49
1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center [email protected]

1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center [email protected]

Embed Size (px)

Citation preview

Page 1: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

1

SLAC KLYSTRON LECTURES

Lecture 10

May 19, 2004

Fabrication, Processing and Vacuum Techniques

Erik JongewaardStanford Linear Accelerator Center

[email protected]

Page 2: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

2

Outline

• Vacuum– A discussion of the vacuum requirements of

microwave tubes

• Materials– Common materials used in microwave tubes and the

reasons for their selection

• Fabrication Techniques– Fabrication techniques for individual parts and

assemblies made from these parts

• Processing– Vacuum processing of the completed microwave tube

Page 3: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

3

Vacuum Basics

• Pressure measured in units of Torr (equivalent to mm Hg, 760 Torr = 760 mm Hg = 1 atm)

• High vacuum: ~10-3 to ~10-8 torr

• Ultrahigh vacuum: < 10-8 torr

Page 4: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

4

Vacuum Basics

• When the mean free path is of the order of the size of the vacuum enclosure collisions with the enclosure walls dominate, this is called the molecular flow regime.

• For a klystron with a 1 cm drift tube molecular flow occurs at pressures below ~5x10-3 torr.

• At 10-9 torr the mean free path is ~50 km

Page 5: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

5

Why a Vacuum?

• The interior space of a microwave tube must have a low enough density of gas molecules to allow free passage of electrons

• Reliable cathode emission requires low partial pressures of cathode “poisons”

• Higher gradients (DC and RF) are supported at lower pressures

Page 6: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

6

How is a high vacuum achieved and maintained?

• Proper selection of materials– Use low vapor pressure materials– Use clean materials

• Use clean forming and joining techniques• Chemical cleaning

– Removes surface contamination (cutting fluids, surface oxides, etc.)

• High temperature processing, vacuum bakeout– Drives off adsorbed and absorbed contaminants and gasses

• Appendage pumping– Maintains low pressure during periods of tube outgassing

Page 7: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

7

Materials

• Microwave tube materials must be vacuum compatible– Low vapor pressure at operating and bakeout

temperatures– Few inclusions or stringers that can lead to real or

virtual vacuum leaks

• Materials must meet tube operational requirements– Electrical, thermal conductivity– Expansion match adjacent materials– Strength

Page 8: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

8

Metallic Materials (A representative, not exhaustive list)

• OFE Cu, 99.99% pure, oxygen-free copper– High thermal and electrical conductivity– Brazes easily– Very low strength when annealed– Used extensively for RF and high heat flux surfaces

• Cupronickel, 70% Cu, 30% Ni alloy– Brazes and welds easily with proper chemistry– Moderate strength– Used primarily for weld flanges and compliant

members brazed to ceramics

Page 9: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

9

Metallic Materials (continued)

• Monel 404, ~45% Cu, ~55% Ni alloy– Acceptable brazability– Moderate strength– Thermal expansion between copper and iron– Used for spacers and cavities in PPM structures

• Austenitic Stainless Steel (primarily 304L), 8-12% Ni, 18-20% Cr, balance Fe alloy– Brazes and welds easily– High strength– Poor thermal and electrical conductivity– Used extensively for tube structural components

Page 10: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

10

Metallic Materials (continued)

• Core Iron, pure Fe– Brazes and welds well– Magnetically soft– Non-monotonic thermal expansion– Used for magnetic field shaping components

• Ferritic Stainless Steel (430), 16-18% Cr, balance Fe alloy– High strength– Low thermal and electrical conductivity– High microwave loss– Used for loss cavities and loads

Page 11: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

11

Metallic Materials (continued)

• Molybdenum– Refractory high strength material– Acceptable brazing– Used for cathode heaters, support structures and

components subject to pulsed heating loads

• Tungsten– Refractory high strength material– Primarily used for dispenser cathode matrix

Page 12: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

12

Metallic Materials (continued)

• Braze Materials– Copper

• Least costly• Excellent wetting of stainless steels• Low vapor pressure

– Gold-copper alloys• Costly, dependent upon gold fraction• Alloyed with other materials to tailor properties• Wide range of melting temperatures allows step brazing• Low vapor pressure

