9
This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute. Temporal Encephaloceles: Evidence of Epileptogenicity Zeke Campbell, M.D. Assistant Professor Disclosures There are no relevant disclosures for this presentation Objectives To understand the meaning and characteristics of encephaloceles To understand the relationship between temporal encephaloceles and epilepsy To understand the potential reasons for increased prevalence of encephaloceles in patients with epilepsy Case Case #1 37‐year‐old right‐handed woman with a history of migraines, sickle cell trait Seizures began at age 32 Epilepsy risk factors: normal birth and development; no major CNS injury/infections, no febrile seizures Current meds: zonisamide 300 mg qhs, oxcarbazepine 1200 mg bid Prior AEDs: levetiracetam Comorbid conditions: Depression, following with a psychiatrist Semiology Typical events: Aura: “rush” sensation over her face, sweating, lightheadedness Ictus: Impairment of awareness with oral and manual automatisms. Events sometimes progress to increased tonicity in all extremities and bilateral convulsions that last approximately one minute Post‐ictal: fatigued and confused for hours 2‐3 times per month Other occasional events during which she will hear people talking but cannot respond

1 Temp Enceph-YES Campbell.pptcme.uthscsa.edu/Courses/SEEEGSociety/2018/Online Syllabus/030218/1... · “No,” when asked if OK. This presentation is the intellectual property of

  • Upload
    vukhue

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

Temporal Encephaloceles:

Evidence of Epileptogenicity

Zeke Campbell, M.D.

Assistant Professor

Disclosures

• There are no relevant disclosures for this presentation

Objectives

• To understand the meaning and characteristics of encephaloceles

• To understand the relationship between temporal encephaloceles and epilepsy

• To understand the potential reasons for increased prevalence of encephaloceles in patients with epilepsy

Case

Case #1

• 37‐year‐old right‐handed woman with a history of migraines, sickle cell trait

• Seizures began at age 32• Epilepsy risk factors:  normal birth and 

development; no major CNS injury/infections, no febrile seizures 

• Current meds:  zonisamide 300 mg qhs, oxcarbazepine 1200 mg bid

• Prior AEDs:  levetiracetam• Comorbid conditions: Depression, following with a 

psychiatrist

Semiology

Typical events:• Aura:  “rush” sensation over her face, sweating, 

lightheadedness• Ictus:  Impairment of awareness with oral and manual 

automatisms.  Events sometimes progress to increased tonicity in all extremities and bilateral convulsions that last approximately one minute

• Post‐ictal:  fatigued and confused for hours• 2‐3 times per month

Other occasional events during which she will hear people talking but cannot respond

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

Exam

• Obese (BMI 38)

• Vital signs within normal limits

• Unremarkable general exam

• Neuro exam non‐focal

Initial Seizure Work‐up

• Three separate EMU admissions:

– Interictal: left anterior temporal sharp waves

– Three left temporal seizures (see figure)

– Two nonepileptic events

– SPECT injection performed during a nonepileptic event (increased perfusion in the right frontal cortex)

• PET:  no definitive seizure focus

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

EEG seizure beginsPatient feels “off” “Don’t, don’t, don’t…”

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Staring unresponsiveness

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Oral automatisms

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Oral automatisms continue

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

EEG seizure ends

MRI

• Initially interpreted as normal

• Later reviewed and determined to have subtle increased T2 signal in the left hippocampus

MRI

T2 SPACE (A) axial and (B) sagittal sections prior to LiTT

Images courtesy Milad Yazdani, MD

(A) (B)

Treatment Recommendations

• Wada:

– Left hemisphere representation of language

– Bilateral representation of memory

• Multidisciplinary refractory epilepsy conference (REC) → candidate for LiTT

MRI

Intraoperative T2 SPACE axial

Image courtesy Milad Yazdani, MD

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

MRI

Post-ablation change

Image courtesy Milad Yazdani, MD

MRI

T2 SPACE sagittal showing post-ablation change

Image courtesy Milad Yazdani, MD

MRI

T2 SPACE (A) axial and (B) sagittal sections post-LiTT

Images courtesy Milad Yazdani, MD

(A) (B)

Post‐ablation Course

• Patient continued to have 4‐8 seizures per month for 6 months following LiTT

• Re‐evaluated in the EMU:

– 6 left temporal seizures

– 2 nonepileptic events

– 5 events that were poorly‐visualized or were not associated with impairment of awareness

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Soft moaning

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

“No,” when asked if OK

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Moaning intensifies

EEG

EEG in bipolar montage: sensitivity 20 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Oral automatismsGrunting

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

EEG seizure ends

Treatment Recommendations

• Case re‐discussed → Proceed with left ATL

MRI – post‐ATL

Postoperative Course

• Following the operation:  right upper quadrantanopsia, memory loss, and occasional HAs 

• Patient continues to be seizure‐free for the last 18 months since her ATL

• She continues to follow with psychiatry

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

Temporal Encephaloceles

What are encephaloceles?

