1-s2.0-S104346661630014xxX-main

  • Upload
    mms

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    1/8

    Review article

    The role of IL-18 in type 1 diabetic nephropathy: The problem and future

    treatment

    Nehal M. Elsherbiny a, Mohammed M.H. Al-Gayyar a,b,

    a Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egyptb Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia

    a r t i c l e i n f o

    Article history:

    Received 7 December 2015

    Received in revised form 21 January 2016

    Accepted 24 January 2016

    Keywords:

    Type 1 diabetes mellitus

    Diabetic nephropathy

    Renal complications

    IL-18

    IL-18 binding protein

    a b s t r a c t

    Diabetic vascular complication is a leading cause of diabetic nephropathy, a progressive increase in uri-

    nary albumin excretion coupled with elevated blood pressure leading to declined glomerular filtration

    and eventually end stage renal failure. There is growing evidence that activated inflammation is con-

    tributing factor to the pathogenesis of diabetic nephropathy. Meanwhile, IL-18, a member of the IL-1 fam-

    ily of inflammatory cytokines, is involved in the development and progression of diabetic nephropathy.

    However, the benefits derived from the current therapeutics for diabetic nephropathy strategies still pro-

    vide imperfect protection against renal progression. This imperfection points to the need for newer ther-

    apeutic agents that have potential to affect primary mechanisms contributing to the pathogenesis of

    diabetic nephropathy. Therefore, the recognition of IL-18 as significant pathogenic mediators in diabetic

    nephropathy leaves open the possibility of new potential therapeutic targets.

    2016 Elsevier Ltd. All rights reserved.

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2. Diabetic nephropathy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.1. Diabetic nephropathy and inflammation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3. IL-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.2. Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.3. Signaling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.4. Biological functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    4. IL-18 in diabetic nephropathy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    5. Therapeutic strategies for reducing interleukin 18 activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Conflict of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1. Introduction

    Considered as a leading reason for end-stage renal failure, dia-

    betic vascular complications account for high mortality rates

    occurs in patients with diabetes[1]. Patients with diabetic kidney

    are at high risk of developing both renal disease and cardiovascular

    morbidity and mortality [2]. Chronic hyperglycemia induces

    abnormal pathology of various renal cells, which contributes to

    renal dysfunction in diabetes. High glucose plays detrimental role

    http://dx.doi.org/10.1016/j.cyto.2016.01.014

    1043-4666/ 2016 Elsevier Ltd. All rights reserved.

    Abbreviations: COX-2, cyclooxygenase-2; DN, diabetic nephropathy; ICAM-1,

    intracellular adhesion molecule-1; IL-18BP, IL-18 binding protein; IRAKs, IL-1R-

    associated kinases; MAPK, mitogen-activated protein kinase; MCP-1, monocyte

    chemotactic protein-1; MyD99, myeloid differentiation 88; NFkB, nuclear factor kB;

    NIK, NFkB-inducing kinase; NK, natural killer; NO, nitric oxide; Th, T helper cells;

    TNF, tumor necrosis factor; TRAF-6, tumor necrosis factor receptor associated

    factor; TLR, Toll-like Receptor; UAE, urinary albumin excretion; VCAM-1, vascular

    cell adhesion molecule-1. Corresponding author at: Department of Pharmaceutical Chemistry, Faculty of

    Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.

    E-mail address: [email protected](M.M.H. Al-Gayyar).

    Cytokine 81 (2016) 1522

    Contents lists available at ScienceDirect

    Cytokine

    j o u r n a l h o m e p a g e : w w w . j o u r n a l s . e l s e v i e r . c o m / c y t o k i n e

    http://dx.doi.org/10.1016/j.cyto.2016.01.014mailto:[email protected]://dx.doi.org/10.1016/j.cyto.2016.01.014http://www.sciencedirect.com/science/journal/10434666http://www.journals.elsevier.com/cytokinehttp://www.journals.elsevier.com/cytokinehttp://www.sciencedirect.com/science/journal/10434666http://dx.doi.org/10.1016/j.cyto.2016.01.014mailto:[email protected]://dx.doi.org/10.1016/j.cyto.2016.01.014http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://crossmark.crossref.org/dialog/?doi=10.1016/j.cyto.2016.01.014&domain=pdfhttp://-/?-http://-/?-
  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    2/8

    in development and progression of diabetic renal complications via

    various signaling pathways such as increased production of

    advanced glycation end products, expression of protein kinase C,activation of the polyol pathway and generation of reactive oxygen

    species[1,36].

    2. Diabetic nephropathy

    Diabetic nephropathy (DN) is a syndrome defined as a progres-

    sive increase in the excretion of urinary albumin (UAE), elevated

    blood pressure coupled with glomerular lesions leading ultimately

    to loss of glomerular filtration and eventually end stage renal fail-

    ure[7]. DN remains the most prevalent chronic disease of the kid-

    ney. It is reported that about one third of patients with diabetes

    develops nephropathy. In addition, about 2540% of type 1 diabetic

    patients develop DN within 2025 year of diabetes [8]. Multiple

    mechanisms contribute to the development of DN. Sustainedhyperglycemia and hypertension are the most important factors

    in the initiation and progression of nephropathy. Some of these

    mechanisms were summarized inTable 1. Regardless of multiple

    researches conducted on molecular and clinical basis, only

    partial protection is obtained by the available standard therapy

    that targets reninangiotensinaldosterone system by using

    angiotensin-converting enzyme inhibitors and/or angiotensin-

    receptor blockers [9]. Therefore, new and effective therapeutic

    approaches are required especially with the alarming increase of

    diabetes globally.

    2.1. Diabetic nephropathy and inflammation

    There is growing proof that both activated innate immunity andinflammation engage to pathogenesis of diabetic nephropathy [22].

    Therefore, multiple cells, including leukocytes, monocytes and

    macrophages as well as other molecules such as chemokines,

    adipokines, adhesion molecules, enzymes like cyclooxygenase-2

    and nitric oxide synthase, receptors like toll-like receptors and

    nuclear receptors, growth factors and nuclear factors like nuclear

    factorjB (NFjB) are all implicated in processes related to diabeticnephropathy [23]. Inflammation plays vital role in the process of

    fibroblast activation and subsequent tissue fibrosis; the most fun-

    damental and distinguished feature of DN. Therefore, inflamma-

    tory pathways that are activated by the different metabolic,

    hemodynamic and physiological factors appear to be critically

    involved in the development and progression of DN [24]. Further

    support for the contribution of inflammation to diabetic renalinjury comes from studies where the use of immunosuppressive

    strategies declined the accumulation of renal macrophage leading

    to attenuation of the development of DN [2527].

    Hyperglycemia, advanced glycation products and other compo-

    nents of diabetic milieu induce activation of renal cells, which lead

    to expression of numerous compounds such as chemokines, adhe-sion molecules and proinflammatory cytokines. Collectively, these

    incidents contribute to renal cell injury and subsequent gross

    anatomical and functional alteration associated with DN including

    albuminuria, mesangial expansion, thickening of glomerular base-

    ment membrane, tubulointerstitial damage and fibrosis [28]. The

    factors associated with diabetic renal injury were summarized in

    Fig. 1.

    It is now widely accepted that accumulation of inflammatory

    cell in the kidney is a key player in the induction of DN [29].

    Indeed, blocking the recruitment of inflammatory cells to the kid-

    ney has been proved to protect against renal injury in animal mod-

    els of DN [30]. Pro-inflammatory cytokines that are produced by

    inflammatory cells directly damage kidney architecture [31].

    Cytokines are pleiotrophic low molecular weight polypeptides,which can produce autocrine, paracrine and juxtacrine effects.

    Cytokines play crucial role in regulating which inflammatory and

    immune responses. The role of Cytokines inflammatory and

    immunologic pathways in the pathogenesis and progression of

    DN is well documented[32]. The major pro-inflammatory cytoki-

    nes that have been reported to play a pivotal role in the pathogen-

    esis of DN are interleukin (IL)-1, IL-6, IL-18 and tumor necrosis

    factor (TNF)-a. All these cytokines are increased in DN. Moreover,the elevated serum and urine levels of pro-inflammatory cytokines

    correlates with the progression of DN. Furthermore, gene polymor-

    phism of both the pro-inflammatory cytokines and their receptors

    can be used as strong predictor of the susceptibility and progres-

    sion of DN[33]. Indeed, targeting cytokines and/or their receptors

    ameliorated DN, implying significance of cytokines as key playersinvolved in DN pathophysiology [34].

    Table 1

    Causes of diabetic nephropathy.

