12
Heat Recovery Systems Vol. 3, No. 2, pp. 145 to 155, 1983 0198-7593/83/020145-11503.00 0 Printed in Great Britain. Pergamo n Press Ltd HEAT RECOVERY--AN ECONOMIC BENEFIT TO HAZARDOUS WASTE INCINERATION SYSTEMS JOSEPH J. SANTOLERI Trane Thermal, Process Division, The Trane Company, Brook Road, Conshohocken, PA 19428, U.S.A. Abstract--Many process wastes listed as hazardous have been disposed of in landfills and by incineration without consideration of energy recovery. The heat of combustion of these waste materials has replaced fossil fuel energy in many process plants by generating steam and preheat- ing other process streams. Operating costs for these plants can be minimized by proper design of the combustion and heat recovery systems. This paper reviews experience at several facilities where waste gas and liquids have been properly disposed of by incineration and the energy values recovered for use in the plant. INTRODUCTION IN THE past quarter century, many new materials have been developed by the chemical and petrochemical process industries that have improved the way of life for present and future generations. Plastics used in products at home, at the office and in industrial applications have minimized weight, corrosion and maintenance. Pesticides, herbicides and fertilizers have been a boon to the farmer and homeowner in maximizing output per acre and minimizing crop destruction. At the--same time, production of the raw materials used in these products has created a myriad of compounds which have been listed by EPA as hazardous and toxic in the Resource Conservation and Recovery Act (RCRA). DISPOSAL METHODS Today, there are plants in almost every industry producing materials which generate a waste listed by EPA. Those producing at least 1 tonne (2200 lbs.) per m onth are required to follow strict procedures for disposal of that waste. Many plant operators have re- sponded to this problem and have developed procedures for compliance. These have been either 'on site' (landfills, deep well disposal, chemical fixation or thermal incinera- tion) or 'off site' (contract hauling to disposal sites). Since the generator of the waste is required by RCRA to be responsible until the material is destroyed--'cradle to grave' responsibility--many have turned to 'on site' systems. Many 'off site' systems have been plagued with irresponsible contractors, im- properly designed disposal schemes, etc. Those disposal companies and/or systems that do comply with RCRA are few. They have maintained well designed facilities and are financially able to support the operation and insure the generator complete destruction of the toxic materials. However, certain states are drafting regulations which will elimin- ate land disposal of certain toxic wastes by 1 July 1984. California's Departm ent of Health Services is drafting an aggressive regulatory proposal which is significantly more stringent than EPA's current rules, which only ban the land disposal of free-standing liquids and wastes incompatible with the land disposal requirement [1]. The combination of stricter regulations with fewer sites will force the costs of land disposal to levels well over today's figures. These costs increased 25-409/o from 1980 to 1981 [2"1. Until recently, industrial waste disposal cost as little as $1.50 per ton. Today, non-hazardous industrial waste requires $15-$90 per ton for disposal, while hazardous waste disposal costs $50-$400 per ton. The costs might be acceptable if the long term risk of hazard could be eliminated. First presented at American Institute of Chemical Engineers 1982 Summer Annual Mtg. Cleveland, Ohio, 29 August-1 September 1982. 14 5

1-s2.0-0198759383900061-main

Embed Size (px)

Citation preview

Page 1: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 1/11

Heat Recovery Sys tems Vol. 3, No. 2, pp. 145 to 155, 1983 0198-7593/83/020145-11503.00 0Printed in Great Britain. Pergamo n Pres s Ltd

H E A T R E C O V E R Y - - A N E C O N O M I C B E N E F I T T O

H A Z A R D O U S W A S T E I N C I N E R A T I O N S Y S T E M S

JOSEPH J. SANTOLERI

T r a n e T h e r m a l , P r o c e ss D i v i si o n , T h e T r a n e C o m p a n y , B r o o k R o a d ,C on shoh ocken , P A 19428 , U .S .A .

A b s t r a c t - - M a n y p r o c e s s w a s te s l is t e d a s h a z a r d o u s h a v e b e e n d i s p o s e d o f i n l a n df i ll s a n d b yi n c i n e r a t i o n w i t h o u t c o n s i d e r a t i o n o f e n e r g y r e c o v e r y . T h e h e a t o f c o m b u s t i o n o f t h e s e w a s t em a te r i a l s has r ep l aced foss il f ue l ene rgy i n m any p roces s p l an t s by ge ne ra t i ng s t ea m a nd p rehe a t -i n g o t h e r p r o c e s s s tr e a m s . O p e r a t i n g c o s t s f or t h e s e p l a n t s c a n b e m i n i m i z e d b y p r o p e r d e s i g n o fthe com bus t i on and hea t r ecove ry sys t em s . T h i s pape r r ev i ew s expe r i ence a t s eve ra l f ac i l i t i e sw h e r e w a s t e g a s a n d l i q u i d s h a v e b e e n p r o p e r l y d i s p o s e d o f b y i n c i n e ra t i o n a n d t h e e n e r g y v a l u esr ecove red fo r u se i n t he p l an t .

I N T R O D U C T I O N

IN THE p a s t q u a r t e r c e n tu r y , m a n y n e w m a te r i a l s h a v e b e e n d e v e lo p e d b y t h e c h e m ic a l

a n d p e t r o c h e m ic a l p r o ce s s i n d u s tr i es t h a t h a v e im p r o v e d t h e w a y o f l if e f o r p r e s e n t a n dfu tu re genera t ions . P las tic s used in p rod uc ts a t hom e, a t the o f f ice and in indus t r ia l

app l ica t ions have min imized we igh t , co r ros ion and main tenance . Pes t ic ides , he rb ic ides

a n d f e r ti li z er s h a v e b e e n a b o o n t o t h e f a r m e r a n d h o m e o w n e r i n m a x im iz in g o u tp u t p e r

ac re and min imiz ing c rop des t ruc t ion . At the - - same t ime , p roduc t ion o f the raw mate r ia l s

u s e d i n t h e s e p r o d u c t s h a s c r e a t e d a m y r i a d o f c o m p o u n d s wh ic h h a v e b e e n l i s t e d b y

E P A a s h a z a r d o u s a n d t o x i c i n t h e R e s o u r c e C o n s e r v a t i o n a n d R e c o v e r y A c t (R C R A ).

