10 Bending

Embed Size (px)

Citation preview

  • 8/6/2019 10 Bending

    1/48

    BENDING STRESSES IN SHELLS

    Page 1

  • 8/6/2019 10 Bending

    2/48

    Bending Stresses in Shells - TopicsPage 2

    Introduction (3)

    Stress Resultants (4-8)

    Force, Moment, & Displacement Relations (9-16) Compound Stresses (17)

    Axisymmetrically Loaded Circular Cylindrical Shells

    (18-28)

    Bending of an Infinite Cylinder (29-42)

    Uniform Load on Cylinder (43-47)

  • 8/6/2019 10 Bending

    3/48

    IntroductionPage 3

    Membrane theory: Cannot always provide solutions compatible with the actual

    conditions of deformation.

    Fails to predict the state of stress at boundaries & other

    areas of shells. Bending theory: Provides a complete solution to shell behavior.

    Considers membrane forces, shear forces, and momentsacting on the shell structure.

    Is mathematically intricate. Will limit consideration to the most significant practical case

    involving rotationally symmetric loading.

  • 8/6/2019 10 Bending

    4/48

    Shell Stress ResultantsPage 4

    Consider the shell infinitesimal element:

  • 8/6/2019 10 Bending

    5/48

    Shell Stress ResultantsPage 5

    Due to curvature, the arc lengths of an element

    located a distance z from the midsurface are not

    dsx and dsy:

    ( ) ( )y

    yy

    yy

    x

    xx

    xx dsr

    z

    r

    zrdsds

    r

    z

    r

    zrds

    -=

    -

    -=

    -1&1

  • 8/6/2019 10 Bending

    6/48

    Shell Stress ResultantsPage 6

    Now the resultant normal force per unit length on

    the yz-plane is:

    ( )dzzN

    dzr

    zN

    dzdsr

    z

    dsN

    y

    t

    t

    xx

    y

    t

    t

    xx

    yy

    t

    txyx

    ks

    s

    s

    -=

    -=

    -=

    -

    -

    -

    1

    1

    1

    2

    2

    2

    2

    2

    2

  • 8/6/2019 10 Bending

    7/48

    Shell Stress ResultantsPage 7

    The complete set of stress resultants is:

    )( )( )( )( )

    ( )

    dz

    z

    z

    z

    z

    z

    z

    Q

    Q

    N

    N

    N

    N

    t

    t

    xyz

    yxz

    xyx

    yxy

    xy

    yx

    y

    x

    yx

    xy

    y

    x

    -

    -

    -

    -

    --

    -

    =

    2

    2

    1

    1

    1

    1

    1

    1

    kt

    kt

    kt

    ktks

    ks

    ( )( )( )( )

    zdz

    z

    z

    z

    z

    M

    M

    M

    Mt

    t

    xyx

    yxy

    xy

    yx

    yx

    xy

    y

    x

    -

    -

    -

    --

    =

    2

    2 1

    1

    1

    1

    kt

    kt

    ksks

  • 8/6/2019 10 Bending

    8/48

    Shell Stress ResultantsPage 8

    Since rx is typically not equal to ry:

    Nxy & Nyx are not generally equal.

    Mxy & Myx are not generally equal.

    However: For thin shells t

  • 8/6/2019 10 Bending

    9/48

    Force, Moment & Displacement

    RelationsPage 9

    Hookes Law:

    Assumption: z = 0.

    [ ]

    [ ]

    1

    1

    2

    2

    xyxy

    xyy

    yxx

    G

    E

    E

    gt

    neen

    s

    neen

    s

    =

    +-

    =

    +-

    =

  • 8/6/2019 10 Bending

    10/48

    Force, Moment & Displacement

    RelationsPage 10

    Consider the deformations of the midsurface:

  • 8/6/2019 10 Bending

    11/48

    Force, Moment & Displacement

    RelationsPage 11

    Definitions and assumptions:

    Lines mn and mn are straight lines (shell assumption).