Page 13: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

13

Metallic Materials (continued)

• Braze Materials– Copper-silver alloys

• Less costly than gold-copper alloys• Lower melting temperature ranges than gold-

copper alloys • high vapor pressure, can be a problem for high

temperature bakeout at low pressures • Not used in the klystron department

Page 14: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

14

Non-Metallic Materials

• Aluminum Oxide, Al2O3

– Hard, strong dielectric– Transparent (mostly) to microwaves– Used for HV seals, insulators, and RF windows

• Titanium Nitride, TiN– Low secondary electron yield– Deposited by reactive sputtering or evaporation– Mutipactor and avalanche breakdown suppressor

Page 15: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

15

Material Selection

• Usually the desired function makes the material selection obvious

• Sometimes the tradeoffs are more subtle and an optimal selection of material must be arrived at through the use of a “figure of merit”

Page 16: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

16

OFE Copper

Porous Tungsten

317L Stainless Steel

304L VAR Stainless Steel

304L Stainless Steel

Cupronickel

Moly-Manganese Ceramic Metalization

Aluminum Oxide

Page 17: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

17

OFE Copper

304L Stainless Steel

Core Iron

404 Monel

Gold-Copper Braze Alloy

Page 18: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

18

Part Process Sequence

1. Raw material testing and certification• Materials are tested for standards conformance.

2. Part fabrication• Manufacture part using appropriate forming

technique

3. Inspection• 100% inspection of critical components

4. Cleaning/plating• Parts chemically cleaned and etched to remove

surface contamination and oxides

Page 19: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

19

Part Process Sequence

5. Pre-braze assembly• Parts are assembled with appropriate braze alloy

using gloves in a clean environment to prevent contamination

6. Braze• Assemblies are brazed in dry or wet H2 atmosphere

according to materials used

7. He leak check• Verify hermeticity of assembly before proceeding

with further assembly

8. Post-braze machining as required

Page 20: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

20

FabricationMetallic Piece Parts

• Conventional machining– Can be used on the widest variety of materials– Most flexibility of part size and shape– Can easily make vacuum compatible parts with

proper control of surface finish and cutting fluids– Most klystron parts are formed this way

• EDM (Electrical discharge machining)– Good for hard to machine materials and difficult

geometries– Requires special cleaning/polishing to remove surface

contamination

Page 21: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

21

FabricationMetallic Piece Parts

• Hydroforming– Relatively inexpensive tooling– Good for thin walled axisymmetric parts such as weld

flanges and bowl shapes such as UHF cavities• Forging

– Used to make near net shape parts for subsequent machining

– Cross forging used to reduce size of inclusions in stainless steels

• Electroforming– Can form complex geometries in one piece– Difficult to get low oxygen content in copper deposits

Page 22: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

22

FabricationMetallic Piece Parts

• Vacuum considerations may dictate the use of nonstandard parts

For example: rolled screw threads may have trapped contaminants from the rolling operation, use cut screw threads in critical locations such as the electron gun.

Page 23: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

23

Page 24: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

24

Page 25: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

25

Simplified Cleaning Procedure

1. Degrease• Removes surface oils leftover from fabrication

2. Alkaline rise• Heavy duty detergent, removes more surface grime

3. Acid etch (one or more steps)• Removes surface oxide film and varying amounts of

base metal

4. Rinses (several steps of water, solvent rinses)• Removes traces of etching solution and leaves

surface chemically clean

Page 26: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

26

Joining

• Furnace Brazing– Clean, vacuum compatible– Choice of atmosphere (wet H2, dry H2, vacuum) dependent upon

materials to be brazed– Used for most tube subassemblies

• Diffusion bonding– Used where dimensional control is critical such as x-band

accelerator structure assembly• Welding

– GTAW (Gas tungsten arc welding)• Used to join subassemblies (CuNi weld flange)• Used to tack weld parts for braze

– RSW (Resistance spot welding)• Used to used for attaching contact tabs and other non-critical joints