• Herniations of the brain through dura mater and skull – Acquired or congenital 

– Asymptomatic or result in varying pathologies based on anatomic location Laurence JZ. Med Chir Trans 1856;39:307–25.

Wind J, Caputy A, Roberti F. Spontaneous encephaloceles of the temporal lobe. Neurosurg Focus 2008;25:E11.

Temporal lobe encephaloceles

• Involve the middle cranial fossa

• Associations:– Recurrent meningitis

– CSF fistulas

– Otitis

– Hearing loss

– Drug‐resistant epilepsy

Wind J, Caputy A, Roberti F. Spontaneous encephaloceles of the temporal lobe. Neurosurg Focus 2008;25:E11.Gompel J, Miller J. How epileptogenic are temporal encephaloceles? Neurology 2015;85:1440–1.

Image courtesy Alex Vandergrift, MD

Spontaneous encephaloceles

• Result in the absence of trauma, iatrogenesis, neoplasms, or inflammatory conditions

• Noted association with IIH

• 67% with TE and CSF leak → elevated ICP 

• Higher average BMIs

Brainard L, Chen DA, Aziz KM, Hillman TA. Association of benign intracranial hypertension and spontaneous encephalocele with cerebrospinal fluid leak. Otol Neurotol 2012;33:1621–4.Carlson ML et al. Temporal bone encephalocele and cerebrospinal fluid fistula repair utilizing the middle cranial fossa or combined mastoid-middle cranial fossa approach. J Neurosurg 2013;119:1314–22.

Lai S, Kennedy D, Bolger W. Sphenoid Encephaloceles: Disease Management and Identification of Lesions Within the Lateral Recess of the Sphenoid Sinus. Laryngoscope 2002;112:1800–1805.Stucken EZ, Selesnick SH, Brown KD. The role of obesity in spontaneous temporal bone encephaloceles and CSF leak. Otol Neurotol 2012;33:1412–7.

How common are encephaloceles?

• 6% to 34% of temporal bones show dehiscence involving the mastoid tegmen

– 1% to 6% revealing multiple dehiscences

• Clinically relevant encephaloceles – ~1 in 35,000

• TEs represent an even more uncommon subset of an already rare disease

Lai S, Kennedy D, Bolger W. Sphenoid Encephaloceles: Disease Management and Identification of Lesions Within the Lateral Recess of the Sphenoid Sinus. Laryngoscope 2002;112:1800–1805.Stucken EZ, Selesnick SH, Brown KD. The role of obesity in spontaneous temporal bone encephaloceles and CSF leak. Otol Neurotol 2012;33:1412–7.

Improved detection of TEs

• 23 patients with TEs

– 0.3% of MRIs in newly‐diagnosed patients with epilepsy 

– 1.9% in drug‐resistant patients

• Epilepsy surgery because of encephaloceles accounted for 10% of temporal lobe resections

Saavalainen et al. Temporal anteroinferior encephalocele. Neurology 2015;85:1467–1474.

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

Discrepancy in prevalence

• Obesity in the developing world → IIH → skull defects → small encephaloceles 

• Other possible factors include referral patterns and surgical selection process 

• Improvements in imaging technology

Gompel J, Miller J. How epileptogenic are temporal encephaloceles? Neurology 2015;85:1440–1.Saavalainen et al. Temporal anteroinferior encephalocele. Neurology 2015;85:1467–1474.

Cases of TEs with Epilepsy in the Literature

12

7

01

4 4

3028

0

5

10

15

20

25

30

35

1971-2004 2010 2011 2012 2013 2014 2015 2016

Byrne et al. World Neurosurg 2010. Aquilina et al. J Neurosurg Pediatr 2010.Abou‐Hamden et al. Epilepsia 2010.Kamiya et al. J Neuroradiol 2012.Giulioni et al. J Neurosurg 2013.

Carlson et al. J Neurosurg 2013.Giulioni et al. Seizure 2014.Gasparini et al. Seizure 2014.Shimada et al. World Neurosurg 2015.Morone et al. Otol Neurotol 2015.

Saavalainen et al. Neurology 2015.Panov et al. Epilepsia 2016.Toledano et al. Epilepsia 2016.