    Factors causing diabetic

    nephropathy

    Reference

    Metabolic factors Advanced glycation end products [10]

    Aldose reductase/polyol pathway [11]

    Diacylglycerol (DAG)-protein kinase

    C (PKC) pathway

    [12]

    Reactive oxygen species [13]

    Hemodynamic factors Activation of rennin angiotensin

    system

    [14]

    Endothelin [15]

    Nitric oxide [16]

    Intracellular factors Nuclear factor-kB (NF-KB) [17]

    Growth factors and

    cytokines

    Transforming growth factor-b [18]

    Growth hormone and insulin like

    growth factor

    [19]

    Vascular endothelial growth factor [20]

    Platelet derived growth factor [21]

    Diabec

    renal injury

    Hemodynamic

    abnormalies Metabolic

    derangements

    Hormones

    Systemic and

    intraglomerular

    hypertension Mechanical

    strain

    Altered

    shear

    stress

    Advanced

    glycaon

    end products

    Hyperglycemia

    Hyperlipidemia

    Angiotensin II

    Sex hormone

    Growth

    hormone

    SmokingObesity

    Dietary

    factors

    External noxious or

    proinflammatory factors

    Fig. 1. Factors associated with diabetic renal injury that induced the activation of

    diverse signal transduction systems in kidney cells.

    16 N.M. Elsherbiny, M.M.H. Al-Gayyar/ Cytokine 81 (2016) 1522

  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    3/8

    Each cytokines has variable effects. For example, IL-1 augments

    the expression of chemokines and adhesion molecules, stimulates

    prostaglandin E2 formation leading to alteration in glomerular

    hemodynamic, elevates vascular endothelial cell permeability,

    enhances mesangial and fibroblast proliferation by induction of

    TGFb-1 production and increases glomerular cellularity by elevat-

    ing hyaluronan production by epithelial cells of renal proximal

    tubule[35,36].

    IL-6 contributes to progression of DN by enhancing extracellular

    matrix accumulation and proliferation leading to glomerular base-

    ment membrane thickening[37]. In addition, it alters endothelial

    permeability and mesangial cell expansion [38]. TNF-a causesdirect renal injury as a cytotoxin on glomerular podocytes and

    tubular cells resulting in apoptosis as well as necrotic cell death

    [39]. Moreover, IL-6 stimulates ROS production with subsequent

    cellular damage[40]. Of note, it magnifies the renal inflammatory

    response by stimulating production of other inflammatory cytoki-

    nes, adhesion molecules and chemokines leading to worsening of

    the progression of DN [41]. IL-6 may disrupt renal blood flow,

    affect glomerular hemodynamics and endothelial permeability by

    disrupting endothelial intercellular junctions and consequential

    integrity of the glomerular filtration barrier[28].

    IL-18 is a potent inflammatory cytokine. IL-18 is produced by

    both inflammatory cells and parenchymal kidney cells (tubular

    epithelial cells, podocytes and mesangial cells). IL-18 directly dam-

    ages kidney cells as well as it activates production of other inflam-

    matory cytokines, such as IL-1, interferon c and TNF[42]. Despitethe large literature on the role of IL-18 in the pathogenesis of dif-

    ferent kidney diseases, studies need to determine whether IL-18 is

    a suitable target for therapeutic intervention to ameliorate the pro-

    gression of DN.

    3. IL-18

    IL-18 is a member of the IL-1 family of cytokines. It exhibits sig-

    nificant sequence homology with both IL-33 and IL-1b[43]. It was

    first described in 1989 as an IFN-c-inducing factor in the circula-tion of mice following endotoxin injection [44]. With the molecular

    cloning of IFN-c-inducing factor in 1995, the name was changed toIL-18 [45]. IL-18 is produced as a biologically inactive precursor

    and stored in cytosol. Activation of IL-18 occurs after processing

    by group I caspases or inflammatory caspases [46,47]. Caspases

    are produced as zymogens and need inflammasome to be acti-

    vated. Therefore, the activation and release of IL-18 to exert its

    pro-inflammatory effect is dependent on both caspase 1 and

    inflammasome activation[48]. In addition, IL-18 was reported to

    be produced via caspase 1 independent non-canonical mechanisms

    including other caspases like 3 and 8, granzyme B, proteinase 3,

    and merpin-b [49]. IL-18 is produced in almost all human cells,

    including macrophages, microglial cells, endothelial cells, vascularsmooth muscle cells, dendritic cells, Langerhans cells, Kupffer cells,

    adipocytes, chondrocytes, intestinal epithelial cells and synovial

    fibroblasts and osteoblasts[5053].

    3.1. Structure

    IL-18 is a single non-glycosylated peptide chain with a molecu-

    lar weight of 18 kDa. IL-18 precursor is synthesized as polypeptide

    of 192 amino acids with a molecular weight of 24 kDa, which is

    cleaved enzymatically to 18 kDa mature IL-18 consisting of 157

    amino acids. IL-18 protein adopts a conserved b-trefoil folded

    structure that is made up of twelve packed b-sheets (b1b12)

    and twoa-helices (a1a2)[54]. In this regard, IL-18 shows struc-tural similarity to IL-1b and IL-33 [43]. The IL-18 structure is

    unique because few cytokines exist as all b-pleated sheet folded

    molecules[55].

    3.2. Receptors

    Members of IL-1 receptor family and Toll-like Receptor have

    been assorted into one family, called the Interleukin-1 Receptor/

    Toll-like Receptor (IL-1R/TLR) superfamily. Off note, it was found

    that IL-18 shares downstream signaling with TLR, which are in turn

    involved in regulating IL-18 expression [56]. IL-18R heterodimer

    complex consists of two receptor chains: IL-18Ra (also known asIL-1Rrp1, IL-18R1 or IL-1R5) which is a ligand-binding chain and

    a coreceptor termed IL-18Rb chain (also called IL-18RacP, IL-

    18RII or IL-1R7); both chains have three amino terminal extracel-

    lular Ig-like domains and one intracellular carboxy-terminal region

    which have Toll/IL-1 receptor (TIR) domain [57]. The a chain isresponsible for extracellular binding ability, and the b chain is

    responsible for intracellular signal transduction. IL-18Rb chain is

    genetically different but structurally related to IL-18Ra. Bindingof IL-18 toa chain leads to recruitment of the non-binding IL18Rbchain, ultimately forming high-affinity heterotrimeric complex.

    Although both free and protein-bound forms of IL-18 might bind

    to the a chain, only the free fraction of IL-18 is able to activatethe b chain [58]. IL-18 receptor complex expression is regulated

    by various cytokines that exhibit synergistic effect with IL-18 on

    IFN-c production, including IL-12, IL-23, IL-21, IL-2 and IL-15 [59].

    3.3. Signaling pathways

    IL-18 activity is initiated by ligand binding to its receptor com-

    plex. First, IL-18 binds to the low affinity (about 10 nM) IL-18Rachain and secondly, non-binding signal-transducing b-chain is

    recruited to the complex, forming high-affinity complex in which

    TIR domains within the intracellular regions of each receptor chain

    become into close proximity. This enhances the recruitment of

    cytosolic protein myeloid differentiation 883 (MyD88), IL-1R-

    associated kinases (IRAKs) followed by interaction with TNF recep-tor associated factor (TRAF)-6[60]. MyD88 binds to IL-18 complex

    via the TIR domain. MyD88 functions as an adapter or anchoring

    molecule, assisting in the binding and autophosphorylation of

    the IRAKs. IRAK then dissociates from the IL-18R complex and

    associates with TRAF-6, which in turn phosphorylates NFkB-

    inducing kinase (NIK) that in turn phosphorylates IjB [59,61].Phosphorylated IjB is rapidly degraded by the ubiquitin pathway,leading to NFjB liberation and translocation to the nucleus forgene transcription. The signaling pathway of IL-18 was summa-

    rized in Fig. 2. In addition to MyD88-dependent signaling, IL-18

    has also been found to signal via alternative pathways including

    Map Kinase, tyk-2, STAT3 and NFATc4 [62].

    3.4. Biological functions

    IL-18 has pleiotropic immunoregulatory functions affecting

    both innate and acquired immune responses. IL18 acts in collabo-

    ration with other cytokines to regulate the immune system

    responses. IL-18 amplifies IFN-c production in synergy with otherTh1-related cytokines, IL-2, IL-15, IL-12 and IL-23. In addition, IL-

    18 stimulates natural killer (NK) cell maturation alone or in combi-

    nation with IL15[63]. Indeed, it was found that IL-18, in concert

    with IL-12 and IL-15 consolidates the production of TNF-a, GM-CSF, and the chemokines CCL3 and CCL4 by NK cells [64]. More-

    over, IL-18 enhances FasFasL-mediated cytotoxicity of NK cells

    by upregulation of FASL expression on NK cells [63].