D I S P O S A L M E T H O D S

T o d a y , t h e r e a r e p la n t s i n a lm o s t e v e r y i n d u s t r y p r o d u c in g m a te r i a l s wh ic h g e n e r a t e a

was te li s ted by EPA. Tho se p rod uc ing a t l eas t 1 tonn e (2200 lbs .) pe r m on th a re re qu i red

to f o l lo w s t ri c t p r o c e d u r e s fo r d is p o s al o f t h a t wa s t e. M a n y p l a n t o p e r a to r s h a v e r e -

s p o n d e d t o t h i s p r o b l e m a n d h a v e d e v e lo p e d p r o c e d u r e s f o r c o m p l i a n c e . T h e s e h a v e

been e i the r ' on s i te ' (l andfi ll s, deep w e l l d isposa l , chem ica l f ixa tion o r the rm al inc ine ra -t ion) or 'off s i te ' (co ntra ct hau ling to disposal s ites) .

S in ce t h e g e n e r a to r o f th e w a s t e is r e q u i r e d b y R C R A to b e r e s p o n s ib l e u n t i l t h e

m a te r i a l i s d e s t r o y e d - - ' c r a d l e to g r a v e ' r e s p o n s ib i l i t y - - m a n y h a v e t u r n e d t o ' o n s it e '

s y st e m s . M a n y ' o f f s i te ' s y s t e m s h a v e b e e n p l a g u e d w i th i r r es p o n s ib le c o n t r a c to r s , im -

p r o p e r ly d e s ig n e d d i s p o sa l s c h e m e s, e t c. T h o s e d i s p os a l c o m p a n i e s a n d /o r s y s t e m s t h a t

d o c o m p ly w i th R C R A a r e f ew . T h e y h a v e m a in t a in e d w e l l d e sig n e d f ac i li ti e s a n d a r e

f i n a n ci a l ly a b l e to s u p p o r t t h e o p e r a t i o n a n d i n s u r e t h e g e n e r a to r c o m p le t e d e s t r u c t i o n

of the tox ic mate r ia l s . How ever , ce r ta in s ta tes a re d ra f t ing regu la t ions wh ich wi ll e l imin-

a te land d isposa l o f ce r ta in tox ic was tes by 1 Ju ly 1984 . Ca l i fo rn ia ' s Dep ar tm en t o fHea l th Serv ices i s d ra f t ing an aggress ive regu la to ry p roposa l which i s s ign i f ican t ly more

s t r in g e n t t h a n E P A ' s c u r r e n t r u le s , wh ic h o n ly b a n t h e l a n d d i s p o s a l o f f r e e -s t a n d in gl i q uid s a n d wa s t e s i n c o m p a t ib l e w i th t h e l a n d d i s p o s a l r e q u i r e m e n t [1 ] .

Th e co m bina t ion o f s t r ic te r regu la t ions wi th fewer si tes wi ll fo rce the cos t s o f landdisposa l to levels well over tod ay 's f igures . These co sts incre ased 25-409/o fro m 1980 to

1981 [2"1. Un ti l recen tly , industr ia l wa ste disposa l c ost as l i t t le as $ 1.50 per ton. T od ay ,

non-hazardous indus t r ia l was te requ i res $15-$90 per ton fo r d i sposa l , wh i le hazardouswas te d i sposa l cos t s $50-$400 per ton . The cos ts migh t be accep tab le i f the long te rmr i sk o f h a z a r d c o u ld b e e l im in a t ed .

F i r s t p r e sen t ed a t A m er i can Ins t i t u t e o f C hem ica l E ng inee r s 1982 S um m er A nnu a l M tg . C leve l and , O h io , 29A ugus t -1 S ep t em ber 1982 .

14 5

Page 2: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 2/11

146 JOSEeH J SAXlOLERI

INCINERATION

M e t h o d s t o m i m m i z e t h e a m o u n t s o f w a s te b y i m p r o v e m e n t s i n t he p r o c e ss , re c y cl in g

w a s te s a n d w a s t e -t r a d in g h a v e b e e n a n d a r e c o n t in u a l l y b e in g d e v e lo p e d . O n e m e t h o d

w h i c h w i ll r e d u c e t h e t o t a l v o l u m e a n d a t t h e s a m e t i m e d e t o x i f y t h e w a s t e i s i n c i n e r a -

t i o n - o n c e c o n s i d e r e d a b a d w o r d . E x p e r i e n c e in t he p a s t 1 5 - 2 0 y r w it h h i g h t em p e r a -

t u r e in c i n e r a t i o n s y s t e m s I c o m p l e t e w i t h a d e q u a t e i n s t r u m e n t a t i o n a n d a i r p o l l u t io n

c o n t r o l s y s te m s ) h a s s h o w n t h a t t h i s p r o c e s s w i ll s o lv e t h is s e r i o u s p r o b l e m . D i s p o s a l b y

i n c i n e r a t i o n h a s b e e n t h e m o s t e x p e n s i v e m e t h o d a s n o t e d i n T a b l e 1.

O n e o f t h e m a i n r e a s o n s f o r t h e h i g h c o s ts a s s o c i a t e d w i t h i n c i n e r a u o n is r e la t e d t o

e n e r g y . M a n y w a s t e s l is t e d a s t o x i c a r e h i g h l y a q u e o u s a s m u c h a s 9 5° ,0 w a t e r. T o9 3"a d e q u a t e l y o x id i z e t h e P r in c i p a l O r g a n i c H a z a r d o u s C o n s t i tu e n t ( P O H C ) t o t h e 99 . 9 / o

D e s t r u c t i o n a n d R e m o v a l E f f ic ie n c y ( D R E ) r e q u i r e m e n t e s ta b l is h e d b y R C R A , o x i d a t i o n

t e m p e r a t u r e s o f a t le a s t 1 0 0 0 °C (1 8 3 2 °F ) , t u r b u l e n c e i n t h e c o m b u s t i o n z o n e t o m a x i m i z e

t h e r e a c t i o n a n d t o m i n i m i z e r e s i d e n c e t i m e . a n d s u f f i c i e n t p r e s s u r e t o p r o v i d e t h e

n e c e s s a r y s c r u b b i n g o f h a l o g e n s a n d / o r p a r t i c u l a t e s a r e r e q u i re d . T h i s e s t a b li s h e s :

( a) t h e q u a n t i t y o f a u x i li a r y f u e l :( b ) t h e o x i d i z i n g a i r v o l u m e a n d p r e s s u r e :

( c ) t h e a t o m i z i n g m e d i a ( c o m p r e s s e d a i r o r s t e a m l .

