91
...-. .- —- -- . . T.. . .- ,! ,.. ., ,’ ...._ ;,, . ..” - ‘, ,. ‘.. . ,- ., N ‘, :“ ,, .’), 1- .! ,,” ,’.””., , ,--- I “’” “- “-- ,, / ,. I SERIAL ANb.,, SSC44 ., ,,-, ,’. !, .4-Jpy #’25 ‘( ~~ ,, ,,. ‘),,’, PROGRESS” “REPORT . .1, ‘, , -- . ,’ ,,” , ,. .,. ‘1” ., .. ON”, ,, .. ,. .,, ,. l., ! ... ,,. .---, ”.. .,, ............ -, ..~. :, ,. ,. f,-- : iHE,i33~EcTS w. wxml AND TH1@NESs ON sTREiiTii,, --- --: ENEIiGY- ABSOR~TION, AND TRANSITION TEMPERATURE l?OR ‘,. - INTERNALLY ~0.TCHED FLAT ST~EL PLATES 1, .!, ‘! , ,,!. J, I .,,; . “’ ~ i, ). \ ., ,,!. ,, , ‘, ,.. ,’ ‘, ... I ,. ,,1 .! ,BY,’” ,,.. ““ {.” ,. ., “1’ ‘“” ““ ‘“”. ,,. ‘SAMUEL T.”,,CMPENTER WiNDELL P. Itoop, A. ,y: ZELL; x. KASTEN /,:, ) , \; . ,. .. ;’ ,,,..’ ,, ,’ ,’!!’ SWARTHMORE COLLEGE ~~ .-.’” .1’ ,“ i ., Under khmeau of ShipE Ccm@ct NObs45521 I ,-’, ,’, (tidex” No.” NSO1/-O43) . ,’,’--’,. . .. 1, -, \- ,i 1- \:, ,, /“’ !.., ,- 1<”””, , ,, ‘.,..,’” ,, ,/ ,. ,,. < ,’- ,’ ), ,, ,., I ,“, !, ,’, ,” ,! ,.,’ ~ ,. ,(”, “\ ,“ -,’ ,“; - .!, ‘.1 ,. ,’ ,’ ‘, .“ \ ,. ‘Tmnmnlttcdthrokgh ~ I . ,,, NATIONAL RESEARCH COUNCIL’S’ “’ ,. ., ,. . . . . ... ,, ,. 1, .: ‘COMMITTEE ON SHIP ‘SiEEL \ --- .“,:.,, ,./ .-q -,, ‘,”’ ..) ,, >’ 1.’ Aduisorafo,’’,/’ ,“, . ) ,., ,. ‘\..’.,’ ,.. ““‘ SHIP” STRU$TURd COMMIiTEE i,, ~. ,, ,-. 1.” 1, ,., -, unchr ~ ., ‘,. , >- ,’ Bureau of Shi~s, ?lavy Department , .. I ,. \;. : -Contract. NOb&60148” ... . “1 1’.’. (Index No. kS73k036) :, !, \ 1 ,’ ; ,, ,,! ,! .,. . . . . 1’ ! ..T, .$ . ‘, ,,, , ... ,, - ,’ ,, .’ ,. ‘1 ,, ,.. ., !. ’-, .. “1 ,, 1. . ...’ .,’, , !, ,’ !“, ,>. ,.1. ..,. ., .’ I ., ., ,! ..,. ,, :1 ., 1, f,’ ,, ., ,. .’, 1’ .,, ,- ,., ,, l.- ,. )! ,!’. 1. ,. .’, .,-, ,. ., Division of- Enghuw$ng and Industrial It&arch 1-, ,’,’ ,,; l,i,”\ ‘,’ ~ Natioiyl R&ear* ,Couyil ), ,,, ,,. !.’l, Wa~hington, D. G: 1“ ,’ ,. ’.. ., 1’. ,, ‘1 November, 15, “1951 ‘I ,--- ,’ ,,, I ,. -,. ... .’ ,- ,. -__..., . . ..._ —. —- ...

1- ,’.””., , I SERIAL ANb.,,SSC44 “’” #’25

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

...-. .-—- -- .. T.. ..-,! ,.. .,

,’ ...._

;,, . ..” -‘, ,.

‘... ,- ., N ‘, :“ ,,.’),1- .!

,,” ,’.””., ,,---

I “’”“- “--

,,/,. I SERIAL ANb.,,SSC44

.,,,-, ,’.

!, .4-Jpy#’25 ‘( ~~,, ,,.‘),,’,

PROGRESS” “REPORT. .1, ‘, , -- .,’ ,,” ,,. .,. ‘1”.,..

ON”, ,,. .

,. .,, ,.l., !... ,,. ”

.---, ”...,,

............-,..~.

:, ,. ,. f,--

: iHE,i33~EcTS w. wxml AND TH1@NESs ON sTREiiTii,, -----: ENEIiGY- ABSOR~TION, AND TRANSITION TEMPERATURE l?OR

‘,. - INTERNALLY ~0.TCHED FLAT ST~EL PLATES1,

.!,‘! ,,,!. J,I .,,; . “’ ~

i,

). \.,

,,!.

,, ,‘, ,.. ,’

‘, ...

I ,. ,,1.! ,BY,’” ,,.. ““

{.”,. .,“1’ ‘“” ““ ‘ ‘“”.

,,. ‘SAMUEL T.”,,CMPENTER WiNDELL P. Itoop, A. ,y: ZELL; x. KASTEN/,:, )

, \; .. ,.

. . ;’ ,,,..’

,, ,’,’!!’ SWARTHMORE COLLEGE ~~.-.’” .1’,“ i., Under khmeau of ShipE Ccm@ct NObs45521I,-’,

,’,(tidex” No.” NSO1/-O43)

. ,’,’--’,. . .. 1,-, \- ,i1-\:,

,,/“’ !..,,-

1<”””,

, ,, ‘.,..,’”,, ,/,.

,,.

<,’-

,’ ), ,,,.,I ,“,

!, ,’, ,” ,! ,.,’~

,. ,(”,“\ ,“

-,’,“; - .!,

‘.1 ,. ,’ ,’‘, .“ \

,. ‘Tmnmnlttcdthrokgh ~I ..

,,, NATIONAL RESEARCH COUNCIL’S’ “’,. ., ,. . . .. ... ,,,.

1, .: ‘COMMITTEE ON SHIP ‘SiEEL

\

---.“,:.,,,./ .-q -,,

‘,”’

..),, >’ 1.’Aduisorafo,’’,/’,“, .) ,., ,.

‘\. .’.,’,.. ““‘SHIP” STRU$TURd COMMIiTEEi,,

~. ,,,-. 1.” 1,

,.,-, unchr ~.,‘,. , >-,’

Bureau of Shi~s, ?lavy Department, ..

I

,. \;. : -Contract. NOb&60148”... . “11’.’. (Index No. kS73k036):, !,\

1

,’

; ,,

,,!,!

.,.

. . . .

1’

!

..T,.$ . ‘,

,,, ,... ,, -,’

,,.’ ,.

‘1,, ,..

.,

!. ’-,..“1 ,,

1.