    IL-18 induces activation, degranulation and release of cytokine

    from neutrophils and facilitates maturation and activation ofmonocytes [61,65]. Further, IL-18 enhances cytokines-mediated

    N.M. Elsherbiny, M.M.H. Al-Gayyar / Cytokine 81 (2016) 1522 17

    http://-/?-http://-/?-
  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    4/8

    activation of T cells and macrophages through enhancing cellcell

    interactions between both types of cells [66]. InCD4+ lymphocytes,

    IL-18 can stimulate both type 1 helper T (Th1) and Th2 responses

    depending on its cytokine environment [67]. In absence of IL-12

    and IL-15, IL-18 activates a Th2 response in combination with IL-

    2. On the other hand, it may act synergistically with IL-12 to trigger

    Th1 response. Moreover, in synergy with IL-23, IL-18 enhances the

    production of IL-17 by Th17 cell [68]. On non-T cell populations, IL-

    18, in conjunction with IL-3, induces the production of IL-4 and IL-13 by bone marrow-derived basophils NK cells and mast cells[69].

    IL-18 displays pro-inflammatory aspects including increase the

    production of cell adhesion molecules, chemokines and nitric oxide

    synthesis. It potentiates TNF-a production by mononuclear andmesenchymal cells[70]. Moreover, it upregulates inducible nitric

    oxide (NO) synthase, chemokines such as CXCL8, CXCL5 and

    CCL20[71]and cyclooxygenase (COX)-2 expression[72]. It is also

    suggested that IL-18 up-regulates the expression of intracellular

    adhesion molecule (ICAM)-1, vascular cell adhesion molecule

    (VCAM)-1 and matrix metalloproteinases-1, -9, and -13 in

    endothelial cells and synovial fibroblasts [73,74]. Therefore, it is

    not surprising that Il-18 is involved in multiple autoimmune

    and/or inflammatory diseases including colitis, rheumatoid

    arthritis, ischemia reperfusion injury, hepatitis, insulin dependent

    diabetes mellitus, Allergic airway hyperresponsiveness,

    Ischemia-induced renal failure, hepatic failure and myocardial

    dysfunction[75].

    4. IL-18 in diabetic nephropathy

    IL-18 is fundamentally expressed in renal tubular epithelial

    cells. Besides, infiltrating monocytes, macrophages, T lymphocytes

    and proximal tubular cells, are all potential sources of this cytokine

    [76,77]. IL-18 has been shown to participate in renal injury inexperimental models of renal disease including ischemia

    reperfusion injury [78], lupus nephritis [79], nephropathy [80],

    glomerulonephritis [81]and hypertension[48]through activation

    of iNOS, TNF-a, IFN-c, MCP-1 and other chemokines leading tomacrophage and neutrophil infiltration, glomerulosclerosis and

    tubular necrosis. Of note, IL-18 was reported to be upregulated in

    podocytes, interstitial myofibroblasts, infiltrating interstitial

    macrophages and tubular epithelial cells in different kidney dis-

    ease models [76,82]. In diabetic patients, the serum and urinary

    concentrations of IL-18 have been reported to be significantly ele-

    vated with an independent association with urinary albumin

    excretion and b-2 microglobulin [83,84]. Moreover, in a prospec-

    tive investigation, IL-18 accumulation in both serum and urine

    were directly associated with the UAE as well as with alterationin albuminuria during the follow-up period[84]. The independent

    IL-18

    TRAF6

    MAPK

    MyD88

    IL-1

    8R

    IL-1

    8R

    IL-18R

    NFB

    genetranscription

    apoptoticpathway

    Pro-IL-18Caspase-1

    IRAKs

    Fig. 2. Signalingpathway of IL-18. IL-18R, interleukin-18 receptor;MyD88, myeloid differentiation 88; IRAKs, IL-1R-associated kinases;TRAF6, tumor necrosis factor receptor

    associated factor-6; NFkB, nuclear factor kB; MAPK, Mitogen-activated protein kinases.

    18 N.M. Elsherbiny, M.M.H. Al-Gayyar/ Cytokine 81 (2016) 1522

  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    5/8

    correlation of IL-18 with clinical markers of glomerular and tubu-lointerstitial damage suggests that this potent cytokine may be a

    pathogenic factor for the development and progression of DN.

    Indeed, elevated levels of IL-18 are determinant of early renal dys-

    function in patients with diabetes [42]. Moreover, this cytokine has

    been proposed to have support role to progression of DN, rather

    than other diabetic complications [85]. Several studies reported

    elevated serum levels of IL-18 in patients with chronic kidney dis-

    eases, especially those with declined GFR[86,87]and attributed to

    high percentage of active monocytes, the main cellular source of

    this cytokine [88]. Intracellularly, IL-18 can promote the produc-

    tion of pro-inflammatory cytokines and chemokines by mesangial

    cells [15,89]. These mediators in turn activate podocytes and tubu-

    lar epithelial cells to produce more pro-inflammatory cytokines

    and chemokines, leading eventually to interstitial immune cellinfiltration, tubular injury and fibrosis. Therefore, IL-18 may induce

    renal tissue damage by both immune and nonimmune-dependent

    mechanisms [90]. Interestingly, inflammasome/IL-1b/IL-18 axis

    has been recently reported to play a significant role in DN-

    induced tubulointerstitial lesions [91]. Vilaysane and colleagues

    showed that targeting NLRP3 inflammasome or its downstream

    effectors; IL-1b and IL-18 may be useful in the treatment of chronic

    kidney diseases [92]. In diabetic animal models, circulating IL-1b

    and IL-18 as well as renal expression of Nlrp3 were significantly

    elevated followed by renal dysfunction. In addition, pharmacolog-

    ical and molecular targeting of inflammasome/IL-1b/IL-18 axis was

    protective against DN [9395], suggesting this axis to play a funda-

    mental role in the pathogenesis of DN. A summary of reports that

    examined IL-18 in relation to various renal cells under diabeteswere illustrated inTable 2.

    5. Therapeutic strategies for reducing interleukin 18 activities

    The biologic activity of IL-18 is regulated by the formation of

    active form of the cytokine. In addition, other molecules including

    soluble IL-18R, caspase-1, 18BP and other cytokines such as IL-12

    and IL-15 are involved. The strategies for modulating IL-18 activity

    include monoclonal antibodies to IL-18, caspase-1 inhibitors and

    IL-18 receptor blockers[104].

    IL-18Ra (IL-18Ra type II) is thought to be a decoy receptor lack-ing the TIR domain [105], while soluble form of IL-18Rb (small

    truncated IL-18Rb) is proposed by stabilizing binding of IL-18 to

    IL-18Ra with inhibition of downstream signaling[106]. Therefore,these two isoforms are proposed to down-regulate IL-18 action.

    Caspase 1 is unique among the caspases family due to its abilityto activate both IL-1b and IL-18. Caspase-1 inhibitors are capable of

    preventing the release of active IL-1b and IL-18. Therefore, the

    inhibitors may have clinical benefit by reducing the activities of

    both cytokines[107].

    IL-1F7 is a member of IL-1 family which can negatively regulate

    IL-18 activity. It acts by binding to IL-18BP to form a complex that

    in turn prevents the functional complex formation between IL-18

    and its receptor chains[108].

    A naturally occurring IL-18 binding protein (IL-18BP) was dis-

    covered in 1999 during the search for extracellular receptors for

    IL-18 in human urine samples. IL-18BP is constitutively secreted

    protein that can effectively neutralize IL-18 activity. IL-18BP acts

    through binding to the receptor-binding site of IL-18 with high-

    affinity (400 pmol/L) [109]. It is a 38-kDa soluble protein that exhi-bits some sequence homology with IL-18Ra [110]. In addition toIL-18, IL-18BP can also bind to IL-37, augmenting the ability of

    IL-18BP to deactivate IFN-c by IL-18 [108]. IL-18BP is currentlyused in some clinical trials for treatment of rheumatoid arthritis

    and severe psoriasis [75,111]. A study on type 2 diabetic patients

    revealed that serum IL-18BP increased after IL-18 reached thresh-

    old and kidney injury developed, suggesting IL-18BP as a marker

    for glomerular dysfunction [112]. Targeting IL-18 resulted in

    decreased immune cell infiltration and protection of renal function

    in different models of kidney diseases such as renal ischemia

    reperfusion injury[113] glomerulonephritis[81]and renal fibrosis

    [114]. However, to date targeting IL-18 in DN model has not been

    fully investigated. Therefore, further studies are required to assess

    the therapeutic intervention of IL-18 in DN.

