, R82, R83, R84

402 Resistor, 0 Ω NIC Components NRC04ZOTRF

0 P1, P2, P16, P17 805 Resistor, 0 Ω NIC Components NRC10ZOTRF 0 SW1 EVQ-

Q2F03W Switch, light touch SMD Panasonic P12937SCT-ND

0 T4 Transformer, RF, 0.4 MHz to 800 MHz, SMD case style CD542

Mini-Circuits ADT1-1WT+

0 T5, T6 sm-22 Balun M/A-Com MABA007159-0000 0 U2 SOIC-8 PIC12F629 Microchip Tech PIC12F629-I/SN 0 U6 Crystal Cvhd_956 crystal CVHD_956 0 U10 SOT-223 Regulator ADP3339AKCZ-5.0 0 Z1 16CSP4X4 AD8352 0 U1 16CSP8X8 AD9515 0 P6 8-pin power connector post Wieland Z5.530.0825.0 0 P6 8-pin power connector top Wieland 25.602.2853.0

Page 32: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 31 of 32

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2 1128

05-0

PIN 1INDICATOR

TOPVIEW 7.75

BSC SQ

8.00BSC SQ

156

1415

4342

2829

4.454.30 SQ4.15

0.500.400.30

0.300.230.18

0.50 BSC0.20 REF

12° MAX 0.80 MAX0.65 TYP

1.000.850.80

6.50REF

SEATINGPLANE

0.60 MAX0.60 MAX

PIN 1INDICATOR

COPLANARITY0.08

0.05 MAX0.02 NOM

0.30 MIN

EXPOSEDPAD

(BOTTOM VIEW)

Figure 49. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]

8 mm × 8 mm Body, Very Thin Quad (CP-56-2)

Dimensions shown in millimeters

ORDERING GUIDE Model Temperature Range Package Description Package Option AD9601BCPZ-2001 −40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-56-2 AD9601BCPZ-2501 −40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-56-2 AD9601-250EBZ1 CMOS Evaluation Board with AD9601BCPZ-250 1 Z = RoHS Compliant Part.

Page 33: 10-Bit, 200 MSPS/250 MSPS 1.8 V Analog-to-Digital

AD9601

Rev. 0 | Page 32 of 32

NOTES

©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07100-0-11/07(0)