53
1 Molecular weight distribution analysis 1. Molecular weight distribution analysis SEC MALLs and AUC 2. Conformation and flexibility – Viscometry, AUC Light scattering AUC, Light scattering

1. Molecular weight distribution analysisMolecular weight

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1. Molecular weight distribution analysisMolecular weight

1 Molecular weight distribution analysis –1. Molecular weight distribution analysis SEC MALLs and AUC

2. Conformation and flexibility – Viscometry, AUC Light scatteringAUC, Light scattering

Page 2: 1. Molecular weight distribution analysisMolecular weight

L t 4 A l ti l Ult t if ti ILecture 4. Analytical Ultracentrifugation I: Molecular weight and conformation

Steve Harding

Page 3: 1. Molecular weight distribution analysisMolecular weight
Page 4: 1. Molecular weight distribution analysisMolecular weight
Page 5: 1. Molecular weight distribution analysisMolecular weight

Molecular weight: analytical ultracentrifugation

Page 6: 1. Molecular weight distribution analysisMolecular weight
Page 7: 1. Molecular weight distribution analysisMolecular weight
Page 8: 1. Molecular weight distribution analysisMolecular weight
Page 9: 1. Molecular weight distribution analysisMolecular weight

1. Molecular weight and molecular weight di t ib ti l idistribution analysis

2 C f ti d fl ibilit l i2. Conformation and flexibility analysis- general (rods, spheres, coils etc)- polymer flexibility- polymer flexibility- protein conformation: ellipsoids and beadmodels

Page 10: 1. Molecular weight distribution analysisMolecular weight

Analytical ultracentrifugaton:

Sedimentation Velocity

Sedimentation EquilibriumVelocity Equilibrium

Centrifugal force

Air SolventTop view, sector ofcentrifuge cell

Centrifugal force Diffusion

Solution

conc c STEADY STATEconc, c

Rate of movement ofboundary sed. coeff

conc, c STEADY STATEPATTERN

FUNCTION ONLY O O Gdi t

distance, r

OF MOL. WEIGHT PARAMETERS

distance, r

Page 11: 1. Molecular weight distribution analysisMolecular weight
Page 12: 1. Molecular weight distribution analysisMolecular weight
Page 13: 1. Molecular weight distribution analysisMolecular weight
Page 14: 1. Molecular weight distribution analysisMolecular weight
Page 15: 1. Molecular weight distribution analysisMolecular weight
Page 16: 1. Molecular weight distribution analysisMolecular weight
Page 17: 1. Molecular weight distribution analysisMolecular weight
Page 18: 1. Molecular weight distribution analysisMolecular weight

Extraction of Mw,app from sedimentation equilibrium and “MSTAR” analysis

Chitosan G213

Mw,app

cell bottom

Page 19: 1. Molecular weight distribution analysisMolecular weight

Extraction of Mw,app from sedimentation equilibrium and “MSTAR” analysis

xanthan

Mw= (5.9+1.1)x106g/mol

Page 20: 1. Molecular weight distribution analysisMolecular weight

SEC - sedimentation equilibriumSEC sedimentation equilibrium

mol. wt distribution: alginateg

Ball A, Harding SE & Mitchell J, Int. J. Biol. Macromol., 1988

Page 21: 1. Molecular weight distribution analysisMolecular weight

Sedimentation Velocity

Sedimentation EquilibriumVelocity Equilibrium

Centrifugal force

Air SolventTop view, sector ofcentrifuge cell

Centrifugal force Diffusion

Solution

conc c STEADY STATEconc, c

Rate of movement ofboundary sed. coeff

conc, c STEADY STATEPATTERN

FUNCTION ONLY O O Gdi t

distance, r

OF MOL. WEIGHT PARAMETERS

distance, r

Page 22: 1. Molecular weight distribution analysisMolecular weight
Page 23: 1. Molecular weight distribution analysisMolecular weight
Page 24: 1. Molecular weight distribution analysisMolecular weight
Page 25: 1. Molecular weight distribution analysisMolecular weight
Page 26: 1. Molecular weight distribution analysisMolecular weight

Guar, 0.75 mg/ml

Sedimentation “g(s*) plot”:

f l i f th hfrom analysis of the change with time of the whole concentration profile

Page 27: 1. Molecular weight distribution analysisMolecular weight

Sedimentation velocity g*(s) plot: starch

Tester R, Patel T, Harding, S. Carbohydrate Research, 2006

Page 28: 1. Molecular weight distribution analysisMolecular weight

Multi-Gaussian fit estimates proportions of each p pspecies too:

Page 29: 1. Molecular weight distribution analysisMolecular weight

Converting a sedimentation coefficient distribution to a molecular weight distribution g

s20 w ~ Mb

Harding, S. Adv. Carb. Chem. Biochem, 1989

20,w

Page 30: 1. Molecular weight distribution analysisMolecular weight

Converting a sedimentation coefficient distribution to a molecular weight distribution g

Molecular weight distribution – no column or membrane needed

s20 w ~ Mb (b=0.5)