    6. Conclusions

    Growing evidence indicates that activation of innate immunity

    associated with the expansion of chronic inflammatory response is

    a known factor in the pathogenesis of diabetic nephropathy. Dia-

    betic kidney triggered metabolism and hemodynamics changes

    that leads to activation of numerous inflammatory molecules.

    The concept of inflammatory nature of diabetic nephropathy is

    very important therapeutic perspective. It has been found that,

    IL-18 is constitutively expressed in renal tubular epithelia, serum

    and urine bothin vivoandin vitro studies of diabetic nephropathy.

    The increasing knowledge and understanding of the role of IL-18inflammatory mechanisms will facilitate the development of new

    Table 2

    Summary of reports that examined IL-18 in relation to various renal cells under diabetic condition.

    Model Summary Cell type References

    Human IL-18 helps the progression of nephropathy by affecting kidney

    function directly as well as its proinflammatory effect

    Serum [96]

    IL-18 was overexpressed in human tubular epithelial cells in

    diabetic nephropathy through activation of MAPK pathways

    induced by TGF-b1

    Tubular epithelial cells [85]

    Elevated serum and urinary IL-18 in patients with type 2 diabetescompared with healthy controls. There is a positive correlation

    between IL-18 levels in diabetic patients and the development of

    urinary albumin excretion

    Serum [83,84,97,98]

    Urinary IL-18 is associated with albuminuria in the early stage of

    nephropathy in type 2 diabetics and may reflect inflammatory

    processing

    Urine [99]

    Diabetic rodents Diabetic nephropathy is associated with elevated protein and

    gene expression of IL-18

    Rat renal tissue [93,100102]

    Protein and mRNA levels of IL-18 was significantly increased in

    diabetic mouse renal tissue as well as mouse glomerular

    endothelial cells treated with high glucose

    Mouse renal tissue/mouse

    glomerular endothelial cells

    [103]

    Targeting inflammasome/IL-1b/IL-18 axis by knocking out

    purinergic 2X7 receptor (P2X7R) reduced renal inflammation and

    fibrosis in a high-fat diet fed mice

    Mouse renal tissue/mouse podocytes [94]

    N.M. Elsherbiny, M.M.H. Al-Gayyar / Cytokine 81 (2016) 1522 19

    http://-/?-http://-/?-
  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    6/8

    and effective therapeutic targets and strategies for preventing and

    for halting the progression of diabetic nephropathy.

    Conflict of interest

    Al-Gayyar and Elsherbiny disclose that they do not have any

    commercial association that might pose a conflict of interest in

    connection with the manuscript.

    References

    [1]S. Yamagishi, T. Imaizumi, Diabetic vascular complications: pathophysiology,

    biochemical basis and potential therapeutic strategy, Curr. Pharm. Des. 11

    (18) (2005) 22792299.

    [2] R.J. Macisaac, E.I. Ekinci, G. Jerums, Markers of and risk factors for the

    development and progression of diabetic kidney disease, Am. J. Kidney Dis. 63

    (Suppl. 2) (2014) S39S62.

    [3] T.K. Ali, S. Matragoon, B.A. Pillai, G.I. Liou, A.B. El-Remessy, Peroxynitrite

    mediates retinal neurodegeneration by inhibiting nerve growth factor

    survival signaling in experimental and human diabetes, Diabetes 57 (4)

    (2008) 889898.

    [4]M.M. Al-Gayyar, S. Matragoon, B.A. Pillai, T.K. Ali, M.A. Abdelsaid, A.B. El-

    Remessy, Epicatechin blocks pro-nerve growth factor (proNGF)-mediated

    retinal neurodegeneration via inhibition of p75 neurotrophin receptor

    expression in a rat model of diabetes, Diabetologia 54 (3) (2011) 669680(corrected).

    [5] T.K. Ali, M.M. Al-Gayyar, S. Matragoon, B.A. Pillai, M.A. Abdelsaid, J.J.

    Nussbaum, A.B. El-Remessy, Diabetes-induced peroxynitrite impairs the

    balance of pro-nerve growth factor and nerve growth factor, and causes

    neurovascular injury, Diabetologia 54 (3) (2011) 657668.

    [6] N.M. Elsherbiny, M. Naime, S. Ahmad, A.M. Elsherbini, S. Mohammad, S.

    Fulzele, A.B. El-Remessy, M.M. Al-Gayyar, L.A. Eissa, M.M. El-Shishtawy, G.

    Han, R. White, T.F. Haroldo, G.I. Liou, Potential roles of adenosine deaminase-

    2 in diabetic retinopathy, Biochem. Biophys. Res. Commun. (2013).

    [7]A. Lim, Diabetic nephropathy complications and treatment, Int. J. Nephrol.

    Renovasc. Dis. (2014) 73617381.

    [8] N.M. Elsherbiny, M.M. Al-Gayyar, Adenosine receptors: new therapeutic

    targets for inflammation in diabetic nephropathy, Inflamm. Allergy Drug

    Targets (2013).

    [9]R.M. Montero, A. Covic, L. Gnudi, D. Goldsmith, Diabetic nephropathy: what

    does the future hold?, Int Urol. Nephrol. (2015) .

    [10] Y.S. Kanwar, J. Wada, L. Sun, P. Xie, E.I. Wallner, S. Chen,S. Chugh, F.R. Danesh,

    Diabetic nephropathy: mechanisms of renal disease progression, Exp. Biol.

    Med. (Maywood) 233 (1) (2008) 411.

    [11] M. Dunlop, Aldose reductase and the role of the polyol pathway in diabetic

    nephropathy, Kidney Int. Suppl. (2000) S3S12.

    [12] H. Noh, G.L. King, The role of protein kinase C activation in diabetic

    nephropathy, Kidney Int. Suppl. 106 (2007) S4953.

    [13] H. Ha, I.A. Hwang, J.H. Park, H.B. Lee, Role of reactive oxygen species in the

    pathogenesis of diabetic nephropathy, Diabetes Res. Clin. Pract. 82 (Suppl. 1)

    (2008) S42S45.

    [14] T. Chawla, D. Sharma, A. Singh, Role of the renin angiotensin system in

    diabetic nephropathy, World J. Diabetes 1 (5) (2010) 141145.

    [15] B.F. Schrijvers, A.S. De Vriese, A. Flyvbjerg, From hyperglycemia to diabetic

    kidney disease: the role of metabolic, hemodynamic, intracellular factors and

    growth factors/cytokines, Endocr. Rev. 25 (6) (2004) 9711010.

    [16] S. Prabhakar, J. Starnes, S. Shi, B. Lonis, R. Tran, Diabetic nephropathy is

    associated with oxidative stress and decreased renal nitric oxide production,

    J. Am. Soc. Nephrol. 18 (11) (2007) 29452952.

    [17] J.F. Navarro-Gonzalez, C. Mora-Fernandez, M. Muros de Fuentes, J. Garcia-

    Perez, Inflammatory molecules and pathways in the pathogenesis of diabetic

    nephropathy, Nat. Rev. Nephrol. 7 (6) (2011) 327340.[18] P. Luo, Y. Zhou, H.H. Chang, J. Zhang, T. Seki, C.Y. Wang, E.W. Inscho, M.H.

    Wang, Glomerular 20-HETE, EETs, and TGF-beta1 in diabetic nephropathy,

    Am. J. Physiol. Renal Physiol. 296 (3) (2009) F556F563.

    [19] P.A. Kumar, F.C. Brosius 3rd, R.K. Menon, The glomerular podocyte as a target

    of growth hormone action: implications for the pathogenesis of diabetic

    nephropathy, Curr. Diabetes Rev. 7 (1) (2011) 5055.

    [20] C.L. Lin, F.S. Wang, Y.C. Hsu, C.N. Chen, M.J. Tseng, M.A. Saleem, P.J. Chang, J.Y.

    Wang, Modulation of notch-1 signaling alleviates vascular endothelial

    growth factor-mediated diabetic nephropathy, Diabetes 59 (8) (2010)

    19151925.

    [21] H. Suzuki, I. Usui, I. Kato, T. Oya, Y. Kanatani, Y. Yamazaki, S. Fujisaka, S.

    Senda, Y. Ishii, M. Urakaze, A. Mahmood, S. Takasawa, H. Okamoto, M.