....’ .,’, , !,,’

!“, ,>.,.1. ..,.., .’

I., .,,!

..,. ,,:1

.,1, f,’

,, .,,..’,

1’

.,, ” ,-,.,,, l.- ,.

)! ,!’. 1. ,. .’, .,-,

,. ., Division of- Enghuw$ng and Industrial It&arch1-,,’,’ ,,;

l,i,”\ ‘,’ ~ Natioiyl R&ear* ,Couyil),,,, ,,. !.’l, Wa~hington, D. G:1“ ,’ ,. ’..., 1’.

,,

‘1November, 15, “1951 ‘I,--- ,’,,,

I

,. -,. ....’

,-

,. -__..., . . ..._ —.—- ...

NATIONAL RESEARCH COUNCIL2101CONSITTLJ~ONAVENUE, WASHINGTON 25,D.C.

COMMITTEE ON SHIP STEEL

OF THE

DIVWJOFJOF ENGIFW=JNG AND INDUSTRIALRmz.mmz

November 15, 1951

,,

,.

CM ef, Ikzr~auof ShipsGods 343Navy DqatmentWash@#on 25, D. C,

War Sirz

A+tached is Report Serial No. SSC-44 entitled “~~Effects of Width and Thickmss on Strength, Ener~y Absorptionand Transition !!kmzperaturefor InternallyNotched Flat SteelPlates.” ThiG reyort has been submitted %y the contractoras a progress Repcrtiof the work done on Rwearch ~~~ile~tSH-lM under Contract IWE+45521, Ind@x No. ~soll-~~a h~t~~e~n

the Burmu of Ships, Navy Department and Swarthmme College.

The report has leen reviewed and acc@emce recom-mend~d by rapresmtatives of the Committee on Shi} 9teel$Division of Engimeerlng and IndustrialRQsearch, NRC,accordance with the tmms of the contramt betwem theof Ships, Navy Department and the National Academy of

Very tirulyyours,

peter E. Kyle, t%aimm

Cmmitteti cm ship steel

.

Advisor~tothe SHD? STRUCTURE COMMITTEE, a comtnittee representing thecombined research actititiesof the member agencies -

Bureau oJWips, Dept. of Navy; Military Sea Transportation Service, Dept. of Navy; United States Coast Guard, Treasury Dept.;

Maritime Ad??ainistration, De@o JCom?rwce, Amevic~w Bureou of Shipping..—

PREF+CE,

.“

The Navy Eepaitmeritthrough the--Btiew.Pfi:S:hipsisdis~rib~t’figth~~report for the SHIP STRUCTURE COIWIITTEEto those agencies and individualswho were actively associated with the resear.cb!’-worhThis ‘reportrepre-sents results of part of the research progran-i”~nductedurider the ShipStructure Committees directive to ‘tinvestigatet!aedesigu and methods ofconstruction of welded steel merchant vessels!+ , - ‘

,. ,,The distribution of this report is as,fo;llowax.,~ .. ‘

copy NO. 3 -copy No.. 4 “Copy No. 5 -copy NO. 6 -Copy No. 7 -

Copy No. !5-Copy No. 9 -Copy No. 10 -copy No. U -Copy No, 12-CopyNo. 13 -Copy No. 14 -Copy No. 15 -copy NO. 16 -Copy no. 17 -Copy No, 18 -Copy No. 19 -Copy No. 20 -copy No. 21 -Copy No. 22 -Copylb. 23 -copy No. 24 -COpy NO. 25 -COpy NO. 26 -copy No* 27 -Copyuo. 28 -copy No. 29 -

.

,!,,.,!CopyNo. 30 -

Chpy No. 31 -., “,,,. -@yNo. 32 -

Copy No. 33 -

., .. .,-

Chtef, Bureau of Ships, l~avygepartmenk . .Jj.d. ?mbey, National Waearch Cour,cil

Ship-Stru.otur#“CommitteeRear Admiral K. K. Cowart, USCG - ChairmmRear Admiral R. L. Hicksf USN~ [R~t#)j,,?Jaritim@Ad_tionRear Admiral E. W. Sylvesteri USN, W?eanof Ships ~.~Captain W. N. Mansfield~ USNR, liilitaw~ea Trans. Serv.D. P. Brown, American Bureau-of Shipping ,,

Ship Structure Subcommittee,,.

,..’“~ht, USN, Bureau’of Ships -.-ChafiMnpa tm E.A~ ~r%

~PComdr. E.A. Grantham, USN, i’vIilitary,SeaTransp@aiion Serv.Comdr. D. B. Henderson, USCG, U.S. Coast Guard.Headqu@ersLt. Comdr. M.N.P. Hinkamp,.USN~ Bureau ofShip$ -’Lt. Comdr. E.L. Perry, tECGa U.S. Coast ’GuardHeadquartersN.G. Frederick, Maritime Administration .Hubert Wmpel, Military Sea Transportation Service ;Johm Crowley, Office of Naval ResearchM. J. Letich, American Bureau of!Shipping. ‘L. C. Host,.AmericAnBureau ”ofShipping - ~E.J!.MacCutcheon,(Jr.j Bureau’of SMFsV. L. Russo, Maritime AduifiistrationFinn btmssen, Liaison Representative, NRCE. H. Davidson, Liaison Representative, AISIW. P. Gerhart, Liaison-Wpresentatiwe,.AIS1’: .Wm. Spraragen, LiaisonRepre.sentativel~C “: ,Charles Hoch, Military Sea Transportation Serv,,yW.E. Magee$ U.S. Coast Guardj Alternate Member,J.B. Robertson, Jr., U.S. Coast Guard, AltetinafieJoti Vastaj Bw-eau of Ships, AlternateMember .J. E. Walker? Bureau oflSkips, Alternate MemberEdward Wenk~ David Taylor Model Basin, Alternate.,. .:”,,.. . ..

Committee on Ship Steel.,:.,-..,:..r.,,,, ..,.1’,.., ,,., -.., .%,””‘ ‘..’,’

P. E. Kylas.Cha&mik .:”: .’ ,, -.-’ ~G. H. Herty, Jr.3 ‘+~V~cechairua~.’.:.: - “’ ~Wm. M* Baldwin, Jri-: : : i ... ,r . . ‘C- S. Barrett .“ ; .~’}. .. -

,,. ...”/ . . ,.,“

‘.../

,.,.

Alt.,Nember.,

Member

,“.:Member

.,

.-

. .

.,~! :.

copy Noe 3.4copy Noi 35-Copy-No.15’copy No. 36copy No..3?copy NO. 38Copy No. 20Copy lie.39

Copy l?o.“~oCopy No.’41

‘ COPY< N0.42

copy No. 43Copy l?o..44Copy no. 45Copy No. 46cbpy”No. 47Copy Nb,L48

““copyNd.”49:copy No~:50...Copyxo. 51COpy 1?0.52Copy No;’53copy No. 54copy No* 55copy No. 56COPY NO. 57

“w-;

Cohmittee on Ship Steel .fO”onliinued),..,;,L::,.

- R. M. Brick :.,+:..1. .,-S. L. Hoyt -,,,).*+, ,,- John Crmwley !.!, ,,,.

