16
1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max Planck Institute, Munich

1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

1

Top Pair Production Cross Section with the ATLAS Detector

A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia

Max Planck Institute, Munich

Page 2: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

2

Introduction

• Measurement of top cross section• Semileptonic channel• Using first ~ 100 pb-1 data from ATLAS in 2008

• Overview• QCD multijets• W+N jets• Selection efficiencies

• Trigger• b-tagging• Summary

Page 3: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

3

• Estimate background rates:• QCD multijets. • Electroweak W+N jet production.• Top pair production in hadronic and dileptonic channels.

• Estimate εtt• Using Monte Carlo samples.• Include trigger efficiencies.• Consider b-tagging performance.

• Luminosity: • Relative luminosity measured by LUCID.• Absolute calibration from LHC machine parameters.• Relative uncertainty δL~30% expected during initial data-taking.• https://twiki.cern.ch/twiki/pub/Atlas/AtlasTechnicalPaper/Main_jinst_submission.pdf

Pair Production Cross Section

Page 4: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

4

• Reducible BG• MET is due to

• b→Wc→lνc• Mismeasurement

• Leptons are • Non-prompt• ‘Fake’• Fake Rate R~10-5

(ATLAS TDR)

• R = R(pT, η)

Cuts placed only on jet quantities. (See backup slides.)

ttbar: 5200

W+N jets (W→lν): 8240 – 8251

QCD: 5061 – 5064

Reconstruction: Athena 12.0.6

MET

Electron IsolationLight Jet Fake Rate

A. Doxiadis, M. Kayl, NIKHEF

QCD Multijets

Page 5: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

5

W+N Jets Background• Most dangerous background to analysis.• Use MC samples to determine selection efficiency εW+Njets.• Nexpected = σW+Njets ∫L dt.

• Theoretical uncertainty on σW+Njets is large.• Uncertainty on background rate will be large.• Effective cuts are therefore needed to reduce background rate.

Systematic Uncertainty on σ(W+)+Njets

CERN-PH-TH/2007-066ttbar: MC@NLO. W+Njets: Alpgen. Analysis cuts: see backup slides.

εtt→evbjjb=25.4 ± 0.001 (stat) % εtt→μvbjjb=28.4 ± 0.001 (stat) %

kT D=0.4

No b-tagging.

Page 6: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

6

Trigger• e25i and mu20• Plots contain

• ttbar events (sample 5200)• Analysis cuts (see backup slides)• pT(l)>10 GeV

• L1 Trigger, Event Filter (EF)

• Efficiency for e25i to observe an electron in tt→evbjjb is 84%.

• Efficiency for mu20 to observe a muon in tt→μvbjjb is 78%.

A. Macchiolo

Page 7: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

7

b-tagging• Implement b-tagging to increase S/B.

• Decrease uncertainty on W+N Jets.

• IP3D+SV1 is recommended b-tagger.

• Defining weight cut gives εb-tag, flight, purity.

• Highly sample dependent.

• w>6.25: εb-tag=50%, flight=656, P=0.99.

kT, D=0.4

kT, D=0.7

S. PataraiaSample 5200

Page 8: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

8

b-tagging performance

• Weights are chosen such that

εb-tag = 50% for all algorithms.

• ‘Purification’:

Removal of true light flavor quarks within ∆R < 0.8 of true heavy flavor quarks or taus. If found, identify and discard reconstructed light flavor jet within ∆R < 0.4 of true light flavor quark.

• IP3D+SV1 is optimized for use on Cone4 jets.

• Good performance for

• Cone4 jets.

• kT, D=0.4 jets.

• Performance is poor for

• Cone7 jets.

• kT, D=0.7 jets.

S. Pataraia

Page 9: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

9

Summary and Outlook

• Measurement of σtt • in semileptonic

channel • using 100 pb-1 of first

data.

• Background rates• Selection efficiencies• Trigger performance• B-tagging

• Full Dress Rehearsal• LHC comes online…

Invariant Top Mass for t→Wb→jjb

Page 10: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

10

Backup Slides

Page 11: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

11

Samples• Semileptonic and dileptonic ttbar events

• MC@NLO and Herwig. • Sample 5200, TID 8037. • no 1mm bug; bug in e isolation.• Filter requires prompt lepton.

• Hadronic ttbar events• MC@NLO and Herwig.• Sample 5204, TID 6015.• 1mm bug.• Filter forbids prompt lepton.

• W+Njets events• Alpgen and Herwig. • Samples 8240-8250, TID 6551-6561.• 1 mm bug.• TruthJetFilter requires 3 jets with pT>30 GeV, |eta|<5.

• QCD multijet events• Alpgen and Herwig.• Samples 5061, 5062, 5063, 5064.• Generated in 11.0.42, reconstructed in 12.0.6.• Filter requires 4 jets with |η|<6.