    Kobayashi, K. Tobe, M. Sasahara, Deletion of platelet-derived growth factor

    receptor-beta improves diabetic nephropathy in Ca(2)(+)/calmodulin-

    dependent protein kinase IIalpha (Thr286Asp) transgenic mice,

    Diabetologia 54 (11) (2011) 29532962.

    [22] W.J. Ni,L.Q. Tang, W.Wei, Research progress in signalling pathway in diabetic

    nephropathy, Diabetes Metab. Res. Rev. 31 (3) (2015) 221233.

    [23] J. Wada, H. Makino, Inflammation and the pathogenesis of diabeticnephropathy, Clin. Sci. (Lond.) 124 (3) (2013) 139152.

    [24] K. Kanasaki, G. Taduri, D. Koya, Diabetic nephropathy: the role of

    inflammation in fibroblast activation and kidney fibrosis, Front. Endocrinol.

    (Lausanne) (2013) 47.

    [25] B. Rodriguez-Iturbe, Y. Quiroz, A. Shahkarami, Z. Li, N.D. Vaziri,

    Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat,

    Kidney Int. 68 (3) (2005) 10411047.

    [26] Y. Wu, J. Dong, L. Yuan, C. Liang, K. Ren, W. Zhang, F. Fang, J. Shen, Nephrin

    and podocin loss is prevented by mycophenolate mofetil in early

    experimental diabetic nephropathy, Cytokine 44 (1) (2008) 8591.

    [27] S. Wittmann, C. Daniel, A. Stief, R. Vogelbacher, K. Amann, C. Hugo, Long-term

    treatment of sirolimus but not cyclosporine ameliorates diabeticnephropathy in the rat, Transplantation 87 (9) (2009) 12901299.

    [28] A.K. Lim, G.H. Tesch, Inflammation in diabetic nephropathy, Mediat. Inflamm.

    2012 (2012) 146154.

    [29] M.B. Duran-Salgado, A.F. Rubio-Guerra, Diabetic nephropathy and

    inflammation, World J. Diabetes 5 (3) (2014) 393398.

    [30] A.S. Awad, G.R. Kinsey, K. Khutsishvili, T. Gao, W.K. Bolton, M.D. Okusa,

    Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal

    injury, Am. J. Physiol. Renal Physiol. 301 (6) (2011) F1358F1366.

    [31] Y. Liu, Cellular and molecular mechanisms of renal fibrosis, Nat. Rev. Nephrol.

    7 (12) (2011) 684696.

    [32] R. Hojs, R. Ekart, S. Bevc, N. Hojs, Biomarkers of renal disease and progression

    in patients with diabetes, J. Clin. Med. 4 (5) (2015) 10101024.

    [33] S. Maeda, Do inflammatory cytokine genes confer susceptibility to diabetic

    nephropathy?, Kidney Int 74 (4) (2008) 413415.

    [34] J. Donate-Correa, E. Martin-Nunez, M. Muros-de-Fuentes, C. Mora-Fernandez,

    J.F. Navarro-Gonzalez, Inflammatory cytokines in diabetic nephropathy, J.

    Diabetes Res. 2015 (2015) 948417.

    [35] D.A. Vesey, C. Cheung, L. Cuttle, Z. Endre, G. Gobe, D.W. Johnson, Interleukin-

    1beta stimulates human renal fibroblast proliferation and matrix protein

    production by means of a transforming growth factor-beta-dependent

    mechanism, J. Lab. Clin. Med. 140 (5) (2002) 342350.

    [36] S. Jones, S. Jones, A.O. Phillips, Regulation of renal proximal tubular epithelial

    cell hyaluronan generation: implications for diabetic nephropathy, Kidney

    Int. 59 (5) (2001) 17391749.

    [37] M. Dalla Vestra, M. Mussap, P. Gallina, M. Bruseghin, A.M. Cernigoi, A. Saller,

    M. Plebani, P. Fioretto, Acute-phase markers of inflammation and glomerular

    structure in patients with type 2 diabetes, J. Am. Soc. Nephrol. 16 (Suppl. 1)

    (2005) S78S82.

    [38] D.L. Coleman, C. Ruef, Interleukin-6: an autocrine regulator of mesangial cell

    growth, Kidney Int. 41 (3) (1992) 604606.

    [39] J.J. Boyle, P.L. Weissberg, M.R. Bennett, Tumor necrosis factor-alpha promotes

    macrophage-induced vascular smooth muscle cell apoptosis by direct and

    autocrine mechanisms, Arterioscler. Thromb. Vasc. Biol. 23 (9) (2003) 1553

    1558.

    [40] N. Koike, T. Takamura, S. Kaneko, Induction of reactive oxygen species from

    isolated rat glomeruli by protein kinase C activation and TNF-alpha

    stimulation, and effects of a phosphodiesterase inhibitor, Life Sci. 80 (18)(2007) 17211728.

    [41] L. Sun, Y.S. Kanwar, Relevance of TNF-alpha in the context of other

    inflammatory cytokines in the progression of diabetic nephropathy, Kidney

    Int. 88 (4) (2015) 662665.

    [42] T. Fujita, N. Ogihara, Y. Kamura, A. Satomura, Y. Fuke, C. Shimizu, Y. Wada, K.

    Matsumoto, Interleukin-18 contributes more closely to the progression of

    diabetic nephropathy than other diabetic complications, Acta Diabetol. 49 (2)

    (2012) 111117.

    [43] D.E. Smith, The biological paths of IL-1 family members IL-18 and IL-33, J.

    Leukoc. Biol. 89 (3) (2011) 383392.

    [44] K. Nakamura, H. Okamura, M. Wada, K. Nagata, T. Tamura, Endotoxin-induced

    serum factor that stimulates gamma interferon production, Infect. Immun. 57

    (2) (1989) 590595.

    [45] H. Okamura, H. Tsutsi, T. Komatsu, M. Yutsudo, A. Hakura, T. Tanimoto, K.

    Torigoe, T. Okura, Y. Nukada, K. Hattori, et al., Cloning of a new cytokine

    that induces IFN-gamma production by T cells, Nature 378 (6552) (1995) 88

    91.

    [46] F. Martinon, J. Tschopp, Inflammatory caspases and inflammasomes: master

    switches of inflammation, Cell Death Differ. 14 (1) (2007) 1022.[47] K. Nakanishi, T. Yoshimoto, H. Tsutsui, H. Okamura, Interleukin-18 regulates

    both Th1 and Th2 responses, Annu. Rev. Immunol. (2001) 1942319474.

    [48] S.M. Krishnan, C.G. Sobey, E. Latz, A. Mansell, G.R. Drummond, IL-1 beta and

    IL-18: inflammatory markers or mediators of hypertension?, Br J. Pharmacol.

    171 (24) (2014) 55895602.

    [49] S.K. Sedimbi, T. Hagglof, M.C. Karlsson, IL-18 in inflammatory and

    autoimmune disease, Cell Mol. Life Sci. 70 (24) (2013) 47954808.

    [50] N. Udagawa, N.J. Horwood, J. Elliott, A. Mackay, J. Owens, H. Okamura, M.

    Kurimoto, T.J. Chambers, T.J. Martin, M.T. Gillespie, Interleukin-18

    (interferon-gamma-inducing factor) is produced by osteoblasts and acts via

    granulocyte/macrophage colony-stimulating factor and not via interferon-

    gamma to inhibit osteoclast formation, J. Exp. Med. 185 (6) (1997) 1005

    1012.

    [51] M. Cumberbatch, R.J. Dearman, C. Antonopoulos, R.W. Groves, I. Kimber,

    Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis

    factor-alpha- and IL-1beta-dependent mechanism, Immunology 102 (3)

    (2001) 323330.

    [52] C.A. Dinarello, Interleukin-18 and the pathogenesis of inflammatory diseases,Semin. Nephrol. 27 (1) (2007) 98114.