-Ma W. Lightner : ~~ : ‘“;~ , ,, ,,- R. F. Mehl- T. S;Washburn ‘“’“ ‘ :,,,- Finn Jonassen - Technical Director- A. Muller - Consultant .,.,.

!.’,

Members of Project Adv&ory Gom.mitteesS&93, SR-99, SR-1OO,SR-10~, SR-109,SR-11O and.SR-111 (not listed elsewhere).. ...,,,,,. ,.. . ‘. .~..--R’~:H/&horn “ . .. ‘. , ,..- E. Lq Anderson .......... ,. .,,

- Lo CgBibber.;>.

“.:.. ,- ]~~~~~~~ofi~~ ,’.-w. c. Ellis- M. Gensamer”. ‘“ ‘- N. F. Hawkes,,-W. ~iHess . “, ., . ..-W. R.’Hibbard,,Ji% .,.-’ ~ .,, ... .-C. E. Jackson .“.. , “ .:. ~~’-J. R. Low, Jr.. . . . .,

,’

- H. W. Pierce?:’.,

-W; A, Reich ‘,.. .,.-C..E~Sims . “’., ‘ , ~ r:,

-R. D. Stout’ “’- “ ,,,- J; Go’Thompson ~~ ,. ..- B. ~i J~hnston5 Nelding.R~seaTch Councils Liaison ::.- W.-H~’Wo”bd~g4 Philad@h5a’Naval Shipyard , L

,:.,,.,,.. --,:. , :., ,r,.. ... .

,,, ,’...,,.:1 : Committee on Residtil Stresses , ,’,‘ ~~~: ,,.:,

,’

,,,- t, .,,.~ ‘COPY NO. 58: J. T,’Nofion -c~air~~ ,’ -,’ ;: ~~ ,... :,”copy lso. 32 A Wm.MOJ%ldwin;.JrO “.,., .,.,:,- ,, ,,,.,,,,,,,.copy Nob “59- paU~’Ffi~ld ,:. .:.,copy fiTo.’”6o-’LeVan Griffis ,,. .’.-.Copj”NO. 61=Copy No. 62-C9py NOL;20 -,,.

COPY NO. 63 -Copy No. & *!20pyNo. 65 -Copy No. 66-Copy No. 67 -COpy NO. 68 -

K.Heindlhof& . ~~ ,.!.“l)ati&lRosenthal ‘~~!. ~ :FtnM Jonassen’- Teehnical Director .. , ..,, .,,.’ ., ,, ,,

U. S. NAVY,,. ., ,, ,.-.

Capt. R. H. Lambert, USN~ Philadelphia Naval ShipyardCapt. C. M. Tooke, ‘USNy;”lmngBea& Naval Shipyardi.CalSf.Comdr. H.’G.’Bowen, USN3.Uode’Re-3~Bweau of OrdnanceComdr. R.S~ Nandelkorn? USN; A&reedForces’Special Wea@onshj,.A. Amirikian~ Bureau of yards and:Docks “ .“‘ “,A? G. Bissell, Bureau of Ships

.- —.. .—

. 7,. . ,., ~ . ..

.,. .,:i. , ,,... . ... ,,., ‘i., “’:’:.,’‘ .: .!.: ,. ,.”

,, .+

.,, . ,-.hif~- ‘“” .’” : . , ;,, ;’;,

U. S. lla~”(Ctintinuedl ,, .,,

copy NO* 699 Jo W.”J&~ins; Bureau,Of””Ships,.)

,,copy No. 70. -” car} Hahbowerj Naval ResgaYch ~gborato~y,. ~~. ‘,”.”’Copy No’.71 - R. H.,,Raring,Naval Research Laboratbfiy,,. ,:. :,;cop}-lio. 72 - ~oahjKahn,,New York Naval Shipyard , ~~copy No* 73 - 0. T. Ilarzke,,NavqlResearch Laboiat6;y”, ;copy No. 74.- W. E’.”McKenzie,lJeta31tig@al Brafich~’Naval’Gun FactowCopy lJo.75 “ J. E; McCambridge,,”lndp$tiia2Test~$”.Lgb.?,p~la~ Nava3

Shipyard .“ .:,. ,W. E. Promisel”$Btieau of Aeronautics .,,““...COpy~’~O.76 - . ..

COPY NO. 77 - Naval Research Laboratory ‘“” “Copy No. 78 - NptialResearch Laborato&, ”lJecMnicalsection”Copy lto.79 m Naval Research Laboratory, Metallurgical S6ct~oncopy No, 80 - Post Graduate School, U, S. Naval’Ac&demyCopies ?xo~81 and 82 - U. S. Naval Engineertig Experiment Stationcopy Ho. 83 - New”York Naval Shipyard$ l!laterialLabor~tQrycow NO. g& - IndustrialTestingLaboratory ~C)opyNo. 135- Philadelphia Naval Shipyard~o~yNo. $6- San Francisco Naval Shipyard ~Copy”llo.,87- David Taylor Model Basin, Attn$ LibraryCopies No. %! and 89 - Technical,Library,BureELuof Ships, Code 364

,, ,,..

,,’’U*..’s. GO=5t Guard ‘ ‘

CopyNo~ 90 - Capt. R. B; La&’~ Jr., ”USCG.,.

copy No. 91 - Capt. IL.C+ Moore, USCGCOPYNO. 92 -Capt. G? A. Tyler, USCGcopy No. 93 :,Testhg and Developmmni Dtvisioncopy 80. 94 ~ p.,S.’+ast Guard Acadeuy, New London,,

copyNoo 95 - .ViceAtim E~’L; Gochran~,,’USN(Ret*?copy NO. 96 -E. E’.:hkI?tinSky..

,,.,

,’

Repre~entativ~s & American Iroii@’St&LIndituteCommittep,on i&hufactuiing Problems “

,

copy No* 97 - G. h!.Parker, Secretary, Gerqai Teclmical Committee$ AISl_Copy No, 42 -L. C. Bibber, Uj,S..Stqel C6,.” “ “ ,CopyNo. 31 (~G. H? Hertyj Jr., Bethlehem S,@el’Co~,,, ~cop~ No. 98:- E. Cg.~mithl Republi,c”iS,teel’.C@p. .

,,.-.