Imaging and TE detection

• TEs confirmed after “close inspection” of previously normal 3T MRI or high‐res CT 

• TE on 7T MRI after initial 3T MRI was interpreted as normal 

• Majority of cases prior to 2014 were noted incidentally at the time of surgery 

Abou‐Hamden A, et al. Small temporal pole encephaloceles: A treatable cause of “lesion negative” temporal lobe epilepsy. Epilepsia 2010;51:2199–2202.Morone et al. Temporal Lobe Encephaloceles: A Potentially Curable Cause of Seizures. Otol Neurotol 2015;36:1439–42.

Small TEs in epilepsy

• 22 patients with STPEs 

• 9.6% of patients with temporal lobe epilepsy (TLE)

• 0.5% of those with extra‐TLE

• STPEs in patients with TLE: 

– Initial MRI study reported as normal – 23.3%

– MRI‐visible lesions – 1.4%

Toledano et al. Small temporal pole encephalocele: A hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia 2016;57:841–851.

Detection and characteristics of TEs

• MRIs in patients with refractory epilepsy over a 7‐year period reviewed by an expert neuroradiologist

• 418 patients with available MRI:  

– 7 had TEs reported on initial imaging

– 52 (12.5%) had TEs on expert review

Campbell et al. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. Submitted for publication. 2018.

Demographics

Campbell et al. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. Submitted for publication. 2018.

TotalTE

N = 52Without  TEN = 366

p

AGE 43.3 ± 13.5 43.3 ± 12.1 36.4 ±13.4 < 0.001

BMI 28.7 (24.1, 35.4) 36.9 (30.0, 40.7) 27.7 (23.9, 33.7) < 0.001*

Age at Onset 15.0 (6.0, 29.0) 35.0 (29.0, 45.0) 14.0 (5.0, 22.0) < 0.001*

Years with Epilepsy

16.0 (7.0, 27.0) 4.5 (2.0, 9.5) 17.0 (9.0, 28.0) < 0.001*

Male 176 (42.1%) 9 (17.3%) 167 (45.6%) < 0.001

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

Radiologic Findings

TotalTE

N = 52Without  TEN = 366

p

Normal Initial MRI

157 (37. 6%) 31 (59.6%) 126 (34.7%) < 0.001

MRI Magnet = 3T 341 (81.8%) 50 (96.2%) 291 (79.7%) 0.002**SPACE was used 175 (41.9%) 37 (71.2%) 138 (37.7%) < 0.001Abnormal Meckel’s cave

11 (2.6%) 5 (9.6%) 6 (1.6%) < 0.001

Abnormal sella turcica

98 (23.4%) 48 (92.3%) 50 (13.7%) < 0.001

Papilledema 9 (2.2%) 6 (11.5%) 3 (0.8%) < 0.001**

Campbell et al. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. Submitted for publication. 2018.

Seizure Localization

Campbell et al. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. Submitted for publication. 2018.

Total TE Without  TE p

isEEG < 0.001**Temporal  223 (57.6%) 46 (90.2%) 177 (52.7%)

Non‐localizable  102 (26.4%) 5 (9.8%) 97 (28.9%)

Non‐temporal  62 (16.0%) 0 (0.0%) 62 (16.0%)

icEEG 0.06**No Seizures 1 (1.9%) 1 (12.5%) 0 (0.00%)

Temporal 34 (63.0%) 7 (87.5%) 27 (58.7%)

Non‐Temporal 11 (20.4%) 0 (0.0%) 11 (23.9%)

Non‐localizable 7 (13.0%) 0 (0.0%) 7 (15.2%)

Temp + Extratemp 1 (1.9%) 0 (0.0%) 1 (2.2%)

Conclusion

• Careful inspection of MRI with special attention to high‐resolution T2 sequence in patients with RTLE by an experienced, board‐certified neuroradiologist can increase the detection of subtle TEs

Campbell et al. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. Submitted for publication. 2018.

Intraoperative ECoG in TEs

• 9 patients with TE

• 6 underwent intraoperative ECoG and resection

– Interictal EDs arising from the region of the TE in all cases (6/6)

– Interictal EDs from HCP in 4/5 

– When seizures were recorded, the TE was always involved at onset but with synchronous or rapid spread to the HCP in both cases

Panov et al. Epilepsy with temporal encephalocele: Characteristics of electrocorticography and surgical outcome. Epilepsia, 2016. 57(2), e33–8.

Patients TPR + D (or LSNx) vs. ATLAH + LSNx

Outcome (Engel class) Notes Authors. Year.

3 All TPR + D All seizure-free at 12-22 months

Abou-Hamden et al. 2010

2 Both TPR + D 1 - Class IA at 20 mos1 - Class IV at 5 years

Pt with poor outcome had FCD with incomplete margins

Gasparini et al. 2014.