    20 N.M. Elsherbiny, M.M.H. Al-Gayyar/ Cytokine 81 (2016) 1522

    http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0035http://refhub.elsevier.com/S1043-4666(16)30014-X/h0035http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0045http://refhub.elsevier.com/S1043-4666(16)30014-X/h0045http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0055http://refhub.elsevier.com/S1043-4666(16)30014-X/h0055http://refhub.elsevier.com/S1043-4666(16)30014-X/h0060http://refhub.elsevier.com/S1043-4666(16)30014-X/h0060http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0070http://refhub.elsevier.com/S1043-4666(16)30014-X/h0070http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0110http://refhub.elsevier.com/S1043-4666(16)30014-X/h0110http://refhub.elsevier.com/S1043-4666(16)30014-X/h0115http://refhub.elsevier.com/S1043-4666(16)30014-X/h0115http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0140http://refhub.elsevier.com/S1043-4666(16)30014-X/h0140http://refhub.elsevier.com/S1043-4666(16)30014-X/h0145http://refhub.elsevier.com/S1043-4666(16)30014-X/h0145http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0155http://refhub.elsevier.com/S1043-4666(16)30014-X/h0155http://refhub.elsevier.com/S1043-4666(16)30014-X/h0160http://refhub.elsevier.com/S1043-4666(16)30014-X/h0160http://refhub.elsevier.com/S1043-4666(16)30014-X/h0165http://refhub.elsevier.com/S1043-4666(16)30014-X/h0165http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0190http://refhub.elsevier.com/S1043-4666(16)30014-X/h0190http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0215http://refhub.elsevier.com/S1043-4666(16)30014-X/h0215http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0230http://refhub.elsevier.com/S1043-4666(16)30014-X/h0230http://refhub.elsevier.com/S1043-4666(16)30014-X/h0235http://refhub.elsevier.com/S1043-4666(16)30014-X/h0235http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0245http://refhub.elsevier.com/S1043-4666(16)30014-X/h0245http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0260http://refhub.elsevier.com/S1043-4666(16)30014-X/h0260http://refhub.elsevier.com/S1043-4666(16)30014-X/h0260http://refhub.elsevier.com/S1043-4666(16)30014-X/h0260http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0255http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0250http://refhub.elsevier.com/S1043-4666(16)30014-X/h0245http://refhub.elsevier.com/S1043-4666(16)30014-X/h0245http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0240http://refhub.elsevier.com/S1043-4666(16)30014-X/h0235http://refhub.elsevier.com/S1043-4666(16)30014-X/h0235http://refhub.elsevier.com/S1043-4666(16)30014-X/h0230http://refhub.elsevier.com/S1043-4666(16)30014-X/h0230http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0225http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0220http://refhub.elsevier.com/S1043-4666(16)30014-X/h0215http://refhub.elsevier.com/S1043-4666(16)30014-X/h0215http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0210http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0205http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0200http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0195http://refhub.elsevier.com/S1043-4666(16)30014-X/h0190http://refhub.elsevier.com/S1043-4666(16)30014-X/h0190http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0185http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0180http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0175http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0170http://refhub.elsevier.com/S1043-4666(16)30014-X/h0165http://refhub.elsevier.com/S1043-4666(16)30014-X/h0165http://refhub.elsevier.com/S1043-4666(16)30014-X/h0160http://refhub.elsevier.com/S1043-4666(16)30014-X/h0160http://refhub.elsevier.com/S1043-4666(16)30014-X/h0155http://refhub.elsevier.com/S1043-4666(16)30014-X/h0155http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0150http://refhub.elsevier.com/S1043-4666(16)30014-X/h0145http://refhub.elsevier.com/S1043-4666(16)30014-X/h0145http://refhub.elsevier.com/S1043-4666(16)30014-X/h0140http://refhub.elsevier.com/S1043-4666(16)30014-X/h0140http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0135http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0130http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0125http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0120http://refhub.elsevier.com/S1043-4666(16)30014-X/h0115http://refhub.elsevier.com/S1043-4666(16)30014-X/h0115http://refhub.elsevier.com/S1043-4666(16)30014-X/h0110http://refhub.elsevier.com/S1043-4666(16)30014-X/h0110http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0105http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0100http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0095http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0090http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0085http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0080http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0075http://refhub.elsevier.com/S1043-4666(16)30014-X/h0070http://refhub.elsevier.com/S1043-4666(16)30014-X/h0070http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0065http://refhub.elsevier.com/S1043-4666(16)30014-X/h0060http://refhub.elsevier.com/S1043-4666(16)30014-X/h0060http://refhub.elsevier.com/S1043-4666(16)30014-X/h0055http://refhub.elsevier.com/S1043-4666(16)30014-X/h0055http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0050http://refhub.elsevier.com/S1043-4666(16)30014-X/h0045http://refhub.elsevier.com/S1043-4666(16)30014-X/h0045http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0040http://refhub.elsevier.com/S1043-4666(16)30014-X/h0035http://refhub.elsevier.com/S1043-4666(16)30014-X/h0035http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0030http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0025http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0020http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0015http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0010http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005http://refhub.elsevier.com/S1043-4666(16)30014-X/h0005
  • 7/26/2019 1-s2.0-S104346661630014xxX-main

    7/8

    [53] O.J. Harrison, N. Srinivasan, J. Pott, C. Schiering, T. Krausgruber, N.E. Ilott, K.J.

    Maloy, Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3

    (+) Treg cell function in the intestine, Mucosal Immunol. 8 (6) (2015) 1226

    1236.

    [54] N. Tsutsumi, T. Kimura, K. Arita, M. Ariyoshi, H. Ohnishi, T. Yamamoto, X. Zuo,

    K. Maenaka, E.Y. Park, N. Kondo, M. Shirakawa, H. Tochio, Z. Kato, The

    structural basis for receptor recognition of human interleukin-18, Nat.

    Commun. (2014) 55340.

    [55] C.A. Dinarello, Novel targets for interleukin 18 binding protein, Ann. Rheum.

    Dis. 60 (Suppl. 3iii) (2001) 1824.

    [56] S. Akira, K. Takeda, T. Kaisho, Toll-like receptors: critical proteins linkinginnate and acquired immunity, Nat. Immunol. 2 (8) (2001) 675680.

    [57] M. Banerjee, M. Saxena, Interleukin-1 (IL-1)family of cytokines: role in type 2

    diabetes, Clin. Chim. Acta 413 (1516) (2012) 11631170.

    [58] C. Gabay, I.B. McInnes, The biological and clinical importance of the new

    generation cytokines in rheumatic diseases, Arthritis Res. Ther. 11 (3) (2009)

    230.

    [59] W.P. Arend, G. Palmer, C. Gabay, IL-1, IL-18, and IL-33 families of cytokines,

    Immunol. Rev. (2008) 2232022338.

    [60] H.P. Carroll, V. Paunovic, M. Gadina, Signalling, inflammation and arthritis:

    crossed signals: the role of interleukin-15 and -18 in autoimmunity,

    Rheumatology (Oxford) 47 (9) (2008) 12691277.

    [61] C.A. Dinarello, G. Fantuzzi, Interleukin-18 and host defense against infection,

    J. Infect. Dis. 187 (Suppl. 2) (2003) S370S384.

    [62] S. Alboni, D. Cervia, S. Sugama, B. Conti, Interleukin 18 in the CNS, J.

    Neuroinflamm. 79 (2010).

    [63] H. Tsutsui, K. Nakanishi, K. Matsui, K. Higashino, H. Okamura, Y. Miyazawa, K.

    Kaneda, IFN-gamma-inducing factor up-regulates Fas ligand-mediated

    cytotoxic activity of murine natural killer cell clones, J. Immunol. 157 (9)

    (1996) 39673973.

    [64] T.A. Fehniger, M.H. Shah, M.J. Turner, J.B. VanDeusen, S.P. Whitman, M.A.

    Cooper, K. Suzuki, M. Wechser, F. Goodsaid, M.A. Caligiuri, Differential

    cytokine and chemokine gene expression by human NK cells following

    activation with IL-18 or IL-15 in combination with IL-12: implications for the

    innate immune response, J. Immunol. 162 (8) (1999) 45114520.

    [65] C.F. Fortin, T. Ear, P.P. McDonald, Autocrine role of endogenous interleukin-18

    on inflammatory cytokine generation by human neutrophils, FASEB J. 23 (1)

    (2009) 194203.

    [66] J.K. Lee, S.H. Kim, E.C. Lewis, T. Azam, L.L. Reznikov, C.A. Dinarello, Differences

    in signaling pathways by IL-1beta and IL-18, Proc. Natl. Acad. Sci. USA 101

    (23) (2004) 88158820.

    [67] T. Skurk, H. Kolb, S. Muller-Scholze, K. Rohrig, H. Hauner, C. Herder, The

    proatherogenic cytokine interleukin-18 is secreted by human adipocytes, Eur.

    J. Endocrinol. 152 (6) (2005) 863868.

    [68] L.E. Harrington, P.R. Mangan, C.T. Weaver, Expanding the effector CD4 T-cell

    repertoire: the Th17 lineage, Curr. Opin. Immunol. 18 (3) (2006) 349356.

    [69] T. Yoshimoto, H. Tsutsui, K. Tominaga, K. Hoshino, H. Okamura, S. Akira, W.E.