Weldtig Research Council

COpy NO, 99 - C. A. Adams Copy No. 101 - LaNotte Grover.copy Nom 1oo”- Harry Boardman copjT No. 23 - Wm. Spraragen

..

copy No. 102 -

copy No. 37 -copy No. 20 -

copy NO* 103 -copy No, 104 -copy No. 105 -Copy l!o.106 -cOpy NO. .32 -copy No. 107 -Copy No. 10$ -Copy No. 109 .copy No, 110 -Copy No; 111 -Copy lvo.37 -Copy No. 34 uCopy No. 112 ‘-Copy no. 113 -copy No. 114 -Copy No. 115 -.copyNo. 11”6’-~opyNo. 19 -Copy No. 117 -Copy No. 118 -Copy No. 119 -Copy No. 120 -Copy No. 121 -Copy No. 122 -copY No. 123 -Copy no. 124 -Copy No. 125 -COpy NO. 126-copy No. 127 QCopy No. 128 -Copy No. 12g -Copy No.130 -copy lJoi”131’9Copy No. 132”-

* Copy No..1.33-~,-----....=,“copy~o.i134 &

Copies No. 135Copy NO. 16o -Copy No. 161 =cOpy NO. 162 -Copy NO. 163 -Copy No. l% -

.., ,.‘CopyNd. “@-.... ... ,,.,.,, ,,7

C. R. Sode~berg$ Chairman, Div, of Engr. & ind. Res., NRCR. F. I!!lehl,Chairmah,Committee onLShip SteelFitilJonassen, Technical Director, Committee on Ship SteelS.T.Ca~~ntar, Investigator, Re’searchP~ofect SR-98T?.Pi,Roo~, Ynvestlgator; Research Project SR-98k. ’VFi’Z&ll,,~ti@stigator;”ResearchProject SR@

E. Kasteti,Ini%stigatorj Regearch Project SR-98° ~.-

Wm. M. 13aldwih’,Jr~,~Investigato~,Rgs’.%ojectsSR-99, 111L. J.Lo ‘J.

G* B:

i: ::R. F.R. M.C. H.z. W.E. R.CarloJ. F.V.‘L.R. A.G. S.

Ebert, Investigator, R~seah~h Project-SR-99 -Klingier$ Investigator, Re+searih~~oject”SR=99Uoldrich, Investigator,’ResearchP~oject”SR-100Rieppal, Investigator? Research Projact 5%100Williams, Investigator, Resear,chPYoject~R-lC)6Mehl, Investigator, Research Project ’~R-10gBrick, Inves+xlgator;R6’searchProje.otSR+109,Lori~x Investigator, Research Proje,gtS~-110”SUpDigtir,Investigator, Research Pro@ct’SR-113tlrar~$Investigator, Research Project ~11-113Ri@holH’, Investigator, Rbsearch,Pd6jecf SR-113Vlallac?Phvest~&ator$ Research Proj@c’tSR-1~Russ&, Investigator, R6search Project SR-117Hechtman, Investigator, Research Project SR-119Mikmlapov. Investigator. Research Pro.iectSR-120

Clarence Alte~b~ger, Gre~t L~es Steel Comp~yT. N. Armstrong, InternationalNickel Co., Inc.A. B, Bag@ar,,Spn Oil CompanyBritish Shipbuilding,Research Assoctati@, AttnsJ.C. AsherD. S.,Clark, Calffo?nia Institute of Te@nalogyPaul De Garmo’,University of California;’ “ ~~J. E. DoranF u~iversity of CaliforniaGeo&ge’Elllnger,National Bureau of StandardsA.,E,,.Flanigan,University of California0. Ji”.Horger;’”TimkqnRoller Bearing “C6m@y’ ‘ ‘H. Kennedy, University of California ‘E. P. Klier, University of MarylandJi’E. h!oliutt~~iirnegie~nstit~te$”Pittsbwgh~bbert U:.””Madd6fi,K~i~kti-S%e@lCompanyN. M..Ne%Tk, lJtiverSityof IllinoisE. drowhn; Mass&ch@etts’institute 0$ TGC&lO&

’15$ -4ZiG. HilZ~ British Joint Sertibes Missi6nL(Navy Staff)E. Ri:Parker, Universityof,Ga3iforniaV?.GiPerr~, RN~ BritisfiJoint Services Mission (Navy Staff)L. J. Rohl, U. S, $%eel CompanyH. A. Sbhade, University of:_CalifotiaSaylor Snyder.~@ S. Ste@ (?op~ny -Stfid&rd Oil flompanyof Cali.F~mi+~ Attn$ K. V~,King .-.., ., ....

., ...,, ., ..,.-..” ,. . ., . .

-v-

Copy No. 166 - Webb Institute of Navsl ArchitectmeCopy No. 167 - Georges Welter, Ecole Polytechnique, MontrealCOpy NO. 168 - Carl A. Zapffe3 Carl A. Zapffe Laboratoriescopy No. 169 -Division ~f Metallurgy> National Bureau of StandardsCopy No. 170 + Transportation Corps Board, BrooklP, NewYorkCopies No. 171 t,hrough175 - Library of Congress via Bureau of Ship~, CedeCOpyNOo 176 - XACAl Attni Materials Research Coordination, Navy Dept.CopYNoA 177 - File Copy, flmmittee on Ship SteelCopies No. 178 through 182 - Bweau of ShipsCopy No. 1S3 -COPY NO* 18&”- -Copy No. 185 -Co~yNo. 186- .,..copy No* 187 -Copy No. 1SS -copy No. 189 -COPY NO. 190 -copy No. 191 -cOpy ’~0. 192 -Copy No. 193 -copy No. 194 *COpy No. 195 -COPY NO. 196 -copy No. 197 -Copy No. 198 -COPY NO, 199 -COPY NO. 200 -copy No. 201 -CopyNo. ~02 -COPY NO. 203 .COpy NO. 204’-COpy NO. 205 - .Copy No. 206 -Copy No. 207 -cclpyNom 208 -COPJNO. 209 -Copy ha. 210 -COpy No. 211 -Copy NO. 212 -COPY NO. 213 -copy No. 214 -COpY NO. 215-COpy No. 216 -COPY NO. 21? -Copy No. 218 -COPY NO. 219 -copy No. 220 -Copy No. 221 -Copy No. 222 -@pY1io. 223 -COPY NO. 224 -COPY NO. 225 -

... .

vi

TABLE OF CONTENTS—.. —

xiv

vii

ix

~

3 -+

5’

7

?

8

8

8 .’

11

Abstract . ●

.

.

.

.

i

.

.

.

.

.

.

.

.

9

.

9

.

.

.

.

.

.

m

.

.

.

.

9

● ., ●

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

✌✎✎

.

.

.

.

✎✎

List of Tables .

List of Figures

Introduction and Summary

Materials

Test Specimens

Measurement of

and Test Schedule ●

b

.

.

.

.

0

.

.

.

Temperature Control

Test Results

Data ●

Maximm Unit Stress .,,

Unit Energy ● .

Discussion of Test Results “.“.

Average Unit Stress .

Unit Efiergy Absorption

Transition Temperatures

● *.9.= 9 .

,,,.“ . ● “* . ● ● ●

.!.~

,-., ,,..● ☛☛ ‘*.***

. . . ● ✎ .“. ● ‘ .,. .;,.,.:.’ ,i, j

● ✎☛

✎✌✎ ✌

.. *.*.P.,, .“!, , , ,,

, .).

IL.***

● ☛☛

✎✌✍

✎☛✎

*9=

. . .

,,.”

:’:‘*

.*

. .

.

.

l-i●

.

.

.

.

.

.

12

15

20

22

● ✎

✎ ✎OthersCorrelation with Tests by

Conclusions ●

Bibliography .

Acknowledgments ●

b**= ● ✌

23● ✎☛☛✝✝ ● ✎☛☛☛☛ ● s=

● ****** ● =*=*** ● *** a

3L

50

61

--+ Appendix I - Tables ofBasicData. . . . . . . . . . . . . .