• Lead jet must have pT(j1)>80 GeV. • 3 subsequent jets must have pT>40 GeV.

Page 12: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

12

Selection Cuts

• Inclusive kT algorithm, E scheme, D=0.4. • Hard Jet Cuts

• No cuts are applied to lepton quantities.• Require at least four jets:

• |η| < 5.0.• Lead jet must have pT(j1)>80 GeV.• Three subsequent jets must have pT(j)>40 GeV.

• Commissioning Analysis Cuts• Exactly one isolated, high-pT electron or muon.

• E∆R=0.20 < 6 GeV.• pT(l) > 20 GeV, |η| < 2.5.• Muons are reconstructed by Staco. • Electron candidates must:

• Be reconstructed by eGamma.• Fulfill (isEM==0).

• At least four jets. • |η| < 2.5• First three jets have pT(j) > 40 GeV.• Fourth jet has pT(j4) > 20 GeV.• Jets are removed if ∆R(j,e)<0.4.

• Missing Transverse Energy: MET > 20 GeV.

Page 13: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

13

Lepton Fake Rate

A. Doxiadis, M. Kayl, Nikhef, ATL-COM-PHYS-2008-04

Page 14: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

14

Uncertainty on σW+Njets

• “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”

• J. Alwall, S. Hőche, F. Krauss, N. Lavesson, L. Lőnnblad, F. Maltoni, M. Mangano, M. Moretti, C. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, M. Worek.

• CERN-PH-TH/2007-066

Systematic Variation at Tevatron Systematic Variation at LHC

Proton-antiproton collisions, 1.96 TeV, W±,

Cone7 jets, ET(j)>10 GeV, |η|<2

Proton-proton collisions, 14 TeV, only W+,

Cone4 jets, ET(j)>20 GeV, |η|<4.5

Page 15: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

15

Process Cross section [pb]

MLM match rate

εfilter σ*f [pb]

L [pb-1] Weight(100 pb-1)

Initial events

Final

events

Efficiency [%]

stat. uncertainty

Weighted

final events

ttbar tt→(evb)(jjb)

854 N/A 0.54 461 770.7 0.130

94304 23937 25.38 0.14 3112

tt→(μvb)(jjb) 94489 26980 28.55 0.15 3507

tt→(τvb)(jjb) 95292 6718 7.05 0.08 873

tt→(lvb)(lvb) 70324 5313 7.56 0.10 691

tt→(jjb)(jjb) 802 0.46 369 178.2 0.561 65742 1100 1.67 0.05 617

W→ev 2 partons 2032 0.402 0.262 214 102.6 0.975 21950 15 0.068 0.018 15

3 partons 771 0.301 0.534 124 90.8 1.102 11250 113 1.00 0.09 125

4 partons 273 0.252 0.780 53.7 111.8 0.894 6000 429 7.15 0.33 384

5 partons 91 0.264 0.929 22.3 221.8 0.451 4950 774 15.64 0.52 349

W→μv 2 partons 2032 0.402 0.020 16.3 198.9 0.503 3250 46 1.42 0.21 23

3 partons 771 0.304 0.276 64.7 178.5 0.560 11550 268 2.32 0.14 150

4 partons 273 0.229 0.576 36.0 88.9 1.125 3200 362 11.31 0.56 407

5 partons 91 0.264 0.84 20.2 235.4 0.425 4750 1003 21.12 0.59 426

W→τv 2 partons 2032 0.415 0.104 87.7 234.9 0.426 20600 6 0.029 0.012 3

3 partons 771 0.303 0.373 87.1 149.2 0.670 13000 38 0.29 0.05 25

4 partons 273 0.245 0.686 45.9 108.9 0.918 5000 101 2.02 0.20 93

5 partons 91 0.264 0.866 20.8 0 0 0 0 unknown unknown unknown

Page 16: 1 Top Pair Production Cross Section with the ATLAS Detector A. Bangert, N. Ghodbane, T. Goettfert, R. Haertel, A. Macchiolo, R. Nisius, S. Pataraia Max

16

Trigger

• L1 trigger• 4x4 matrix of calorimeter towers.• 2x2 central core is “Region of Interest”• 12 surrounding towers measure isolation

• L1_em25i requires• ET>18 GeV in ROI in EM calorimeter • ET<2 GeV in ROI in hadron calorimeter• Isolation:

• ET<3 GeV in EM calorimeter• ET<2 GeV in hadron calorimeter

• Event Filter requires ET>18 GeV• εtrigger = 99% for electrons with pT>25 GeV.• L1_mu20 requires ET>17.5 GeV.

Sample 5200, true tt→evbjjb events

semileptonic selection cuts, pT(e) > 10 GeV