    Paul, K. Nakanishi, IL-18, although antiallergic whenadministered withIL-12,stimulates IL-4 and histamine release by basophils, Proc. Natl. Acad. Sci. USA

    96 (24) (1999) 1396213966.

    [70] H. Okamura, H. Tsutsui, S. Kashiwamura, T. Yoshimoto, K. Nakanishi,

    Interleukin-18: a novel cytokine that augments both innate and acquired

    immunity, Adv. Immunol. (1998) 7028170312.

    [71] J.C. Morel, C.C. Park, P. Kumar, A.E. Koch, Interleukin-18 induces rheumatoid

    arthritis synovial fibroblast CXC chemokine production through NFkappaB

    activation, Lab. Invest. 81 (10) (2001) 13711383.

    [72] C.C. Wu, H.K. Sytwu, Y.F. Lin, Cytokines in diabetic nephropathy, Adv. Clin.

    Chem. (2012) 56555674.

    [73] J.C. Morel, C.C. Park, J.M. Woods, A.E. Koch, A novel role for interleukin-18 in

    adhesion molecule induction through NF kappa B and phosphatidylinositol

    (PI) 3-kinase-dependent signal transduction pathways, J. Biol. Chem. 276 (40)

    (2001) 3706937075.

    [74] N. Gerdes, G.K. Sukhova, P. Libby, R.S. Reynolds, J.L. Young, U. Schonbeck,

    Expression of interleukin (IL)-18 and functional IL-18 receptor on human

    vascular endothelial cells, smooth muscle cells, and macrophages:

    implications for atherogenesis, J. Exp. Med. 195 (2) (2002) 245257.

    [75] C.A. Dinarello, Interleukin 1 and interleukin 18 as mediators of inflammationand the aging process, Am. J. Clin. Nutr. 83 (2) (2006) 447S455S.

    [76] V.Y. Melnikov, T. Ecder, G. Fantuzzi, B. Siegmund, M.S. Lucia, C.A. Dinarello, R.

    W. Schrier, C.L. Edelstein, Impaired IL-18 processing protects caspase-1-

    deficient mice from ischemic acute renal failure, J. Clin. Invest. 107 (9) (2001)

    11451152.

    [77] V.Y. Melnikov, S. Faubel, B. Siegmund, M.S. Lucia, D. Ljubanovic, C.L. Edelstein,

    Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated

    ischemic acute tubular necrosis in mice, J. Clin. Invest. 110 (8) (2002)

    10831091.

    [78] H. Wu, M.L. Craft, P. Wang, K.R. Wyburn, G. Chen, J. Ma, B. Hambly, S.J.

    Chadban, IL-18 contributes to renal damage after ischemiareperfusion, J.

    Am. Soc. Nephrol. 19 (12) (2008) 23312341.

    [79] J. Menke, T. Bork, B. Kutska, K.T. Byrne, M. Blanfeld, M. Relle, V.R. Kelley, A.

    Schwarting, Targeting transcription factor Stat4 uncovers a role for

    interleukin-18 in the pathogenesis of severe lupus nephritis in mice,

    Kidney Int. 79 (4) (2011) 452463.

    [80] K.R. Wyburn, S.J. Chadban, T. Kwan, S.I. Alexander, H. Wu, Interleukin-18

    binding protein therapy is protective in adriamycin nephropathy, Am. J.Physiol. Renal Physiol. 304 (1) (2013) F68F76.

    [81] M. Sugiyama, K. Kinoshita, K. Kishimoto, H. Shimazu, Y. Nozaki, S. Ikoma, M.

    Funauchi, Deletion of IL-18 receptor ameliorates renal injury in bovine serum

    albumin-induced glomerulonephritis, Clin. Immunol. 128 (1) (2008) 103

    108.

    [82] J. Faust, J. Menke, J. Kriegsmann, V.R. Kelley, W.J. Mayet, P.R. Galle, A.

    Schwarting, Correlation of renal tubular epithelial cell-derived interleukin-18

    up-regulation with disease activity in MRL-Faslpr mice with autoimmune

    lupus nephritis, Arthritis Rheum. 46 (11) (2002) 30833095.

    [83] Y. Moriwaki, T. Yamamoto, Y. Shibutani, E. Aoki, Z. Tsutsumi, S. Takahashi, H.

    Okamura, M. Koga, M. Fukuchi, T. Hada, Elevated levels of interleukin-18 and

    tumor necrosis factor-alpha in serum of patients with type 2 diabetesmellitus: relationship with diabetic nephropathy, Metabolism 52 (5) (2003)

    605608.

    [84] A. Nakamura, K. Shikata, M. Hiramatsu, T. Nakatou, T. Kitamura, J. Wada, T.

    Itoshima, H. Makino, Serum interleukin-18 levels are associated with

    nephropathy and atherosclerosis in Japanese patients with type 2 diabetes,

    Diabetes Care 28 (12) (2005) 28902895.

    [85] K. Miyauchi, Y. Takiyama, J. Honjyo, M. Tateno, M. Haneda, Upregulated IL-18

    expression in type 2 diabetic subjects with nephropathy: TGF-beta1

    enhanced IL-18 expression in human renal proximal tubular epithelial cells,

    Diabetes Res. Clin. Pract. 83 (2) (2009) 190199.

    [86] S. Gangemi, A. Mallamace, P.L. Minciullo, D. Santoro, R.A. Merendino, V.

    Savica, G. Bellinghieri, Involvement of interleukin-18 in patients on

    maintenance haemodialysis, Am. J. Nephrol. 22 (56) (2002) 417421.

    [87] C.K. Chiang, S.P. Hsu, M.F. Pai, Y.S. Peng, T.I. Ho, S.H. Liu, K.Y. Hung, T.J. Tsai, B.

    S. Hsieh, Plasma interleukin-18 levels in chronic renal failure and continuous

    ambulatory peritoneal dialysis, Blood Purif. 23 (2) (2005) 144148.

    [88] M. Girndt, U. Sester, H. Kaul, H. Kohler, Production of proinflammatory and

    regulatory monokines in hemodialysis patients shown at a single-cell level, J.

    Am. Soc. Nephrol. 9 (9) (1998) 16891696.

    [89] J.F. Navarro-Gonzalez, C. Mora-Fernandez, The role of inflammatorycytokines

    in diabetic nephropathy, J. Am. Soc. Nephrol. 19 (3) (2008) 433442 .

    [90] B. Shi, Z. Ni, L. Cao, M. Zhou, S. Mou, Q. Wang, M. Zhang, W. Fang, Y. Yan, J.

    Qian, Serum IL-18 is closely associated with renal tubulointerstitial injury

    and predicts renal prognosis in IgA nephropathy, Mediat. Inflamm. 2012

    (2012) 728417.

    [91] C.M. Turner, N. Arulkumaran, M. Singer, R.J. Unwin, F.W. Tam, Is the

    inflammasome a potential therapeutic target in renal disease?, BMC

    Nephrol 1521 (2014).

    [92] A. Vilaysane, J. Chun, M.E. Seamone, W. Wang, R. Chin, S. Hirota, Y. Li, S.A.

    Clark, J. Tschopp, K. Trpkov, B.R. Hemmelgarn, P.L. Beck, D.A. Muruve, The

    NLRP3 inflammasome promotes renal inflammation and contributes to CKD,

    J. Am. Soc. Nephrol. 21 (10) (2010) 17321744.

    [93] C. Wang, Y. Pan, Q.Y. Zhang, F.M. Wang, L.D. Kong, Quercetin and allopurinol

    ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3

    inflammasome activation and lipid accumulation, PLoS ONE 7 (6) (2012)

    e38285.

    [94] A. Solini, S. Menini, C. Rossi, C. Ricci, E. Santini, C. Blasetti Fantauzzi, C.Iacobini, G. Pugliese, The purinergic 2X7 receptor participates in renal

    inflammation and injury induced by high-fat diet: possible role of NLRP3

    inflammasome activation, J. Pathol. 231 (3) (2013) 342353.

    [95] K. Shahzad, F. Bock, W. Dong, H. Wang, S. Kopf, S. Kohli, M.M. Al-Dabet, S.

    Ranjan, J. Wolter, C. Wacker, R. Biemann, S. Stoyanov, K. Reymann, P.

    Soderkvist, O. Gross, V. Schwenger, S. Pahernik, P.P. Nawroth, H.J. Grone, T.

    Madhusudhan, B. Isermann, Nlrp3-inflammasome activation in non-myeloid-

    derived cells aggravates diabetic nephropathy, Kidney Int. 87 (1) (2015) 74

    84.

    [96] R.A. Mahmoud, S.A. El-Ezz, A.S. Hegazy, Increased serum levels of interleukin-

    18 in patients with diabetic nephropathy, Ital. J. Biochem. 53 (2) (2004) 73

    81.