Appendix II - Graphical bummm%s of Basic Data , . . . . . ,

Appendix ID - Typical Load-Elongation Curves . . . . . . . .

vii

3

‘4

5

:“,,,.

.

,.

.

.

. .

. ,.

. .

,,

,..

,., .

,..

. .

LIST OF TABmS ,.

.,

Titlc3. .

Aspect Ratios tested

T-1 steal,, , ,

!. .’ :,’

Summary of unit energy andunit s.tr.ess . ,at maximum load

. . . ,,T-2 and TD-2Rsteels,Sqnmwry.of.mit euergyand unit stress

stwxhullllmad. . , ‘ 10

T-1 s-heel, “ , . , . :,::,,::,,-;,.Transition temperatw-es 16.,,,, .,,, .,,. .,.,T-2 and T+R steels?Transition terqmraZwes )..};j.u:;gj:l~,i:i:,

,,

,.

,.

,.

.,

:.1

,.

.,

,,

**

.,

,,

.,, ,., ,, .... <. ...,. ,.

,

*

.

9

*.- ,,!:,,.,,’,”, ,~:.,~,,. .,

,.

..-.

,**.

., .”.

... .,”. ,!

,’.,,, ~. ~.:,;< :.: ;, ,;’i L.,::,* -

.,, .

.,

: ,1

,..i

\ ,,,,:,,,

,,.::~..

,,,!”~’

.,..!

,.: i.

:.,

,.

.-

,,

, .’viii

List of Tables (Conttd)‘.,..<”‘“”.!‘::\!...”.t,...?:.,.~“.:....!..

.

..

,,,

No. ‘:’Steelcode.,>i\.,.,

. . .Basic data

.. ...< ::“,, ‘.’,:

‘Thickness ‘ ‘Aspect “ ‘ B~o’cR:N~’~”” Page “

inches Ratio .4 ,, .’

I-II-1a1-2I.-3I-3aI-L

I-51-61-71~8

T-9I-101.11

1-12I-12a1-13

I-u1=151-16I*17

1-181-191-20I-21

,> I-221-23

I-241-251-261-27

,,.T-1

n,,

.;.7

,,. .-- II

n. ..

:. T-1n

11:..!

It

T-1nn

T-1nn

T-2nl!n

T-2nII ‘11

T-2n

T-2Rnn ‘il

3(4 .48

n I-2n “ 16

1 ‘ ““: yn

n,. “’12

1* ““” 4n 4n 6,,,.,., .,.

“’f “’

n 12n .“’16””.,,,,

1 4n 6

...’.tr,!- ; ~ *

Ii” : ,’ ,; ..{D

3/4 4n 6II 16n 20

II., ~1: !

II1; 11’”

IIIIIV, V

1, IIIII~l.

nonen

‘m ,..’,

nonen ,,.,.

.,, .tt, ,

nonet!

nonenn11

35 ‘“’35363637 :.,:

3? ,,

38 <38-’”‘:3939.,,.’:,

40 ““@41 ‘

41uu

43434“”44

45454646

47 .’

47

48he

4949

.-

ix

1

2

3

4 ,+

5.

q;

7“

8-A

8-B

9

10

117

12

13

Ih

15 .

16

LIST QF FIGURES“:,...,~,~,....--=.,..,.+:..!..

Title

TYPical Specimen .~..i. ~

,.T-1 Steel, 1/211Thic~n@ss, Plate Layout

II 119 3/4” ‘,;‘t 11 11

II 11 , 111, ,,!! ,.. . . . II II

It n7 1~ II II n

T-2 Steels 3/411 11 ?1 II

It II , llt It n II

11 rt9 l&J 11 tl II

T-2R Steel, 3/411 !f II n

Aspect Ratio Program T-1 Steel

It 11 II T-2 It ,

11 !1 ’11- T-2R II

T-1 SteelVariation in unitstre~ at ma&IIII load for,varying thickness and Aspect Ratio

T-1 SteelVariation in unit stress at maxi- loadfor varying width and thickness

T-1 SteelAverage ~it stra?lnenergy to maxim~ loadr,‘“~’with varying Aspect Ratio and thickne~s

T-1 SteslAverage unit energy to mafimum }oad -Variation with varying thickness and width

25”

26

26 ‘

26.,

26

27.,

’27

27

27

2$

2g + ,,

2g ““’”

T-1 SteelAverage unitwith varying

Strain energy to m~fim~ load,’‘“width and thickness

29

29

. .

30 :,

30

, ..

.-

x

&

17 T-1 Steel,,Transition

‘.

‘“’”’LXST~ FIG~q (c~~t(~~

.“ Title x

.... .:,.,.,

temperatures with varying Aspect Ratio a.and thickness J.1

....,,..,,.,, ........... ... ..... ., ,,.,....,,., .....

18 ..> T-1 SteelTransition temperatures showing effect of Aspect

,.Ratio, thickness and width of specimen,.

19 : T-1 SteelTransition tenperatwes with varying width andthickness

20 T-2 and T-2R steels

Transition temperatures mtth varying Aspect:, Ratios and thickness,.

32 ‘.=.,

,..,:

32 “1’

...’4

~~ ., ”:,:””;.,,.......

,,, ,,.

. . .,1 . ...,,,:

,“ \..,.,~,,:

,,.,

,,! . ..

. .,

,.

xi

.,:,,. f

LILT OF FIGUPW (Control),<

...,‘“Appendi~’11’”“ “-

Graphical Summaries of Basic Data,..+.

No. Steel Code Thickness Aspect Block No. Page. -‘.”inches Ratio.,. in Layout ,

II-1 T-1II-2 II

II-3 : 1’11-1+ 11

II-5 II

II-6 II

11-7 “::”IIII-$ II

II-9 II

11-10 ‘1lI_~ ;.::1!

11-14

11-1511-1611-1711-1811-1911-20

11-21II-22II-23II-25

II-2611-2711-2811-2911-30

11-3111-32II-3311-34

II-35II-3611-3711-38II-3911-4011-4111-42

11

‘T-111

II

II

II

,,,It

T-1IIIIII

T-i!1IIITII

T-2II

!1Ii

T-2T-2IIIItl

II

It

tl

1/211:11II

1!

,:[}:.

It

11

II

::-:i~~)

II

!1

3/!

1!II

t!

II

1t?

II

II

1*II

It

11

II

3/4IItl11

1II1!II1$11

3/4fl

‘:44

-:161616

“,..,,, i61619

4812161616

4&1212

b

:;

=481216

46812461620

IXIIIIIV,

All Blocks .II =,III111 ....Iv

All Blocks .Blocks’11,111

IIII11III

Blc)cksI, II

IIIIxv

Blocks IV, V

IIIIII

Blocks I, II? 11111

none11

11

II

II

!1

II

11

11

11

II

II

xii

List of Figures (Contld)f.

,. .’,..,,.“:.,....,.,,.,

ARPENDIX III

Load-ElofigationCti-~s...,,

No= S,@el Code Thickhes9’~”., .%..”page .,,

Aspect ‘.’Temp. .~.tiinches Ratio beg,F unear

...”............ ,.”,.,,,.,,,., ,,.. ., ,., .. . ,.,.. .,,.,,. .. . .