T h e s e a r e t h e e n e r g y - i n t e n s i v e u t i l i t i e s f o r t h e i n c i n e r a t i o n s y s t e m . T e c h n o l o g i c a l i m -

p r o v e m e n t s in c o m b u s t i o n , m i x i n g an d a t o m i z a t i o n h a v e b e e n c o n d u c t e d b y a ll p a r t i c i-

p a n t s i n t h e l a st f ew y e ar s . T h i s h a s a i d e d i n e s t ab l i s h i n g t h e m i n i m u m t e m p e r a t u r e s

n e e d e d f o r a c h i e v i n g t h e r e q u i r e d d e s t r u c t i o n (9 9.9 99 ~) o f t h e P O H C ' s . P r i o r t o t h e f i n a l

r e l ea s e o f R C R A S e c. 3 0 0 4 ( I n c i n e r a t i o n S t a n d a r d s ) , a t e m p e r a t u r e - t i m e d e s i g n r e q u i r e -

m e n t h a d b e e n s et b y t h e E P A [3 ] . A f t er s ev e r al h u n d r e d c o m m e n t s b y b o t h i n d u s t ry

a n d e n g i n e e r i n g s o c ie t ie s ( C M A . A I C h E . A S M E . A P C A . P M A . e tc .} d e m a n d i n g a p e r -

f o r m a n c e s t a n d a r d b e e s ta b l i s h e d v e r s u s t h e d es i g n s t a n d a r d s et f o r th . E P A r e v i se d t h e

R C R A s e c t io n o n i n c i n e r a t o r s t a n d a r d s t o th e p r e s e n t r e g u l a t i o n s [ 4 ] .

T h e s e st e p s h a v e a l lo w e d t h e q u a l if i e d d es i g n e r s a n d m a n u f a c t u r e r s o f h a z a r d o u s

w a s t e i n c i n e r a t o r s to s t e p u p to t h e p r o b l e m a n d s o l v e th e t h e r m a l o x i d a t i o n p r o b -

l e m [ 5 ] . S u f f ic i e n t i n s t a ll a t io n s p r e s e n t l y ex i st w h i c h m e e t t h e 9 9 . 9 9 ~ D R E . E P A h a s

l is t ed t h o s e h a z a r d o u s w a s t e s b y d e g r e e o f h a z a r d a n d d e g r e e o f i n c i n e r a b i l i ty ( T a b l e 2j.

M e t h o d s t o m i n i m i z e t h e a u x i l i a r y f u e l r e q u i r e m e n t s w e r e t h e n e x t s t e p . T h i s w a s

p o s s i b l e w i th t h o s e s y s t e m s w h e r e r e c y c l i n g o f w a s te s c o u l d b e a c c o m p l i s h e d in t h e

p r o c e s s p l a n t a n d w a s t e v o l u m e w a s r e d u c e d . A l s o . p r e c o n c e n t r a t i o n o f r e l a ti v e l y c l e a n

a q u e o u s o r g a n i c w a st e s p e r m i t t ed a h i g h e r c o n c e n t r a t i o n o f t h e o r g a n i c s a n d in m a n y

c a se s , p rpv i de d a s e l f - sus t a i n i ng fue l ( s e e F i g . 1 ) .

H A Z A R D O U S W A S T E S IN B O I L E RS

T h o s e o r g a n i c w a s t e s w h i c h a r e s e l f- s u s ta i n in g h a v e b e e n u t i li z e d a s f u e ls i n b o i l e r s

w h e r e p o s s i b l e. H o w e v e r , t h e u s e o f th e t o x i c , h a z a r d o u s w a s t e s m i n d u s t r i a l b o i l e r s h a s

b e e n u n d e r r e v i e w b y t h e E P A o v e r t h e l a s t fe w y e ar s . T h e b o i l e r s o f f er g r e a t p o t e n t i a l

f o r t h e o n - s i t e t h e r m a l d e s t r u c t i o n o f h a z a r d o u s w a s te s . H o w e v e r , t h e t e m p e r a t u r e , t u r -

b u l e n c e a n d r e s i d e n c e t i m e o f a g i v en b o i l e r m u s t p r o v i d e t h e s a m e 9 9 . 9 9 % D R E a s t h a t

r e q u i r e d w i t h i n c i n e r a t o r s . I n m a n y c a s es , th e w a s t e is b l e n d e d w i t h c o n v e n t i o n a l f u e ls

( c o a l , n a t u r a l g a s , f u e l o i l) . T o i n s u r e t h a t t h i s i s a s a t i s f a c t o r y s o l u t i o n . E P A a w a r d e d a

c o n t r a c t t o t h e A c u r e x C o r p o r a t i o n t o s t u d y t h e t e ch n i ca l w o r t h o f t h e o v e r a ll c o n -

c e p t [ 6 ] .T h e O f f ic e o f S o l id W a s t e o f t h e U .S . E P A s p o n s o r e d t h e H a z a r d o u s W a s t e C o m b u s -

t i o n W o r k s h o p a t th e In d u s t r i al E n v i r o n m e n t a l R e s e a r ch L a b o r a t o r y , C i n c i n n at i , O h i o .