    [97] S. Araki, M. Haneda, D. Koya, T. Sugimoto, K. Isshiki, M. Chin-Kanasaki, T. Uzu,

    A. Kashiwagi, Predictive impact of elevated serum level of IL-18 for early

    renal dysfunction in type 2 diabetes: an observational follow-up study,

    Diabetologia 50 (4) (2007) 867873.

    [98] A.E. Altinova, I. Yetkin, E. Akbay, N. Bukan, M. Arslan, Serum IL-18 levels in

    patients with type 1 diabetes: relations to metabolic control and

    microvascular complications, Cytokine 42 (2) (2008) 217221.[99] S.S. Kim, S.H. Song, I.J. Kim, J.Y. Yang, J.G. Lee, I.S. Kwak, Y.K. Kim, Clinical

    implicationof urinary tubular markers in theearly stageof nephropathy with

    type 2 diabetic patients, Diabetes Res. Clin. Pract. 97 (2) (2012) 251257.

    [100] N.M. Elsherbiny, K.H. Abd El Galil, M.M. Gabr, M.M. Al-Gayyar, L.A. Eissa, M.

    M. El-Shishtawy, Reno-protective effect of NECA in diabetic nephropathy:

    implication of IL-18 and ICAM-1, Eur. Cytokine Netw. 23 (3) (2012) 7886 .

    [101] M.D. Sanchez-Nino, M. Bozic, E. Cordoba-Lanus, P. Valcheva, O. Gracia, M.

    Ibarz, E. Fernandez, J.F. Navarro-Gonzalez, A. Ortiz, J.M. Valdivielso, Beyond

    proteinuria: VDR activation reduces renal inflammation in experimental

    diabetic nephropathy, Am. J. Physiol. Renal Physiol. 302 (6) (2012) F647

    F657.

    [102] N.M. Elsherbiny, M.M. Al-Gayyar, K.H. Abd El-Galil, Nephroprotective role of

    dipyridamole in diabetic nephropathy: Effect on inflammation and apoptosis,

    Life Sci. 143 (2015) 817.

    [103] C. Luo, T. Li, C. Zhang, Q. Chen, Z. Li, J. Liu, Y. Wang, Therapeutic effect of

    alprostadil in diabetic nephropathy: possible roles of angiopoietin-2 and IL-

    18, Cell Physiol. Biochem. 34 (3) (2014) 916928.

    [104] C.A. Dinarello, G. Kaplanski, Interleukin-18 treatment options forinflammatory diseases, Exp. Rev. Clin. Immunol. 1 (4) (2005) 619632.

    N.M. Elsherbiny, M.M.H. Al-Gayyar / Cytokine 81 (2016) 1522 21

    http://refhub.elsevier.com/S1043-4666(16)30014-X/h0265http://refhub.elsevier.com/S1043-4666(16)30014-X/h0265http://refhub.elsevier.com/S1043-4666(16)30014-X/h0265http://refhub.elsevier.com/S1043-4666(16)30014-X/h0265http://refhub.elsevier.com/S1043-4666(16)30014-X/h0270http://refhub.elsevier.com/S1043-4666(16)30014-X/h0270http://refhub.elsevier.com/S1043-4666(16)30014-X/h0270http://refhub.elsevier.com/S1043-4666(16)30014-X/h0270http://refhub.elsevier.com/S1043-4666(16)30014-X/h0275http://refhub.elsevier.com/S1043-4666(16)30014-X/h0275http://refhub.elsevier.com/S1043-4666(16)30014-X/h0280http://refhub.elsevier.com/S1043-4666(16)30014-X/h0280http://refhub.elsevier.com/S1043-4666(16)30014-X/h0285http://refhub.elsevier.com/S1043-4666(16)30014-X/h0285http://refhub.elsevier.com/S1043-4666(16)30014-X/h0290http://refhub.elsevier.com/S1043-4666(16)30014-X/h0290http://refhub.elsevier.com/S1043-4666(16)30014-X/h0290http://refhub.elsevier.com/S1043-4666(16)30014-X/h0295http://refhub.elsevier.com/S1043-4666(16)30014-X/h0295http://refhub.elsevier.com/S1043-4666(16)30014-X/h0300http://refhub.elsevier.com/S1043-4666(16)30014-X/h0300http://refhub.elsevier.com/S1043-4666(16)30014-X/h0300http://refhub.elsevier.com/S1043-4666(16)30014-X/h0305http://refhub.elsevier.com/S1043-4666(16)30014-X/h0305http://refhub.elsevier.com/S1043-4666(16)30014-X/h0310http://refhub.elsevier.com/S1043-4666(16)30014-X/h0310http://refhub.elsevier.com/S1043-4666(16)30014-X/h0315http://refhub.elsevier.com/S1043-4666(16)30014-X/h0315http://refhub.elsevier.com/S1043-4666(16)30014-X/h0315http://refhub.elsevier.com/S1043-4666(16)30014-X/h0315http://refhub.elsevier.com/S1043-4666(16)30014-X/h0320http://refhub.elsevier.com/S1043-4666(16)30014-X/h0320http://refhub.elsevier.com/S1043-4666(16)30014-X/h0320http://refhub.elsevier.com/S1043-4666(16)30014-X/h0320http://refhub.elsevier.com/S1043-4666(16)30014-X/h0320http://refhub.elsevier.com/S1043-4666(16)30014-X/h0325http://refhub.elsevier.com/S1043-4666(16)30014-X/h0325http://refhub.elsevier.com/S1043-4666(16)30014-X/h0325http://refhub.elsevier.com/S1043-4666(16)30014-X/h0325http://refhub.elsevier.com/S1043-4666(16)30014-X/h0330http://refhub.elsevier.com/S1043-4666(16)30014-X/h0330http://refhub.elsevier.com/S1043-4666(16)30014-X/h0330http://refhub.elsevier.com/S1043-4666(16)30014-X/h0335http://refhub.elsevier.com/S1043-4666(16)30014-X/h0335http://refhub.elsevier.com/S1043-4666(16)30014-X/h0335http://refhub.elsevier.com/S1043-4666(16)30014-X/h0340http://refhub.elsevier.com/S1043-4666(16)30014-X/h0340http://refhub.elsevier.com/S1043-4666(16)30014-X/h0345http://refhub.elsevier.com/S1043-4666(16)30014-X/h0345http://refhub.elsevier.com/S1043-4666(16)30014-X/h0345http://refhub.elsevier.com/S1043-4666(16)30014-X/h0345http://refhub.elsevier.com/S1043-4666(16)30014-X/h0350http://refhub.elsevier.com/S1043-4666(16)30014-X/h0350http://refhub.elsevier.com/S1043-4666(16)30014-X/h0350http://refhub.elsevier.com/S1043-4666(16)30014-X/h0355http://refhub.elsevier.com/S1043-4666(16)30014-X/h0355http://refhub.elsevier.com/S1043-4666(16)30014-X/h0355http://refhub.elsevier.com/S1043-4666(16)30014-X/h0360http://refhub.elsevier.com/S1043-4666(16)30014-X/h0360http://refhub.elsevier.com/S1043-4666(16)30014-X/h0365http://refhub.elsevier.com/S1043-4666(16)30014-X/h0365http://refhub.elsevier.com/S1043-4666(16)30014-X/h0365http://refhub.elsevier.com/S1043-4666(16)30014-X/h0365http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0375http://refhub.elsevier.com/S1043-4666(16)30014-X/h0375http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0445http://refhub.elsevier.com/S1043-4666(16)30014-X/h0445http://refhub.elsevier.com/S1043-4666(16)30014-X/h0445http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0520http://refhub.elsevier.com/S1043-4666(16)30014-X/h0520http://refhub.elsevier.com/S1043-4666(16)30014-X/h0520http://refhub.elsevier.com/S1043-4666(16)30014-X/h0520http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0515http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0510http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0505http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0500http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0495http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0490http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0485http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0480http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0475http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0470http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0465http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0460http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0455http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0450http://refhub.elsevier.com/S1043-4666(16)30014-X/h0445http://refhub.elsevier.com/S1043-4666(16)30014-X/h0445http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0440http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0435http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0430http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0425http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0420http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0415http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0410http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0405http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0400http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0395http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0390http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0385http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0380http://refhub.elsevier.com/S1043-4666(16)30014-X/h0375http://refhub.elsevier.com/S1043-4666(16)30014-X/h0375http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0370http://refhub.elsevier.com/S1043-4666(16)30014-X/h0365ht