111~1111~211173III-4113-5111-611147111-$,.

11S:9

111’-10IJS’-11111-12111-13111-14111715111-16

111”17,,111-18111-19111-20111-21III-22

111-23111-24111-25

111-26III-27

T 11X-28111-29111-30

.4 111-31111-32III-33III-34

‘T-1

II

u

n

W

tt

T-1

T-1n

n

11

?1

f)

T-1n

11

n

T-2tttlnnN

11

It

l//2nmII

n

n

n

tl

3/4;1

It

nII11n

n

1U

11

n

n

3/4n

It

n

tl

n

lt

448816X619*519*5

44“6

6448812u

-20

“4-2o

+2:

o

0

0

-20

-30*1O-30+10-10+30-20

+15>.,~o

430

-lo

+30+20

+60

+30

+50

+40

-lo-o

-35-30+10-30+20o

lobo

1000

100

01000

100

10:

0

1000

1000

100

10:0

100

0

100

10:

0

100

0

100

0

100

0

100

0

. ... . . .4--

. . .,. .?. ,+ .NQ ~ Steel Code Thickness”; ‘As~~&* ‘“ ‘Temp. % Page

inches Ratio ,,, Deg*F,(,,,rs~.~,r..- ... .. “.——— .,,. ,,:,; —

).

111-35III-36111-37,111-38III-39111-40.III-U111-42..

III-43111-4L111-1+5,,111-46’

111-1+’7+111-49+:111-51

III-52III-53III-54

T_~ . .

II

11

11

II

II

11

II

T-2IIIfIt ,

T-2RIIII11 “II11

,,

,,.,-

,;

..

..

.

.,

,$,,..

.,

.,. .

-, J,

. ..“‘.,

. ...,.. w.. .

. .

.,,

. .

. .

-,’:-

II

1!

II

!1

II

II

tl

II

I:

II,. ,-

11

11

II

ar~;omitted..!:,.. ..

,

—.

:

6$$1212

:

161620

20

.,

!!

,{

,,

.

:..

,:. ,

,,

‘,

,.

f,

-20

+10

5:-20+20o

+40+20+I!.)o+60

+75+73+50+30+50+20

o

‘f’::100,,,..,

,.- 0100

0

, 100

0

100

0

“’loo

o

,, 100,.100

100

,, 0

100,.. .. 20

.,

,..;,, ,,

71,!72..;,,;,,72;.!’“:’”

,.

,:.1,,.,,+..

xiv

ABSTRACT

This report contains the results of tensile tests made on

geometrically similar steel specimens. Tests were made in a systematic

manner with Aspect Ratios (width divided by thickness) varying from 4 to 2o0

Each specimen was internally notched with a central transverse notch having

a length equal to 1/4 of the width of the specimen. The ends of the notches

terminated with a drilled hole. The diam#ter af the drilled holes was made

proportional to plate thickness. Steel plates ranging in “as rolled thick-

nessesll,from 1/2 inch to l; inch were investigated from two heats of steel.

The results of the tests are classified on the basis of strength,

energy absorption, and transition temperature.

It was found from this 3nvestiEation that dimensional similarity

of specimens does not assure geometrical similarity of plastic strain pat-

terns. Tkerefo~ the geometrical and metallurgical effects of thickmms on

transition temperate could not be segregated on the basis of geometrically

similar specircens.inthis investigation.

.-

PROGRESS REPORT

NAVY BUSHIPS CONTRACT NObs-4Yi21(Index nom NSOll@43]

PROJECT SRW98

The Effects of Width and Thickness on Strength, Energy

Absorption and Transition Temperattie for Internally

Notched Flat Steel Plates

Prepared by

Samuel T. Carpenter, Wendell P. Roop, A.

S?IARTHMORECOLLEGEDIVISION OF ENGIN~ERING

SWARTHMORE, PA*

W. Zen, E. Kasten

.,,

PRCGIWS~ REPORT

NAVY B“@FiPS CONTRACT.NOlm-45521,.

PR~CT SR-98..

,. ,,.,.

The Effects of Width and TI-dcknesson Strengthj ~ner~f ““”Absorption an&Transition Tenper,aturefor Internally

“NotchedFlat Steel Plates

Prepared by.,. -f

Samuel T. Carpenter,.,

Swarthmore

..’, >.

Wendell Pm Roop, A, W. Zell~ 12waidEasten>.!:”;..,’

Colleges Division of Engineering$,,.. ..

Swarthmare, Pam ..,.... 4 ‘t,,:

l’NTROOUCTIONand ST.lVIMAR~—.

.. $ ,,!.. ....-..’- .,, .,..’. ~,,, . .. .,,

Tti”study$ designated as the Aspect Ratio Program, is,...,,... ,‘afie~l;ratory investigation of the effects of specimen geometry (width

and thickness) on strength, energy absorption and transition temperature,

using internally notched steel specimens tested in tension. The width.,

and thictiess of specirmx were relat”edby considering the Aspect Ratios

(AR) of ~h~ specimens ~fh~~~AR kep~esents the ratio of gross wid~h of,., .

., ..’

‘ specimen to thickness of the-... .

to be geometrically sitilar,

““held in strict similitude.

The intent of this

.. :.:’ ,..

platew Specimens of equal AR were said

since notch length and acuity:were also

!,

study was to obtain a separation of the

geometrical from metallurgical effects in plates having variable ‘)as

rolled’fthicknesses from the same heat. A systematic variation inAR.,--

in various plate thicknesses was made$ utilizing two differant stee>s..

Assuming for a given thickness of a qiven s-teeit?natchemical and

,- ,.

,.,‘,- ,,:.J. ~.

-2-

metallurgical effects’would remain constant, the size effects noted

could be attributed to geomet~ in t-heform of increased width. It was

thoughtthat data using specimens of different thicknesses but with,..

equal AR and the same chemistry, would enable a determination to be

made of the affects of metallurgical changes due to rolling. The

latter comparison is dependent upon the validity of geometrical:.

simil~rity of ,bothelastic and plastic strains in all regions of the

specimen, regardless of plate thickness

Results of this’study on internally notched specimens indicate

that dimensional similarity of unstressed specimens,,does,not necessarily..........j., ,’.’.

guarantee similarity of such important physical relations as strength.,-.

and unit e,nergyabsorption. These physical quantities were found to,.; ,-..’,/:,:”,“ :., ,

yary with both thickmss aml widths

With regard to strength, as d+ermined by the maximum ave~age,.

unit ptress on the net cross-,section,comp~isons of geometrically

si.mllars~ecimens s,howthat the -thickerplates have“. .,.’

unit resistance than thinner plates. For,plates Of

strength of the ylates shows small differences with

On the whole the strength does not appear to depend,. ,.,

a definitely,smaller

equal width the.

varying thickness.

greatly on thickness

when width is not varied~ ,. ,,,..-,.