2 1 a n d 2 2 A p r i l 1 98 1. M a n y p r o s a n d c o n s w e r e p r e s e n t e d o n t h i s s u b j e c t , p a r t i c u l a r l y

w i t h r e g a r d t o h a z a r d o u s m a t e r i a l s w h i c h a r e k n o w n c a r c i n o g e n s . O n e i n s t a l l a t i o n i n d i -

c a t e d t h a t a r e s i d u e f r o m p h e n o l p u r i f i c a ti o n c o l u m n s h a s b e e n b u r n e d w i t h e i t h e r

Page 3: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 3/11

T

e

H

d

w

ema

me

c

T

o

w

e

T

o

om 

P

c

($T

ma

me

o

w

e

1

1

1

1

L

$

$

5

g

dum 

$

$

5

g

dum 

$

$

$

~O-$

o

$

$

o

$

$

$

$

L

me

$

0

0

0

g

$

0

00

g

$

$

$

$

In

n

o

G 3

$00

02

g

$

$

$1

$

$

2

09

g

$

$

$

$

$

5

30

g

$

$

$

$

Dr

B

k

A R

a

v

yce

q

d

hg

Buv

u

$

2

9

g

Lq

d

$

2

9

g

S

d

hg

y

o

c

$

2

2

5

g

lq

d

A

d

ak

n

$

0

03

g

C

d

h

mea

$

2

20

g

hg

y

o

cw

e

A

$

1

0

8

g

O

yw

ew

e

$

0

0

1

g

T

c

n

w

e

$

5

1

0

g

C

mic

me

$

0

03

g

$

$

$

$

$

2

30

g

$

$

$

$

R

y

$

2

10

g

$

$

$

$

D

w

ne

o

$

0

01

g

$

$

$

$

$

5

10

g

$

$

$

$

T

a

o

$

5

o

mie

N O B ¢ a

*

ne

vew

w

c

e

nMa

o

1

a

F

mryo

1

tSm

ecme

k

n

a

g

a

ema

u

an

w

p

n

o

w

e

S

B

A

e

&

H

mio

n

Page 4: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 4/11

14 8 JOSEPH J. SANTOLERI

T a b l e 2 , E P A r a n k i n g o f h a z a r d o u s b a s t e s t r e a m a n a l y s i s a n dincin erab i l i ty [ 15, 16]

Inc ine rab i l i t yH aza rd (K ca l / g )

T o lu ene d i i socya na t e 6 5 .92

B enzo (a ) py rene 6 9 .25B i s ( ch lo ram e thy l ) e t he r 5 1 .97P ara th io n 5 3 .6 1Meth y l P a ra th io n .< 4 .0F o r m a l d e h y d e 5 4 4 7Acro le in 5 6 .95Acry loni t r i le 5 7 ,93H e x a c h l o r o c y c l o p e n t a d i e n e z 1 .1 2

P e n t a c h l o r o p h e n o l 4 2 ,0 9D im e thy l su l f a t e 4 2 .861 , 3 -D ich lo rop ropene 4 3 .44E nd r in 4 3 .46H yd raz ine 4 4 .44

E p i c h l o r o h y d r i n 4 4 ,5 7N - n i t r o s o d i m e t h y l a m i n e a 5 .1 4

T r i ch lo roe then e 3 1 .74H e x a e h l o r o b e n z e n e 3 1 .7 9C h lo rda ne 3 2 .71M a l e i c a n h y d r i d e 3 3 .4 0

2 , 4 -D in i t rop heno l 3 3 .52V iny l ch lo r ide 3 4 .454 - N i t r o p h e n o t 3 4 .9 52 , 4 -D in i t ro to lu ene 3 4 .6 8

N o t e : H a z a r d - - 0 - - - l e a s t h a z a r d , 6 - - - g r e a t e s t h a z a r d ,

natural gas or No. 6 o i l in the plant powerhouse . This waste i s l i s ted in RCRA 40CFR

26/ .32 as a hazardous mater ia l . In these uni ts the average res idence t ime i s ca lculated to

be 4 .60 s a t a furnace ex i t temp erature of 1700°F (927°C). T he phe nol leve l m easured in

the e x ha us t is be l o w the de te c ta bl e l imi t ( < 1 ppm v ol .) . The r e s idue suppl i e d 5 0 % o f the

fuel input during test ing . The economic benefi t der ived from this one operation i s

$500 0000 per year reduction in fuel costs [7 ] .

Du e to the pr o jec te d i nc r ea se in c o s t s o f c o nv e nt i o na l fuels to the y e a r 2 0 0 0 a nd

beyond, o ther means are necessary to provide for the capture of the energy potentia l in

J ~ ' ~ ~ " /• 0 ~ •

0 I 2 3 4 ,5 6 7 O 9 10 I I Iz

W o s t e f lo w , t b / h r x I 0 0

F ig . I . M o d e l " 7 - V " L i q u i - D a t u r r a n g e o f o p e r a ti o n .

Page 5: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 5/11

Economic benefit to hazardous waste incineration systems 149

4 8

4 4

4 0

36

32

28

2 4

2 0

16

12

i - / i

o l I I I Imeo ~ s ~ J o ~ 99 s aooo

Y e o r

F i g . 2. E n e r g y p r i c e f o re c a s t s i n U . S . A . ( $ / m m B T U ) .

hazardous was t es t o r ep lace th i s expens ive energy ( see F ig . 2 ) . No te the expec ted cos t s o f

indust r ia l d is t i l la te fuel , natural gas, residual fuel and elect r ic i ty . These are typical of

u t il i ti e s r equ i r ed fo r haza rdou s w as t e i nc ine ra tion . A l l a r e i nc r eas ing a t a m in im um of

7 % p e r y e a r to a m a x i m u m o f 1 0 . 5 % p e r y ea r . C o a l , w h i c h i s e x p e c t e d t o c o s t

$12 .34 /M M Btu $ 13 /G J by the year 2000 , wil l st il l be the l eas t expens ive b u t mo s t

d i f fi cu lt t o hand le . Th i s is due to t r anspo r t a t ion , mec han ica l hand l ing o f fue l and ash ,

and add i t i ona l cos t s c r ea t ed fo r t he su l fu r c l eanup p rob lem. Th i s wi l l be a cons ide ra t ion

pr imar i ly fo r use wi th f lu id bed inc ine ra to r s fo r hazardous s ludge , so l ids and l i qu ids .

T h e a d d i t i o n o f w a s t e h e a t r e c o v e r y t o h a z a r d o u s w a s t e i n c i n e r a t o rs s h o u l d b e

care fu l ly r ev iewed . Of p r ime im por t an ce a r e t he fo l lowing was t e l i qu id o r s ludge

speci f icat ions.