    x0 = midsurface unit deformation

    rx = radius of curvature after deformation

    dsx = length of midsurface fiber

    The unit elongation of a fiber is then

    ( ) fx

    xxf

    x

    xf

    f

    fx

    lr

    zdsl

    rzdsl

    l

    l

    -

    -+=D

    -=

    D=

    '11

    1erewh

    0e

    e

  • 8/6/2019 10 Bending

    12/48

    Force, Moment & Displacement

    RelationsPage 12

    Thus, x is: ( )

    -+

    --

    -=

    -

    +---+=

    -

    --

    -+

    =

    xxx

    x

    xx

    xx

    x

    xxx

    xx

    x

    x

    x

    x

    x

    x

    xx

    x

    rrr

    r

    z

    z

    r

    z

    r

    z

    r

    z

    r

    z

    r

    zr

    zds

    r

    zds

    r

    zds

    1

    '

    1

    '11

    1

    1''

    1

    1

    1'

    11

    00

    00

    0

    eee

    eee

    e

    e

  • 8/6/2019 10 Bending

    13/48

    Force, Moment & Displacement

    RelationsPage 13

    Assuming:

    For t

  • 8/6/2019 10 Bending

    14/48

    Force, Moment & Displacement

    RelationsPage 14

    And the strains are now:

    Twist of midsurface = cxy.

    xyxyxy

    yyy

    xxx

    z

    z

    z

    cggcee

    cee

    20

    0

    0

    -=-=

    -=

  • 8/6/2019 10 Bending

    15/48

    Force, Moment & Displacement

    RelationsPage 15

    Stress-strain relationship becomes:

    ( )[ ]( )[ ]

    ( )xyxyxy

    xyxyy

    yxyxx

    zG

    zE

    zE

    cgt

    nccneen

    s

    nccneen

    s

    2

    1

    1

    0

    002

    002

    -=

    +-+-

    =

    +-+-

    =

  • 8/6/2019 10 Bending

    16/48

    Force, Moment & Displacement

    RelationsPage 16

    And introduced into resultant expressions:

    ( )( )

    ( )

    ( ) ( )( )

    ( )23

    002

    0

    002

    112

    1

    1

    12

    1

    n

    ncc

    cnncc

    neen

    n

    gnee

    n

    -=

    +-=

    --==+-=

    +-

    =

    +==+

    -=

    EtD

    DM

    DMMDM

    EtN

    EtNN

    EtN

    xyy

    xyyxxyyxx

    xyy

    xy

    yxxyyxx

    Flexural rigidity of shell (and plate)

  • 8/6/2019 10 Bending

    17/48

    Compound Stresses in a ShellPage 17

    Comparing previous sets of relationships (relatestresses to forces and moments):

    First terms are membrane, second terms are bending.

    Stresses are linear through thickness.

    3

    3

    3

    12

    12

    12

    t

    zM

    t

    N

    t

    zM

    t

    Nt

    zM

    t

    N

    xyxy

    xy

    yy

    y

    xxx

    +=

    +=

    +=

    t

    s

    s

  • 8/6/2019 10 Bending

    18/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 18

    Pipes, tanks, boilers are examples.

    Due to symmetry:

    Only have N , M , Nx

    , Mx

    , Qx

    (5 unknowns).

    N & M do not vary with .

    Displacement v vanishes only have u & w.

    Only 3 of 6 equilibrium equations remain to be

    satisfied.

  • 8/6/2019 10 Bending

    19/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 19

    Stress resultants on an element of axisymmetrically

    loaded circular cylindrical shell:

  • 8/6/2019 10 Bending

    20/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 20

    Write equilibrium expressions:

    0:0

    0:0

    0:0

    =-=

    =++=

    =+=

    dxadQaddx

    dx

    dMM

    dxadpddxNaddxdx

    dQF

    dxadpaddxdx

    dN

    F

    xx

    y

    rx

    z

    x

    x

    x

    qq

    qqq

    qq

    q

  • 8/6/2019 10 Bending

    21/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 21

    Rewriting:

    Note that there are 5 unknowns and only 3 equations.

    Need more equations.