.~ith regard to energy abso~ption, to,maxirnw load, the data.. .. ,,. ,-

for geometrically simiiar specimens indicate ,that~he,thickqr.plates.’ “,

absorbed less energy per cubic inch.of volume (termed unit eq+rgy) than ..‘. ,,

thinner plates. However, for specimens of equal width the situation is

reversed and the thicker plptes absorb more unit energy than thinner plates,

..The

metallyrqical

-3-.... ,,,

transition temperature for a given thickness of plate,

effects assumed constant, shows a tr..ndupwards as the width

For small widths the thicker plates have higherof the plate incr~ases. .,.

transition temperatures than the thinner plates~ considering either,,-

constant aspect ratio or width. The question here is what part of this,, ., ...

increase in transition temperature is due to the geometrical eff~ct of.. ,.

increasd thtckness and what part due to metallurgical differences- The,-

effects qf metallurgical differences cqn o$iy

of geometrical effects. AS it was found that

not completely eliminate geometrical effects,,, ,, .

effects may require comparison of the various,,

other than eq~lity of aspect ratio.

,-,

be determined in the absence

dimensional similarity does

the isolation of metallurgical,,

thicknesses on some basis

A trend toward uniformity of strength and unit e~ergy in the

various plate thicknesses, as width is increased, would suggest that the‘..

effect of thickness is to modify the rate at which these miform values

are approached as width is increased*

The results of this study mus>

disclosing the nesd of furtiierstudy and

MATERIAiS

given tha

furnished

be considered +@

investigation-

be exploratory,

.!

The steel plates used in the aspect ratio program have been

code designation T-T, T-2, and T-21L The T-I* steel was!,

in l/2H, 3/411,ltland 1?! thicknesses, with all plates rolled

~The T-1 steel was given the plate code letter ‘tGtlin the report ltFurtherStudy of Navy Tear TestrlbyNm A. Kahn and E- A. Imbembo published in theWelding J6uFMZ, February, 1950.

,. . .! .,..-,., . . ... .... .+,,,!.,. . . . . .,

from the same hea~~’’’T~e2-2

thicknesses, all rolled from

-.4’”-’ “’

steel was received in-3/4fi,litand 1~~

the same ‘heat.“%?R designates the 3/4n

thick plates obtained’byre-rolding a portion of the~~n’ ‘thickT-2 steel.

,,The chemical analysis’‘forthese steels is as follows: “

Steel Codq g

and the

T-i ‘“’ ●16

T-2 “ .18

T-1 steel is terrn~d

T-2 steel i-stermed a

&’ ‘~ g S5:,,

-,

.93“i.● ~13 .034 .020

.72 “no~ ‘*c26 .26

a semi~kill~ steelo$ the”ABS-B type’ ‘

silicon-alumimumkilied, fine grained steel.

The T-2R steel was produced kg re-rolling ’2”~iecesofT-2

was made without cross rolling in 3 passes ~hile tiaikt~iningthe 48~twide

dimen”sion~‘The@l “thiokplates were b the s~akltigpit~ior

“i’or~ie fio~ Gn&’fifteLn’niikutesat ‘a{’tern~drdtureOf 22&O~m

,:+itierat’’e’’wa; ~6800j,The surfaces of:the re-rolled plates

excellent and relatively free from scale. ““ “

to rolling

The finishing

, ,,.weye

“The grain sise-for these steels h.a~be~n”~eported’to this

laborato~ by Mr.’:lt-A; ‘Kahn*of”the”l~ey~~York Naval Shipyard, as follows;

Steel Code Plate Thickness Mc@mid-Ehn,.. .,...G:. Grain Size——

.. . T-1 ““ ‘ l)2fi””: 2:’ . 1-/$

.,-T-l “3/41!--- 1-3

T-l ‘ it’”:” 1-3

.. T-1 , ,.!. . . ,.W . . . . .,l#:. .-..,. .,,.+. .,-g,.........,. ,.

T-2R + y..m “.,7-$,. ;.”

* By letter

.- .- --

-5-

It has be~~ further,reported for the T*1 steel that a

progressive decrease in the $errite.grain size was observed, with a

decrease in plate thic@ssq The ferrite grain.,sizefor the T-2 steal

has been reported as 5-7 and for the T-2R steel as 6+L

The.tensile physical properties of the steels as defined by

yield stress and ultimate stress are given as follows based onASTM

standard full plate thickness specimens: ,,

Physical Proue,rties , ~

Unnotched Bars

Steel Code Elate Thickness ~ ,Y$eldStress ~ Ultimate Str~psi psi

,T-1- @ 41,QoQ ‘ 67,200.,,”

3/4” 35,$00 63,200.,

,,. l’~, : 37,200 71P000

ly 36,4oo 60,00,0

‘),‘,T-2 3/4” 39,600 67,000

l’~ 40PO00 67,000

., . lyt 33,800 64,500

T-a. 3/4” 39,200 67,000

Test SrmciWns and Test Schedule

., , Figure 1 represents the typScal speeimeu used. The radii

of the drill holes :attheends of the:internal notches are proportionate

to plate thickness. The size of the drill hole used for various ~hick-

nes,ses,0$ plate was aB indicatedinFigure 1-

.—

.“. ,

,,

-,.!,

The layaut of the specimens ffiomthd plates furnished to

this labora%o~ is shown in Figires2’~%o %intiluai’ve; for steels

designated as T-1, T-2, and T-2FL whenti prbgram was tirst planned,

a layout of the’-~latesof T-1 steel was bade’to provide sufficient

specimens of a given size distributed across tha:.tiidthof the plate to

de~ermine changes in transition temperature due ”topasitionwlth$n the

plate. The l/2ttthick platesof Trnlsteel were laid out to providefour

longitudinal blocks or zones denoted as Block I, II, III and IVon

Figure 2. The,3/4K thick plates were laid OU% in three blocks denoted as

Block I, II, and 111, the lt[.thickplates “Iaid.out.tifive -bl~ck$de-

noted as I to V inclusive?

11, and III* It was hoped

were tested from any given

and the l~t thiclc”’plateslaid out in Blocks I, .-.

that if enough specimens of any aspect ratio

block, statisticalstudies of the effect of

position wtthln the plate could be made. Ho&ever, due to costs and time

involved, this extsnsive.testingprogram was completed only itithe l~2n

thickness. ;

,..Figures 9, ZO and 11 show the schematic outline of the aspect

ratio program as or&hally planned in which it.was contemplated that

tests would be made Yor specimens as wide,as 30q,.Stithe l&r.thiclmess,

Hometier~this program’’hadto be curtailed: The blacked-out plates in the

figures’indicate themidths and thicknesses.actuallytested in this

prbgrami ,’., ,-,, ..

The aspect rat~os.tested’ih ‘thedifferent thickness% for

the various steels are given in the following table:

.-

TM3J3 1

act Ratios Tested

,,

T-2

,,,

T-% , .,

3/.4”1“ly

3/4T’

4,$,12,164,6,8,124,6 ,

4,6,M,20

The spec+mens within any given plate layout have been

by a letter and a numbw-m(see layout diagrams)t

lkasuremen~of Elonmtion

The elongations of the test specimen were measured in,-

.

identified

the

direction of the tensile loading over a gage length equl to 3/4 the

width of any individml specfien= The same clip gage Instrumentation

as described in a previous Progress Reportl* was adapted to longer or,, ..

shorter gage lengths by using extending or shortening bars,,’ ,’,

Temperature Control

The test temperate was controlled by eiclosing the test

spectmens in a plexiglass housing in which tei$eti~ttiesbtibw room

temperature were maintained by circulating air cooled by dry it@*. . .