O f p r i m e i m p o r t a n c e t o a n y h a z a r d o u s w a s t e d i s p o s a l p r o b l e m i s th e p r o p e r d e s t r u c -

t io n o f t h e P O H C i n t h e w a s te . I n m a n y c a s es , th e w a s t e f l o w m a y n o t b e c o 0 t r o l la b l e ,

e .g . ven t gases f rom a v iny l ch lo r ide opera t ion . The inc ine ra to r des ign and i t s con t ro l

s y s t e m m u s t b e c a p a b l e o f t h e p r o p e r d e s t r u c t io n ( 99 .9 9% ) o f th e h a l o g e n a t e d o r g a n i c s i n

the was t e . Of sec ond ary imp or t anc e i s t he hea t r ecovery . I f t he f low i s fa i r ly con s t an t and

t h e h e a t i n g v a l u e i s a l s o s t e a d y , h e a t r e c o v e r y b e c o m e s a n i m p o r t a n t a d d i t i o n t o t h e

s y s te m . A n o p e r a t i n g p l a n t s h o u l d n o t b e d e p e n d e n t u p o n t h e h e a t r e c o v e r y f r o m a n

i n c i n e ra t i o n s y s t e m a s i ts p ri m e s o u r c e o f h e a t. W e h a v e f o u n d f r o m e x p e r i e n c e t h a t

s y s t e m s w i th v a r y i n g f lo w s o f w a s t e a n d v a r y i n g h e a t c o n t e n t o f th e w a s t e r e q u i r e a m u c hm o r e e l a b o r a t e c o n t r o l s y s t e m a n d w i t h t h e ty p e o f p e r s o n n e l p r o v i d e d f o r t h e o p e r a t i o n

o f th e i n c i n e ra t i o n p l a n t , d o w n t i m e i s c a u s e d d u e t o f a il u re s in i n s t r u m e n t a t i o n m o r e s o

t h a n i n t h e e q u i p m e n t .

WASTE HEAT RECOVERY

H e a t r e c o v e r y s y s te m s f r o m o r g a n i c f u m e s a n d l i q u id s t h a t a r e f r e e o f h al o g e ns , s u l fu r

c o m p o u n d s , m e t a l l i c c o m p o u n d s a n d i n o r g a n i c a s h a r e v e r y s t r a i g h t f o r w a r d . T h e w a s t e

fue l can be com par ed to t he s t and ard foss il f ue ls (d i s ti l la t e o i l, r e s idua l o i l and na tu ra l

g as ). T h e p r o d u c t s o f c o m b u s t i o n a r e b a s i c al ly c a r b o n d i o x id e , w a t e r v a p o r , n i t r o g e n a n d

o x y g e n . T h e b u r n e r m u s t b e c a p a b l e o f b u r n i n g t h is w a s t e a n d / o r a u x i l ia r y f ue l a t t h e

Page 6: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 6/11

150 JOSEPH J. SANTOLERI

Table 3 . Waste l iquid fuels da t a

*Chemi ca l compos i t i onHea t o f combus t i onViscosity

Corros iv i tyChemi ca l reactions

Pol ymer i za t i on*Sol ids content

Ash reac t ion -re frac tor ie s

*Slag format ion

*Combust ion gas analys~s* N i t r o g e n c o m p o s i t io n I N O x l

These are a l l crit ical i tems s incethey wil l affect the combus t i oncapabil i ty of the waste in the incin-

erator, as wel l as the problems as-socia ted with downstream heat re -

covery equ ipment .

* I t ems w hi ch have t o be care-

fully analyzed for the properdesign of the waste heat recovery

system.

proper fuel /a ir rat io , contro ls must be provided to mainta in the necessary inc inerator

temperature to adeq uate ly ox idize the waste [7 , 8] . W ith heating va lues as low as

4500 Btu/ lb (10 ,467 J /g) for the l iquid fuels and 100 Btu/ ft 3 (3 .5 MJ /m3) for the gaseou s

fuels , combustors are avai lable wi th operation at low excess a ir leve ls to provide the

99 .99% DRE without need for auxi l iary fuels . I t i s recommended that auxi l iary fuels be

ma de a v a i la b l e fo r the wa r m up o f the sy s te m be for e i n tr o duc t i o n o f the wa s te .

The more di ff icul t mater ia ls to ox idize , such as hatogenated hydrocarbons, s ludges and

aqueous organics conta ining sa l ts , a l so present cr i t ica l des ign problems when heat recov-

ery i s des ired [9] . Ini tia lly , heat recovery from halogenated hyd rocarb ons w as c on-

s idered impractica l due to concerns about the meta l lurgy of the downstream heat

transfer surface . Experience became avai lable from operation of sul furic ac id plants wi th

hi g h te mpe r a tur e g a s c o o l e r s . Muni c i pa l i nc i ne r a t i o n sy s te ms ha v e o pe r a te d wi th c o n-

t inual increase of plast ic mater ia ls in the waste over the past 15-20 yr . Of pr ime concern

Tabl e 4 . Exampl e o f v iny l ch lor ide monomer was te disposal sys tem

Spec i f i ca t ions

Wastes- -A. 3400 lb/h (1542 kg/h) waste tars at 50 psig. M a x . r a t e - - I ! 250 lb/h (5103 kg/h)B. 2t 545 lb/h (9773 kg/h ) ven t gases at 3 psig.