5 All resection + repair of skull base defect

All seizure-free with mean follow-up 20 months

2 pts had otologic finding requiring surgery, not refractory epilepsy

Morone et al. 2015.

12 7 TPR + D

5 ATLAH + LSNx

4 pts - IA2 pts - II1 pt - IIIA

4pts – IA1 pt - IB

Mean follow-up 2.8 yrs (3 mos - 6yrs)

Saavalainen et al. 2015.

6 2 LSNx

4 ATLAH + LSNx

2pts - IA

3pts - IA1 - IIB

“last follow-up” Panov et al. 2016.

TPR – temporal pole resection, D – disconnection, LSNx – lesionectomy, ATLAH – Anterior temporal lobectomy and amygdalohippocampectomy

• TEs are seen in 2 to 12.5% of patients with refractory epilepsy and more commonly seen in patients with TLE

• TE detection can be improved by careful review of high‐resolution T2 MRI by an experienced neuroradiologist

• Some patients may achieve seizure freedom after lesionectomy, even when the mesial temporal structures are not resected

Summary

This presentation is the intellectual property of the author.Contact them for permission to reprint and/or distribute.

References

• Alldredge, B. et al. (2001). A Comparison of Lorazepam, Diazepam, and Placebo for the Treatment of Out‐of‐Hospital Status Epilepticus. New Engl J Medicine 345, 631–637. 

• Brophy, G. M. et al. (2012). Guidelines for the evaluation and management of status epilepticus.Neurocritical care, 17(1), 3–23. doi:10.1007/s12028‐012‐9695‐z

• Campbell et al.  Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy.  Submitted for publication.  2018.

• Claassen, J., Lokin, J. K., Fitzsimmons, B.‐F. M., Mendelsohn, F. A. & Mayer, S. A. (2002). Predictors of functional disability and mortality after status epilepticus. Neurology. 58, 139–42. 

• Claassen, J., Hirsch, L. J., Emerson, R. G., & Mayer, S. A. (2002). Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia, 43(2), 146–53.

• DeLorenzo, R.J. et al. A prospective, population‐based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 46, 1029–1035 (1996). 

• DeLorenzo, R. J. et al. (1998). Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia, 39(8), 833–40.

• Ellis, A. J., Wendon, J. A., & Williams, R. (2000). Subclinical seizure activity and prophylactic phenytoin infusion in acute liver failure: a controlled clinical trial. Hepatology (Baltimore, Md.),32(3), 536–41. doi:10.1053/jhep.2000.9775

• Hirsch, L. J., & Gaspard, N. (2013). Status epilepticus. Continuum (Minneapolis, Minn.), 19(3 Epilepsy), 767–94. doi:10.1212/01.CON.0000431395.16229.5a

References

• Kaplan, P. (2007). EEG criteria for nonconvulsive status epilepticus. Epilepsia, 48(s8), 39–41. doi:10.1111/j.1528‐1167.2007.01345.x

• Lowenstein, D.H. & Allredge, B.K. (1993). Status epilepticus at an urban public hospital in the 1980s.Neurology. 43, 483‐8. 

• Lowenstein, D., Bleck, T., & Macdonald, R. (1999). It’s Time to Revise the Definition of Status Epilepticus. Epilepsia, 40(1), 120–122. doi:10.1111/j.1528‐1157.1999.tb02000.x

• Panov, F. et al. (2016). Epilepsy with temporal encephalocele: Characteristics of electrocorticography and surgical outcome. Epilepsia, 57(2), e33–8. doi:10.1111/epi.13271

• Pierelli, F. et al. (1989). Long‐Term EEG‐Video‐Audio Monitoring: Detection of Partial Epileptic Seizures and Psychogenic Episodes by 24‐Hour EEG Record Review. Epilepsia, 30(5), 513–23. doi:10.1111/j.1528‐1157.1989.tb05465.x

• Silbergleit, R. et al. (2012). Intramuscular versus intravenous therapy for prehospital status epilepticus. N. Engl. J. Med. 366, 591–600. 

• Towne, A.R. et al. (1994). Determinants of mortality in status epilepticus. Epilepsia. 35, 27‐34. 

• Treiman, D. M. et al. (1998). A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N. Engl. J. Med. 339, 792–8. 

• Trinka, E. et al. (2015). A definition and classification of status epilepticus‐‐Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia,56(10), 1515–23. doi:10.1111/epi.13121

• Wilson, J. V. & Reynolds, E. H. (1990). Texts and documents. Translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy.Med Hist. 34, 185–98.