Harding, S. Adv. Carb. Chem. Biochem, 1989

20,w ( )

Page 31: 1. Molecular weight distribution analysisMolecular weight

Converting a sedimentation coefficient distribution to a molecular weight distribution g

Glycoconjugate vaccine – too large for SEC-MALLs analysisGlycoconjugate vaccine too large for SEC MALLs analysis

s20,w ~ Mb

Harding, S., Abdelhameed, A., Morris, G. (2010)

Page 32: 1. Molecular weight distribution analysisMolecular weight

1. Molecular weight and molecular weight di t ib ti l idistribution analysis

2 C f ti d fl ibilit l i2. Conformation and flexibility analysis- general (rods, spheres, coils etc)- polymer flexibility- polymer flexibility- protein conformation: ellipsoids and beadmodels

Page 33: 1. Molecular weight distribution analysisMolecular weight

8

Citrus pectin

7

8 2.49 mg/ml s = 1.21 S 2.04 mg/ml s = 1.36 S 1.40 mg/ml s = 1.49 S 1.13 mg/ml s = 1.56 S

5

6

1 ) 0.79 mg/ml s = 1.61 S 0.23 mg/ml s = 1.99 S

4

5

fring

es s

-

2

3

ls-g

(s) (

f

1

2

0 1 2 3 40

Sedimentation coefficient (Svedberg)

Page 34: 1. Molecular weight distribution analysisMolecular weight

12

so20,w and ks extraction

8.0x1012

8.5x1012

s020,b = 2.04 (0.07) S

ks = 270 (25) mlg-1

7.0x1012

7.5x1012

6.5x1012

7.0x10

Sved

berg

-1)

slope=ks/so20,wse

c-1

5.5x1012

6.0x1012

1/s (

S1/

s 20,

w

4 5x1012

5.0x1012

1/so20,w

0.0 5.0x10-4 1.0x10-3 1.5x10-3 2.0x10-3 2.5x10-34.5x10

Concentration (gml-1)Concentration g/mlg

Page 35: 1. Molecular weight distribution analysisMolecular weight

General conformation analysis: the Haug Triangle

Page 36: 1. Molecular weight distribution analysisMolecular weight

Power law, “Scaling” or “MHKS” relations:

Sphere Rod Coil[η] ~ M0 [η] ~ M1.8 [η] ~ M0.5-0.8[η] [η] [η]

so20 w ~ M0.67 so

20 w ~ M0.15 so20 w~ M0.4-0.5

20,w 20,w 20,w

Rg ~ M0.33 Rg ~ M1.0 Rg ~ M0.5-0.6g g g

Page 37: 1. Molecular weight distribution analysisMolecular weight

Mark-Houwink-Kuhn-Sakurada Power law plot

Galactomannans a=0.74+0.01

Page 38: 1. Molecular weight distribution analysisMolecular weight

Change in Conformation

Rollings, 1992

Page 39: 1. Molecular weight distribution analysisMolecular weight

Conformation Zoning:

Zone A: Extra-rigid rod: schizophyllan

Zone B: Rigid Rod: xanthanxanthan

Zone C: Semi-flexible coil:Zone C: Semi flexible coil: pectin

Zone D: Random coil: dextran, pullulan

Zone E: Highly branched: amylopectin, glycogenamylopectin, glycogen

Page 40: 1. Molecular weight distribution analysisMolecular weight

Conformation Zoning:

3.0

3.5

3.0

3.5

2.5A

B2.5

A

B

1.5

2.0

011k sM

L) C1.5

2.0

011k sM

L) C

1.0log

(10-

D1.0log

(10-

D

0.0

0.5

E0.0

0.5

E

0.5 1.0 1.5 2.0 2.5-0.5

0.5 1.0 1.5 2.0 2.5-0.5

Pavlov, Rowe & Harding, Trends inAnalytical Chemistry,1997

log (1012[s]/M L)log (1012[s]/M L)

Page 41: 1. Molecular weight distribution analysisMolecular weight

3.5

3.0A

Bovine glycogen ●

Pectins ■

Pullulans ▲

2 0

2.5A

B

1.5

2.0

0-11 k sM

L)

C

0 5

1.0log

(10

D

0.0

0.5

E

0.5 1.0 1.5 2.0 2.5-0.5

log (1012[s]/ML)

Page 42: 1. Molecular weight distribution analysisMolecular weight

Worm-like Chain

Flexibility parameter: Persistence length LFlexibility parameter: Persistence length Lp

Contour Length

Kuhn-statistical length λ-1 = 2Lp

Page 43: 1. Molecular weight distribution analysisMolecular weight

Worm-like Chain

Flexibility parameter: Persistence length LFlexibility parameter: Persistence length Lp

Theoretical limits: Random coil L = 0Theoretical limits: Random coil Lp 0Rigid rod Lp = infinity