T h e r m a l ox id izer

R a t i n g - - 7 0 M M B t u / h ( 2 0 . 5 M W )

C o m b u s t i o n a i r - - 125 00 S C F M (354 mZ/mi n) a t 75 in . W.C . - - 300 H p (224 kW)At om i z i ng s t eam- - 3 400 i b / h ( i 542 kg / h ) a t 175 ps ig (1206 .5 kN / m 2)C o o l i n g w a t e r - - O t o 20 gpm (0-1.52 l / s ) a t 40 ps ig (275.8 kN /m 2)Natura l gas - - -0 to 25000 S C F H 10-707.5 m 2/ mi n a t 4 ps ig (27 .6 kN / m 2) (w ar mup)

Waste heat bo i l er ( f i re tube wi th separate s team drum)

In le t 8as - -22 00° F (1204°C)-10.4~e HCI, 13.6% H OS t e am g e n e r a t i o n - - 5 2 4 7 0 Ib/h (23,800 kg/h)at t 80 ps ig (1241 k N/m 2)B l ow dow n- - 5830 Ib / h (26 44 kg / h ) a t 21 5° F (102° C)

Hydrogen ch lor ide recovery tower

W a t e r f low--3 40 gp m (25.8 l /s ) at 4 0 p s i g - - 6 0 ° FA c i d g e n e r a t i o n - - 1 0 O g p m (7.6 I/s)-15~o HC I

Scrubbing tower

S c r u b b i n g l i q u o r - - 1 6 5 0 l b /h ( 7 48 k g / h ) - t 0 % N a O HDischarge- - -1650 lb/h (748 kg/h)-1 4% sal t sRecyc le pump- - - 10 H p (7 .5 kW)

Page 7: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 7/11

Econ om ic benefi t to hazard ous waste incine rat ion systems

Table 5 . Op erat ing and recovery cos t s

151

Ut i l i ty Cost $ /h

Steam --S5/100 0 lb . 17.00W ate r (pure)---$0.54/lO00 gal. 3.57W ate r (coolingF-$O.066/lO00 gal. 1.00

Power--$O.O4/kW 9.25Caustic--$O.O6Ab. 9.90

$40.72/h

Equ i pment and i ns t a l l a t i on - - S 2500000

O p e r a ti n g c o s t s - -Uti l i ty $40.72Labor 15.63Deprecia t ion 40.18Interest , ma intena nce , etc. 65.62

Total opera t ing cos t per h $162.15/hRecovery credi t s

Steam gen erat io n--52 470 lb/h (23800 kg/h) a t $5/1000 lb ($11/1000 kg) = $262,35Hyd rogen chlor ide reco very - -100 gpm (7.6 I / s ) - -15% H CI a t $0.208/gal . = $187,50

Tota l recovery credi t s $449.85/h

Hot spoto~- Distortion due to

/ / \ \Poor m ixingof Foilure of ref roctory and ~ n heot t ronsferhigh t e m p. go s e s t ube j o in t s o n t ube s he e t

Fig. 3. Typica l f ire-tube fai lure.

30OO(1649)

2500(1371)

(10931is(x)

I ( Frame V- , 30 f t /s

S ~ : o n ~ r yinjector

(816) ?IOOO( 5 3 8 )

5OO( 2 6 0 )

0 "-0.2 S L

BurnerWas~

Temp. 1800°F(982°C)

0 .8 SeC ~ . ~3 O f t - ,

( 9 1 4 m )

t ' - I sec

Secondory3000 in jector(1649)

250O(1371)2OO0(1093)

1 5 0 0

(816)

I000( 5 3 8 }

50O( 2 6 0 )

V=15 f t /s

~ Temp.-1800 "F( 9 8 2 ° C )

I - , - -WS ~ -~ 2 S I - - -L = 15 ft(4.57m)

Fig. 4 . Effect of turbulence in incinerat ion chambers .

H.R.S. 3, 2-- D

Page 8: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 8/11

152 JOSEPHJ. SANTOLER

b / / l / . -

/ " Etec t roc l ' ~n ica t/ c o r r o s i o n ,"

/ , / [ , /

, ' 1 " , ' - , ' - 4 ,\ . \ " ' . . ] " , \ ' " . . I ,

• .

\ \ ' t , " . , \ " . i . "

• \ \

. , \ \

\ Xx~X X ~11

< q , b . " , . X [ . ." ? " N I /

r - . . . ~ . 4 8 C

4 0 0C 0 I(X3 2 0 0

"F 0 212 3 ; M e t a t t e m p , °C,OF

S t e a m p r e s .P S I A 7 0 1 3 0 4 0 0 I 0 0 0at saturation 20 0 6 00 1600 psio

K p s 0 . 4 8 1 .3 6 4 .1 3 7 1 1 . 4 4 5

Fig. 5. Corrosion rate vs metal temp.

5 0 O 6 O O 8 O 0I I 12 147'2

" / , / " 1 , ' / / " " - ". "• " D e c o m l x ~ i ti o n o f / / / / ./ Iro~ ¢ h t o r i d e a n d // o t k o l i - i F o n - - s u [ f o t e / / / "

/ /

/ / / 1 / / / , / . / , " ,, , , , , . , ' / / / /

/ / / / / . . . . .

, : - , . y / / / /

Z/.. 5 " 5~ - l ~ r ~ s e corrosion

. . . . / . ! / J , ' / .

700

1292

ini t ia l ly were dewpoint corrosion problems. There has been a considerable weal th of

knowledge and experience from the power and uti l i ty industr ies from sul fur-bearing fuels

(coal and res idual fue l )[10 , I l l .

In a thermal ox idizer handl ing chlor inated hydrocarbons, i t i s necessary to operate at

temperatures of 1000°C (1832°F) minimum. Experience has indicated that operation at

1315°-1430°C (2400°-2600°F) permitted the 99 .999% destruction with the least res idencetime El2] . This presents problem s in the high temperature por tion of the heat recovery

unit . These problems have been overcome by proper design of the inc inerator to provide

a uni form temperature profi le to the tubes and tube sheet• Laminar f lame or long f lame

burners have presented problems in operation of these uni ts (Fig . 3 ) . Abi l i ty to operate

with a high intensi ty co mb ustor at low excess a ir wi th m inim um flame p roject ion into

the inc ineration chamber has provided long maintenance- free operatmn in these appl i -

cat ions (Fig . 4) . I t i s important that the chlor ine be converted to the ac id gas (HCI) and

minimize the free chlorine gas I13] (Fig. 5)•

F ' o rm o t d e h y d e o f f - g a s

O x y - v~ f u m e

V C M waste fume

LiQuidCht.H.C.

IV lo no- ~ fume t~ "

~ . .j C c r.b ° s a ' c -~ ' ? ' ° " ' ! ~

a i r

% 0

W Q s t e h e o t Pr~n~y~ r s c n J O ~ e r

NaOH

Steam Feed water Sol. [

(88"C)

ILF u m e $ ¢ ~ n d o t y

Fig. 6. Typical incinerator-heat recovery-scrubber system for vinyl-chloride monomer processw a s t e .