    0

    01

    0

    =-

    =++

    =+

    xx

    rx

    xx

    Qdx

    dM

    pNadx

    dQ

    pdx

    dN

    q

  • 8/6/2019 10 Bending

    22/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 22

    Examine the midsurface displacements:

    n Recall that v = 0 from symmetry:

    ( )

    ( )

    a

    wN

    Etdx

    dua

    w

    dx

    duEtEtN

    a

    w

    ad

    addwa

    dx

    du

    x

    xx

    x

    nn

    n

    n

    nee

    n

    qqq

    e

    e

    q

    q

    +-

    =

    -

    -

    =+

    -

    =

    -=--

    =

    =

    2

    22

    111

    First governing

    displacement condition

  • 8/6/2019 10 Bending

    23/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 23

    Consider N :

    Returning to 3rd equilibrium equation:

    ( )

    xx

    x

    MMdx

    wdDM

    dy

    wd

    dy

    dw

    dx

    du

    a

    wEtEtN

    n

    q

    nn

    neen

    q

    qq

    =-=

    ==

    --

    -=+-

    =

    &

    )withvaries(Nothing0

    11

    2

    2

    2

    2

    22

    2

    2

    0dx

    Md

    dx

    dQQ

    dx

    dM xxx

    x ==-

  • 8/6/2019 10 Bending

    24/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 24

    Substituting expressions into 2nd equilibrium equation:

    01

    0

    1

    1

    1

    01

    1

    01

    4

    4

    2

    22

    2

    2

    2

    22

    2

    =+

    +-+-

    =+

    +

    -

    ---+

    -

    =+

    --

    -+

    =++

    rx

    rx

    rx

    rx

    pNa

    wEt

    adx

    wdD

    pa

    w

    NEta

    wEt

    adx

    wd

    Ddx

    d

    pdx

    du

    a

    wEt

    adx

    Md

    pN

    ady

    dQ

    n

    n

    n

    nn

    nn

    q

  • 8/6/2019 10 Bending

    25/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 25

    Rewriting:

    ( )22

    2

    2

    4

    4

    4

    4

    24

    4

    24

    4

    13

    4

    4

    0

    taDa

    Et

    D

    pN

    aDw

    dx

    wd

    D

    pN

    aDw

    Da

    Et

    dx

    wd

    pNa

    wa

    Et

    dx

    wdD

    rx

    rx

    rx

    nb

    nb

    n

    n

    -==

    =-+

    =-+

    =--+

    Second governing

    displacement condition

  • 8/6/2019 10 Bending

    26/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 26

    If there is no axial load (Nx = 0), the two displacement

    equations simplify further:

    Procedure:

    n Find u from direct integration of first equation.

    n Find w from the second equation (ordinary differential

    equation with constant coefficients).

    D

    pw

    dx

    wd

    a

    w

    dx

    du

    r=+

    =4

    4

    4

    4b

    n

  • 8/6/2019 10 Bending

    27/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 27

    Solution to differential equation:

    ( )

    ( )

    ( ) ( )( )xfw

    ececeececew

    im

    mm

    mm

    m

    mmmm

    ececececw

    p

    xixixxixix

    h

    xmxmxmxm

    h

    =

    +++=

    =

    =+

    =-+

    =+

    +++=

    --- bbbbbb

    b

    bb

    bb

    b

    4321

    22

    22222

    444321

    4321

    1

    22

    042

    04

    ofrootsare,,,where

    4321

  • 8/6/2019 10 Bending

    28/48

    Axisymmetrically Loaded Circular

    Cylindrical ShellsPage 28

    Function f(x) represents the particular solution wp.

    The results of membrane theory can always be

    considered as the particular solution of the equations of

    bending. Can rewrite expression for w in a different form:

    ( ) ( ) ( )xfxCxCexCxCew xx ++++= - bbbb bb sincossincos

    4321

  • 8/6/2019 10 Bending

    29/48

  • 8/6/2019 10 Bending

    30/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 30

    Since there is no pressure distributed over surface of

    the shell: pr = 0. Also Nx = f(x) =0.