Practical limits: Random coil Lp ~ 1-2nmRigid rod L 200nmRigid rod Lp ~ 200nm

Page 44: 1. Molecular weight distribution analysisMolecular weight

“Bushin-Bohdanecky” relation

[ ]2/1

2/13/1

03/1

0

3/12 2w

pL

w MML

BMAM

−−⎟⎟⎠

⎞⎜⎜⎝

⎛Φ+Φ=⎟⎟

⎞⎜⎜⎝

⎛η[ ] LM ⎟

⎠⎜⎝

⎟⎠

⎜⎝ η

“Yamakawa-Fujii” relation

( )⎥⎥⎤

⎢⎢⎡

+⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎟⎠

⎞⎜⎜⎝

⎛×

−=

....22

843.13

12/1

32

2/1

00 wwL

LMM

AALM

MNvM

sπη

ρ⎥⎦

⎢⎣

⎟⎠

⎜⎝

⎟⎠

⎜⎝ 223 0 pLpLA LMLMNπη

Page 45: 1. Molecular weight distribution analysisMolecular weight

Global “Hydfit” plot: xyloglucan

800

700

800

600

700

500

600

. nm

-1)

400

500

(g. m

ol-1

.

300

400

ML

200

300

2 4 6 8 10 12 14 16 18 20200

Lp (nm)Patel et al, Carbohydrate Polymers, 2007

Page 46: 1. Molecular weight distribution analysisMolecular weight

C b h d P l L ( )Flexibilities of

b h d t l Carbohydrate Polymer Lp (nm)Pullulan 1.2-1.9

carbohydrate polymers

Amylose 2.8

Pectin (69% esterified) 12 15Pectin (69% esterified) 12-15

Pectin (0% esterified) 34

DNA 45

Schizophyllan 115-200p y

Scleroglucan 180+30

Xanthan 210

Page 47: 1. Molecular weight distribution analysisMolecular weight

Protein conformation: ellipsoids and beads

Software htt // tti h k/ h

Softwarehttp://leonardo inf um es/macromolhttp://www.nottingham.ac.uk/ncmh

Ellips1 (ellipsoids of revolution)Ellips2, Ellips3, Ellips4 (general ellipsoids)

http://leonardo.inf.um.es/macromolHydro, Solpro, HydroProellipsoids) HydroPro

Page 48: 1. Molecular weight distribution analysisMolecular weight

Ellipsoid axial ratio determinations – wheat protein gliadins

Structure and heterogeneity of gliadin: a hydrodynamic evaluation

S. Ang et al, Eur. Biophys. J. (2009)

Page 49: 1. Molecular weight distribution analysisMolecular weight

Ellipsoid axial ratio determinations – wheat protein gliadins

Structure and heterogeneity of gliadin: a hydrodynamic evaluation

S. Ang et al, Eur. Biophys. J. (2009)ELLIPS1

tti h k/ hwww.nottingham.ac.uk/ncmh

Page 50: 1. Molecular weight distribution analysisMolecular weight

Demonstration of ELLIPS1 & ELLIPS2 programs:p g

download from http://www.nottingham.ac.uk/ncmh

For a wide variety of hydrodynamic parameters including ν(from intrinsic viscosity)– see Lecture 1 notes or P (from(from intrinsic viscosity) see Lecture 1 notes or P (from sedimentation or diffusion measurements) – see Lecture 3 notes:

ν = [η] /vs

P = (f/fo). (v/vs)1/3( o) ( s)

where (f/fo) = (k BT/6πηo){(4πN A/3vM)1/3 }/Do20,w

= (M(1-vρ )/NA6πη ){(4πNA/3vM)1/3 }/so20 (M(1 vρo)/NA6πηo){(4πNA/3vM) }/s 20,w

Page 51: 1. Molecular weight distribution analysisMolecular weight
Page 52: 1. Molecular weight distribution analysisMolecular weight

For more complicated shapes:BEAD & SHELL MODELSHydro, Solpro, HydroPro etc

http://leonardo.inf.um.es/macromol/

IgEIgE

IgG1

Page 53: 1. Molecular weight distribution analysisMolecular weight

Follow up bibliography:

1. Serydyuk, I.N., Zaccai, N.R. and Zaccai, J. (2006) Methods in Molecular Biophysics Cambridge Chapters D1 and D4Molecular Biophysics, Cambridge, Chapters D1 and D4

2. Harding, S.E., Rowe, A.J. and Horton, J.C., Eds (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science RoyalUltracentrifugation in Biochemistry and Polymer Science, Royal Soc. Chem. Cambridge

3. Scott, D.J. et al (2005) Analytical Ultracentrifugation. Techniques and Methods, Royal Soc. Chem. Cambridge

4. Harding, S.E. & Johnson, P.J. (1985) The concentration d d f l l t Bi h J 231 543dependence of macromolecular parameters, Biochem. J. 231, 543-547

5 Harding S E (1995) On the hydrodynamic analysis of5. Harding, S.E. (1995) On the hydrodynamic analysis of macromolecular conformation. Biophys Chem 55, 69-93

6. Garcia de la Torre et al (1997) SOLPRO: theory and computer ( ) y pprogram for the prediction of SOLution PROperties of rigid macromolecules and bioparticles. Eur. Biophys. J. 25, 361-372