Page 9: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 9/11

T

e6

T

c

h

d

w

e

n

n

o

w

hh

y

m 8 

D

eo

o

o

In

n

o

h

e

temp

u

Wa

e

y

Wa

eh

y

ty fow

p

A

a

e

O 3

1 1 1 1

5

MM Buha

2

F

(1

1MW a

1

C

7

MM Buha

2

F

(2

5MW a

1

C

4

MM Buha

1

F

(1

1MW a

9

C

2

MM Buha

1

F

(7MW a

7

C

Lq

d

a

ammo

a

v

a

ad

Lq

d

a

C

HC

V

M v

A

w

e

P

h

ca

d

v

Maeca

d

v

Na

h

n

v

Wae

u

b

e

3

5

bhSem 

56

k

h

2

p

g

1

kN/m z

F

u

b

e

5

bhSem 2

k

h

1

p

g

1

kN/m 2

F

u

b

e

3

bhSem 

36

k

h

(2

U-T

o

5

C

M T

a

1

m3min

Ip

g

68

kN/m 2

2

F

ne

1

Fo

e

(9

C

ne

5

C

o

e

H

a

b

C

c

s

u

=o 

~ o Ut

Page 10: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 10/11

154 JOSEPH J. SANTOLERI

T h e d e s ig n o f t h e b o i le r is a l s o v e r y i m p o r t a n t t o p r o v i d e m e t a l t e m p e r a t u r e s a t o r

n e a r t h e s t e a m t e m p e r a t u r e . T e s t s h a v e b e e n c o n d u c t e d o n t h e c o r r o s i v e p r o b l e m s r e s u l t -

i n g f r o m f l u e g a s e s c o n t a i n i n g a c i d g a s e s a n d s o l id s [ 1 4 ] . O p e r a t i n g u n i ts t h a t h a v e

u t il iz e d t he c o m b i n e d t e c h n o lo g i e s o f g o o d c o m b u s t i o n t e c h n i q u e s in t h e i n c in e r a t o r a n d

h e a t t r a n s f e r d e s i g n in t h e b o i l e r h a v e p r o v e n t h a t h e a t r e c o v e r y f r o m t h e s e h a z a r d o u s

w a s t e d i sposa l sys t e ms i s v i a b l e ( F i g . 6 ~ .

F r o m t h e a b o v e a n a ly s i s, fo r t h e in s t a l l a ti o n a n d o p e r a t i o n o f a h a z a r d o u s w a s t e

d i s p o s a l f a c il it y t o r e m o v e w a s t e t a r s a n d v e n t g a s es f r o m a v i n y l c h l o r i d e m o n o m e r

p l a n t , o n e n o t e s t h a t t h e t o t a l in s t a l l a t io n b e c o m e s a p a y i n g p r o p o s i t i o n 5 28 7.7 (3 h

w o r t h o r $ 2 30 1 6 0 0 / y r p a y b a c k f o r a t o t a l i n s t al l e d c o s t o f $ 2 5 0 0 0 0 0 . H a d t h is p l a n t o n l y

u t i l i z e d t h e i n c i n e r a t i o n a n d s c r u b b e r f o r t h e d i s p o s a l , i t w o u l d h a v e s o l v e d t h e d i s p o s a l

p r o b l e m s o f t h e p l a n t b u t a ls o r e q u i r e d a n a n n u a l o p e r a t i n g e x p e n s e o f S l 2 9 7 2 0 0 . T h i s

w o u l d , o f c o u r s e , h a v e t o b e c o v e r e d b y i n c r e a s i n g t h e p r i c e o f t h e p r o d u c t s p r o d u c e d .

w h i c h i n t o d a y ' s m a r k e t p l a c e b e c o m e s a s e r io u s p r o b l e m o f b e in g a b le t o c o m p e t e .

T h e h e a t r e c o v e r y o p t i o n w i ll e n a b l e t h e p l a n t t o r e d u c e t h e f u e l n e c e s s a r y t o g e n e r a t e

t h e 5 2 4 7 0 l b / h ( 2 3 ,8 0 0 k g / h ) o f s t e a m . A p a c k a g e d b o i l e r o p e r a t i n g a t a g r o s s e f f i ci e n c y o f

8 0 % w o u l d h a v e r e q u i r e d a p p r o x i m a t e l y 6 5 M M B t u / h ( 1 9 M W ) o f fu el. U s i n g 1 98 5

n a t u r a l g a s c o s t s o f $ 6 .7 4 M M B t u ( $ 7 . 1 / G J ) (F i g . 2 ), a s a v i n g s o f $ 3 .5 M M f u e l c os ts ,~ y r is

p r o v i d e d i n 1 98 5. T h i s o p t i o n d o e s n o t a d d t o t h e o p e r a t i n g e x p e n s e s o f th e p l a n t f a ci li ty ,

e n a b l i n g t h e p r o d u c t t o b e p r o d u c e d a t t h e s a m e o r i n c r e a s e d p r o f i t l e v e l .

T a b l e 6 li s ts t y p i c a l f a c i li t ie s w h e r e h e a t r e c o v e r y h a s b e e n i n s t a l l e d i n h a z a r d o u s w a s t e

d i s p o s a l .

O n e o f t h e m o s t i m p o r t a n t q u e s t i o n s t o b e a s k e d i n a n a l y z i n g t h e n e e d f o r h e at

r e c o v e r y i n a p r o c e s s p l a n t i s th e c y c l e t im e o f t h e i n c i n e r a t o r a n d t h a t o f th e h e a t

r e c o v e r y o p t i o n . T h i s b e c o m e s a s e ri o u s p r o b l e m f o r t h e s m a ll p l a n t o p e r a t o r w h o m a y

n o t h a v e u s e f o r t h e w a s t e h e a t b e i n g g e n e r a t e d . T h i s i s a l s o t r u e i n m a n .~ o f t h e m a j o r

c o n t r a c t d i s p o s a l f a ci li ti es w h e r e t h e n e e d f o r s t e a m o r o t h e r m e t h o d s o f h e a t r e c o v e r y i s

n o t ju s t if i ed . T o a d d t h e h e a t r e c o v e r y o n l y a d d s p r o b l e m s t o t h e o p e r a t i o n o f t h es e

fac i l i t i e s .