    As x approaches infinity, the deflection & all

    derivatives with respect to x must vanish:

    ( ) ( )xCxCexCxCewxx

    bbbb

    bb

    sincossincos 4321 +++=

    -

    ( )xCxCewCC

    x bbb sincos0

    21

    43

    +=== -

  • 8/6/2019 10 Bending

    31/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 31

    From first displacement condition with Nx = 0:

    Substituting into expression for N from Hookes Law:

    a

    w

    dx

    du

    a

    w

    dx

    duEtNx nn

    n

    ==

    -

    -

    = 0

    1

    2

    a

    EtwN

    a

    w

    a

    wEt

    dx

    du

    a

    wEtN

    -=

    -

    -

    -=

    -

    -

    -=

    q

    q n

    n

    n

    n

    2

    22

    11

  • 8/6/2019 10 Bending

    32/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 32

    Writing expressions for moment and shear, and

    observing that due to loading:

    n Half of load is carried by each side.

    n The slope is zero at x = 0 due to symmetry.

    0

    2

    &

    3

    3

    2

    2

    2

    2

    =

    -=-==

    -=-=

    dx

    dw

    P

    dx

    wdD

    dx

    dMQ

    dx

    wdDM

    dx

    wdDM

    xx

    x nq

  • 8/6/2019 10 Bending

    33/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 33

    Take first derivative of w to evaluate boundary

    condition:

    ( )( )

    [ ] [ ]( )

    210

    21

    21

    21

    0

    cossincossin

    cossin

    sincos

    CCdx

    dw

    xxCxxCedx

    dw

    xCxCe

    xCxCedx

    dw

    x

    x

    x

    x

    ==

    -++-=

    +-++-=

    =

    -

    -

    -

    bbbbb

    bbbbbbb

    b

    b

    b

  • 8/6/2019 10 Bending

    34/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 34

    Need third derivative to evaluate other boundary

    condition:

    [ ]

    [ ] [ ]

    [ ]xxCedx

    wd

    xCexCedx

    wd

    xCedx

    dw

    xxeCw

    x

    xx

    x

    x

    bbb

    bbbb

    bb

    bb

    b

    bb

    b

    b

    cossin2

    cos2sin2

    sin2

    )sin(cos

    1

    2

    2

    2

    1

    2

    1

    2

    2

    2

    1

    1

    -=

    -=

    -=

    +=

    -

    --

    -

    -

  • 8/6/2019 10 Bending

    35/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 35

    Need third derivative to evaluate other boundary

    condition (continued):

    [ ] [ ]

    2311303

    3

    1

    3

    3

    3

    1

    3

    1

    3

    3

    3

    8242

    cos4

    sincos2cossin2

    CD

    PCD

    PCD

    P

    dx

    wd

    xCedx

    wd

    xxCexxCedx

    wd

    x

    x

    xx

    ====

    =

    ++--=

    =

    -

    --

    bb

    bb

    bbbbbb

    b

    bb

  • 8/6/2019 10 Bending

    36/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 36

    Can now write the final expressions for the

    displacement w and membrane and bending terms:

    ( ) ( )

    ( )

    ( ) ( )

    ( )xfP

    dx

    wdDM

    xfP

    xxeP

    dx

    wdDM

    xfDa

    EtPw

    a

    EtN

    xfD

    P

    xxeD

    P

    w

    xx

    x

    bb

    nn

    bbbbb

    bb

    bbbbb

    q

    b

    q

    b

    32

    2

    32

    2

    13

    133

    4

    4sincos

    4

    8

    8cossin8

    =-=

    =-=-=

    -=-=

    =+=

    -

    -

  • 8/6/2019 10 Bending

    37/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 37

    Can now write the final expressions for the

    displacement w and membrane and bending terms

    (continued):

    n Recalling that b is a function of geometry and material

    properties, can evaluate functions f1(bx), f3(bx), etc. as afunction of x.

    ( )xfPxePdxwdDQx

    x bbb 433

    2cos

    2 -=-=-=-

    ( )22

    2

    2

    4 13

    4 taDa

    Et nb

    -==

  • 8/6/2019 10 Bending

    38/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 38

    Maximum displacement at x=0:

    Maximum moments at x=0:

    Maximum axial stress:

    Et

    Paw

    Da

    Et

    D

    Pw

    2

    4

    8

    2

    max2

    4

    3max

    bb

    b===

    bn

    b q 44

    max,max,

    PM

    PMx ==

    23

    max,

    max,2

    312

    2,0

    t

    P

    t

    zMtzx

    x

    x bs ==

    ==

  • 8/6/2019 10 Bending

    39/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 39

    Maximum circumferential stress:

    +-=+-=

    =+-=

    +=

    ==

    222max,

    2

    4

    23max,

    3

    max,

    max,

    3

    22

    3

    2

    4

    2

    3

    8

    12

    2,0

    tt

    aP

    t

    P

    t

    aP

    Da

    Et

    t

    P

    Dta

    EtP

    t

    zM

    t

    Ntzx

    b

    nb

    b

    nbs

    bb

    nb

    s

    s

    q

    q

    qqq

  • 8/6/2019 10 Bending

    40/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 40

    Function values:

    These functions are typically supplied in tables, shownon next slide.

    ( ) ( )

    ( )

    ( ) ( )

    ( ) '''13

    ''

    22

    '

    34

    '

    12

    '

    23

    '

    12

    1

    4

    1

    2

    1

    2

    1cos

    2

    11sincos

    2

    1sin

    sincos

    fffxexf

    ffxxexf

    fxexf

    xxexf

    x

    x

    x

    x

    bbbbb

    bbbbb

    bbb

    bbb

    b

    b

    b

    b

    =-=-==

    -==-=

    -==

    +=

    -

    -

    -

    -

  • 8/6/2019 10 Bending

    41/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 41

    Function values:

  • 8/6/2019 10 Bending

    42/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 42

    It is observed that the f-functions all decrease with

    increasing bx.

    Thus, in most engineering applications, the effect of the

    concentrated loads may be neglected at locations:

    Therefore, bending is of a local character.

    n A shell of length L = 2p/b loaded at mid-length willexperience maximum deflection and bending moment nearly

    identical with those associated with a long shell.

    bp

    >x

  • 8/6/2019 10 Bending

    43/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 43

    Example:

    Long cylinder of radius a.

    Uniform load p over L of its length.

    Find w at arbitrary point O within length L.

  • 8/6/2019 10 Bending

    44/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 44

    Know displacement Dw at point O owing to portion of

    load Px = pdx:

    Thus, displacement at O produced by entire load:( )xf

    D

    pdxw b

    b 138=D

    ( ) ( )dxxfD

    pdxxf

    D

    pw

    cb

    +=0

    13

    0

    13

    88

    b

    b

    b

    b

  • 8/6/2019 10 Bending

    45/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 45

    Evaluating integrals:

    ( ) ( )

    ( )[ ]( )

    ( )

    ( ) xedxxf

    xxexdxe

    xxe

    xxexdxe

    xxexf

    x

    xx

    x

    xx

    x

    bb

    b

    bbbb

    bbb

    bbbbbb

    bbb

    b

    bb

    b

    bb

    b

    cos1

    cossin2

    1cos

    cossin2

    1

    cossin2

    1

    sin

    cossin

    1

    2

    1

    -

    --

    -

    --

    -

    -=

    -=

    +-=

    --=

    +=

  • 8/6/2019 10 Bending

    46/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 46

    Substituting into expression for w:

    [ ]

    [ ]

    ( ) ( )[ ]cfbfEt

    paw

    cebeEt

    paw

    Da

    Et

    cebeD

    pw

    ce

    D

    pbe

    D

    pw

    cb

    cb

    cb

    bb

    bbb

    bbb

    b

    b

    bbb

    b

    bb

    bb

    bb

    bb

    44

    2

    2

    2

    4

    4

    33

    22

    coscos22

    4

    coscos28

    1cos

    1

    8

    1cos

    1

    8

    --=

    --==

    --=

    +-+

    +-=

    --

    --

    --

  • 8/6/2019 10 Bending

    47/48

    A Typical Case of the Axisymmetrically

    Loaded Cylindrical ShellPage 47

    Maximum deflection occurs when b = c:

    If b & c are large:

    ( )[ ]bfEt

    paw b4

    2

    max 1-=

    ( )Et

    pawbf

    2

    max4 0 =b

  • 8/6/2019 10 Bending

    48/48

    Homework Problem 19Page 48

    A long steel pipe of 0.75 m in diameter and 10 mmthickness is subjected to loads P uniformly distributedalong two circular sections 0.05 m apart. Assume n =0.3.

    For the mid-length between the loads, obtain the radialcontraction.