Page 27: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

27

Cu braze

Wet

Dry

Page 28: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

28

Page 29: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

29

Page 30: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

30

Page 31: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

31

Page 32: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

32

Page 33: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

33

Page 34: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

34

Page 35: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

35

Gun Processing

• Since the gun is both the hottest part of an operating klystron and the most sensitive to pressure it requires special processing:– Vacuum fire all gun components, typically at

800 °C– Assemble gun stem and cathode and place in

bell jar– Raise temperature of cathode and outgass

gun components

Page 36: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

36

Page 37: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

37

Gun Processing Schedule

1. RF on, raise temp to 980 °C, keep pressure < 10-6 torr

2. Stabilize at 980 °C until pressure drops < 5x10-8 torr

3. Raise temp to 1030 °C, hold until pressure slope flattens

4. Lower temp to 980 °C, hold until pressure slope flattens

5. RF off, maintain 980 °C until pressure slope flattens

6. Raise temp to 1030 °C, wait 1 hour after pressure peak, cool

Page 38: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

38

Page 39: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

39

Page 40: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

40

Page 41: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

41

Tube Bakeout Schedule

1. Attach and start pumping tube2. Close and pump down vessel, ramp filament 2 A/hr to

12 A after tube pressure < 5x10-6

3. Once tube pressure < 3x10-6 and vessel pressure < 5x10-5 start oven

4. Ramp oven 15°C/hr to 550°C as long as tube pressure < 3x10-5 and vessel pressure < 5x10-5

5. Ramp filament 1 A/hr to 17 A as long as tube pressure < 3x10-5

6. Bake until pressure stabilizes7. Cool oven 15°C/hr to 430 °C and wait 6 hours

Page 42: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

42

Tube Bakeout Schedule

8. Raise filament to 18 A providing tube pressure < 5x10-8 hold until tube pressure < 10-8 or stable

9. Cool at 15°C/hr until oven off, ramp filament down at 1 A/hr

10. RGA leak check

11. Remove vessel

12. Ramp filament 1 A/hr to 19 A hold until pressure drops

13. After 1 hour minimum at 19 A emission check at 1 kV

14. Cool

15. Pinch off

Page 43: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

43

Typical 5045 Bakeout

0

100

200

300

400

500

600

0 2 4 6 8 10

Time (Days)

Tem

per

atu

re (

°C)

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

Pre

ssu

re (

To

rr)

Tube temperature

Tube pressure

Vessel pressure

Window pressure

Page 44: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

44

75XP3-4A Bakeout

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20

Time (Days)

Tem

per

atu

re (°

C)

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

Pre

ssu

re (T

orr

)

Tube temperature

Tube pressure

Vessel pressure

Window pressure

Page 45: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

45

Page 46: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

46

Page 47: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

47

Page 48: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

48

[1] American Welding Society Committee on Brazing and Soldering, Brazing Handbook, American Welding Society, 1991.

[2] Dushman, S., Scientific Foundations of Vacuum Technique, 2nd ed., J. M. Lafferty, Ed., John Wiley & Sons, Inc., 1962.

[3] Kohl, Walter H., Handbook of Materials and Techniques for Vacuum Devices, American Institute of Physics, 1995.

[4] Rosebury, Fred, Handbook of Electron Tube and Vacuum Techniques, American Institute of Physics, 1993.

[5] Thornburg, D. L., Thall, E. S., Brous, Dr. J., A Manual of Materials for Microwave Tubes, WADD Technical Report 60-325, Radio Corporation of America, 1961.

[6] Varian Vacuum Products Division, Basic vacuum Practice, Varian Associates, Inc., 1986.

References

Page 49: 1 SLAC KLYSTRON LECTURES Lecture 10 May 19, 2004 Fabrication, Processing and Vacuum Techniques Erik Jongewaard Stanford Linear Accelerator Center enj@slac.stanford.edu

49

Acknowledgements

Thanks to the following for help in preparing this talk

Chris Pearson

Chuck Yoneda

John Van Pelt