W h a t d o y o u d o w i th t h is e xc e ss s t e a m ? S o m e p l a n ts h a v e a d d e d t h e e q u l p m e n t o n l y

t o fi n d t h a t th e y h a v e c r e a t e d n e w p r o b l e m s a n u i s a n c e n o i s e p r o b l e m w i t h th e s t ea m

d i s c h a r g e t o a t m o s p h e r e a n d t h e c o s t o f w a t e r t o o p e r a t e t h e s t e a m g e n e r a t o r . I n th e s e

c a s e s i t is b es t t o c o n s i d e r i n s t al l in g o n l y t h e i n c i n e r a t i o n e q u i p m e n t i n i ti a ll y a n d p r o v i d -

i n g t h e o p t i o n t o a d d h e a t r e c o v e r y w h e n a n d i f i t c a n b e j u s ti f ie d .

SUMMARY

W i t h R C R A S e c. 3 0 0 4 in v o l v i n g i n c i n e r a t i o n s y s t e m s b e c o m i n g e f f e ct iv e i n J u l y 1 98 2,

i t i s c r i ti c a l t h a t a ll g e n e r a t o r s o f h a z a r d o u s w a s t e s l o o k t o t h e m o s t e f f e c ti v e m e t h o d s t oc o m p l y w i t h t h e s e re q u i r e m e n t s . A s n o t e d a b o v e , e n e r g y c o s t s w i ll c o n t i n u e t o i n c re a s e.

T h e r e f o r e , h e a t r e c o v e r y m u s t b e c o m e a c o n s i d e r a t i o n i n a ll n e w i n s t a l la t i o n s , T h e

p r o b l e m s a s s o c i a te d w i t h h e a t r e c o v e r y m u s t a l s o b e r e v i e w e d i n d e t a i l b e f o r e a f in a l

d e c i s i o n is m a d e [ 9 ] . I t i s i m p o r t a n t t o r e v i ew t h o s e i n s t a l l a t i o n s w h e r e o p e r a t i n g e x p e r i /

e n c e h a s b ee n o b t a in e d . I h a v e a t t e m p t e d t o p o i n t o u t t h o s e a r e a s w h ic h m u s t b e

r e v i e w e d a n d a r e c ri ti c al . M o r e d e t a i l e d i n f o r m a t i o n is a v a i l a b le i n t h e r e f e r e n c e s c i t e d .

T h e o v e r a l l e c o n o m i c s w ill b e c o m e t h e f in a l b o t t o m l in e t o t h e d e c i s io n m a k e r s. T h e r e -

f o r e i t i s i m p o r t a n t t h a t a l l a v e n u e s b e r e v i e w e d t o e a s e t h i s f i n a l d e c i s i o n .

R E F E R E N C E S

1 . I n s id e EPA , 18 Ju ne (1982).2. Booz , Al ien and Hamilton,C o m p a r is o n o f H a z a r d o u s W a s t e M a n a g e m e n t P r i c e s f o r A l l F i rm s C a l c u la t e d t o

1 9 80 a n d f o r N i n e Ma j o r F i r m s in 1 9 8 1.3. Resource Conserv ation and Recov eryAct, Standards for 0wners/Op erators of W aste Facilities: Incinera-

tors, 40 CFR 264, RCRA 3004/42, December (1978).4. Resource Conserv ation and Recov eryAct, Standards for Ow ners/Operators of W aste Facilities: Incinera-

tors, 40 CFR 264, RCRA 3004, Jan. 25, 1981, Rev. July 21 (1982).

Page 11: 1-s2.0-0198759383900061-main

7/30/2019 1-s2.0-0198759383900061-main

http://slidepdf.com/reader/full/1-s20-0198759383900061-main 11/11

Econ om ic benefi t to hazardou s waste incinerat ion systems 155

5. I. Frankel , Prof i le of the Haza rdous W aste Incinerator M anufac tur ing Indust ry, AIC hE, Cleveland Mtg. ,Septemb er 1 (1982).

6 . George L . Huffman et al., Review of the Conc ept of Disposing of Haza rdou s W aste in Indust r ia l Boi lers.U.S . EPA 8th Annual Research Symposium on Treatment of Hazardous Waste , March 9, (1982) .

7 . J . W. Torranc e. Comb ust ion of Haz ardou s Wa ste in Indust r ia l Boilers , Haz ardou s W aste Com bust io nWorkshop, U.S . EPA, Cincinnat i , Apr i l (1981) .

8 . F . Hassel ri is , Design and Op erat ion o f a Versat il e Pol lu t ion Co nt rol /L iquid W aste Therm al Dest ruc t ionSystem wi th Ma xim um E nergy Recovery, AS ME In cinerator Conference, Ma y (1982).

9 . J . E . Wa rd and P. Ting, Waste incinerat ion an d h eat recovery, Enrironmenta l Progress , 1, (1), February11982).

10. H. H. Krause , D. A. Vaugh an an d P. D. Mi l ler , Corro s ion a nd deposi t s f rom com bust ion of solid waste,Trans. Am. Soe. mech. Engrs, July (1974).

11. J. E . Radw ay and L . M. Exley, Review of Cause an d Con t rol o f Cold En d Corro s ion and Acidic S tackEmiss ions in Oi l - f i red Boi lers , ASME '75 Winter Annual Mtg. /CD-8.

12. J . Cor ini , C. Day and E. Tempowski , Tr ia l Burn Data- -draf t copy, OSW, U.S. EPA. Sept . 2 (1980) .13. J . J . Santoler i , Op t imu m Energy and B y-product Re covery in Chlor inated Hy droc arbo n Disposal Systems,

AS ME Incinerator Conference, Ma y (1982) .14. W. Hung, Resul t s of a F i re tube Test Boi ler in F lue Gas w i th Hy drogen Chlo r ide and Fly Ash, ASM E

Wi nt e r Annua l Conf e r ence 1975- - WA/ HT- 39 .15. Em ' i r o n m e n t a l R e p o r t e r , Current Developments 6/25/82, p. 315 (1982).16. I n s i d e EPA, p. 7, 25 June (1982).