Heating of the specimen above room temperature was accomplished by.!, .-!.,.,

electric strip heaters placed in the temperature control chamber. A.. .. .,., ,,.

full description,,~fthe temperature control eqtipment,was given in a.,,.

previous Progress Reportl. Test temperatures were chosen ao as to

————superscripts refer to references in Bibliography

-.

straddle the transition from shear to cleavage fracture.

w. ,,,’ ,. ..,,, .,,

The.tables in Appendix I list the basic data obtained for.,’ ,,

test specimens of,all steels, as follows: Test temperature; the load,...,

producing the visible crack at the notch, the maximum load, cad the

frflctureloa~; and the energy bput to each of the aforementioned loads

in inch-lbps In addition, the character of the observed fracture is

given in terms of percentage of shear texture in the fradtti swface..,+ !,

The energy to the”visible crack loadin~ has been designated as E, the

energy to hum load as El, and the energy to fracture as Ez. The

tables also list the difference in energies E2-E1 where thia,quen%ity,.,. .,.,J,

represents the strain energy absorption after the”:”maximumload. All. ,,.

!.,,.

of the tabulated energies were obtained by findik~ tk’~a’~eaunder “theload-,., ,-.elongation curvess Typical load-elongation curves are iticludedin

,-.<

Appendix 111 of this report for two’specirnensfo~ every aspect rati~

tested, one curve referring to a spmimen failing in shear ahd’the

other curve referring to a specimen in which

., ,. The,basic data shomi~.the. tables

in the figures given in AppendixII.

.,., .?.A~rage Maximum Unit Stre9s

,.

cleavage failure occurred.~,:.:,’,., J,,.4 ,.,

.,aregraphically summarized

.,..

Tables 2 and 3 list the average values of the”.,,“ !,’.

stress at maximum load for T-1, T-2, and T-2R steels in.;. ,.

nominal unit

addi’tionto the.

,.

>=.

unit energy valuesm The pomina~ tiit strese intensity is based m the

.. .’

-. ,-. L-w,.--..,..+. .,.r

—.

. .

Smmsry. of Unj.t

Values

TABLE 2

T-3.STEEL

Energy+?,and Average Unit Stress at Maximum Load ..

Based on Gross Gage Volume and Ket Area,.

.-

and the Avers,.gefor all Specimens Exhibiting Either 1OO$ or 0$ Shear Failures,,

67,9,40 2/460 ‘59,940 1,820 ‘“57rO001,610 55,0WI

69>230 z,ocm 59,W l!42~ 56$460 l,350 53J@o

0$ 2,540

* LI, unit energy in

61,720 “’ 2,3?Q 55j4zow360 .52,550

62,680 1,900 57,160 1,245 52,680...

59,130 2,250 56,30060,200 1,960 56,7W

inch-lbs. per cubic inch

-1o-

0-.&:

-1rl

.

-

-11-

pet cross-sectional area afthe plate at the notch. The avera~es are

separately givenfor ail specimens exhibiting either a total shear

failure Or a total cleavage failure.

Unit En.e~xv

The

aspect ratios

energy absorbinE capacity of a

may be compared by considering

energy, designated as (u), as herein defined

tained by ditiding the total energy input to

given steel in different

average unit energy. tintt

represents the result ob-

maximum load by the volume

of the plate between gage lines. The umits of the computed, ,’

are inch-lbs. per cubic inch of metal. The volume is equal

3/4Wx~t or 3/4W2t (see Fig* 1) which may be termed ‘~gross,,,,,,

Thus, (u) equals El (3/.#t) ●

unit energy

to

gage volumeltc

Table 2 mmnarizes the calculated average unit energies at

maximum load for T-1 steel. The average unit energies are given only

for specimens fatling in”10@ shear or ~~ shear, with all specimens..

,.of etther mode of failure be?.ngused in obtaining the average value.

Table 3 similarly summarizes the limited resul~s for T-2, and T-2R,,

Xespct%vely.

No consideration his been given to energy absorbed beyond

maximum load, “but’values are given in the tables

Avera,~eUnit Stress,. ,,

Average unit,,.,’ ..

area at the notch$ Tor

DISCIESION OF TEST RESULTS—-——

of Appendi~ 1.

,,,

stress values at maximum load based on the net

T-1 steel? have been plotted in Figure 12 against

-12-.

aspect ratio. The res~ts @otted were’”taken”frornTable 2 for the

specimens failing in 10Q% shears but specimens failin~ “inW2 shear do

not differ significantly from the fully ductile ones in specimens of

these

falls

width+

.,

‘he unit stress for a given thickness graduallyaspect ratios.

with increasing aspect rakio. This reduction is due to increased

since metallurgy may be assumed constant for a given thickness.,, ,. ,,

The unit stress for a given aspect ratio decreases as thickness,>

increases. The loss in strengtlnof the thicker plates may be attributed,.

to metallurgical effects if specimens of equal aspect ratip are similar,,

in their strain patterns. However, the effect ~f non-similarity,of,, .,.

strain patterns will not be considered at the present time.

From the results obtained by the University of California?

it my be expected that the unit stress wauld reach an asymptotic value

for plates of great wiclth- This is probably due to the more uniformi,,. ..

action of stress upon the net cross-section at the greater width.

In Figure 13$ the unit stress values of Table 2 have been.,,’”

plotted against width rather than as~ect ratio. Here it,may be noted. .

that unit stress decreasss as width increases; but that variable thick-

ness does not greatly affect unit stress. Comparatively, width appears

to be a better basis for,.

~nit Enerxv Absorption

Figure 14 is a

correlation than aspect,,

plot of

the 1/211,3/4tr,111and l~-rfthick

14 the data from,Table 2,for the

,>., .,,.. .,. ,

unit energy (u)

ratio.

versus aspec,tratio for

plates of T-1 steel. In plotting Figure

specimens failing in 100% shear has been

-. —.

-13-

used● The figure shows, for equal aspect ratios, that the 1/211thick

plate generally absorbs more energy per cubic inch than tinethicker

phtes’, with tiledifferences due to plate thickness being less in’the

higher aspect ratios. If unit energy % maximum load is a criterion,

then it can generafiy be stated’thet the thicker plates pdssess Ie”ssduc-

tility than thinner plates, when comgarin.ge@al aspect ratios.

The unit energy absorption for specimens failing in 0% shear

shows the same trend as aspect ratio is increased as for specimens failing

in 10W shearq However, the values of unit energy are lower for O% shear

faihres than for the 100$ shear failures at aspect ratios of 8 and great-

er+ It should be noted (see Table 2) that at an aspect ratio of 4 the

values of umit energy are nearly eqtil for 100$ and 0% shear for a given

thickness. This indicates th~t the lac~l conditions at and around the

n~tch for the’narrowist specimen are the same”regardless of the mode of

fracture. This progress report ~oes not present a further analysis of,.

the energy variation for the specimens exhibitin~ 07 shear failure. Ana-

~tical work is now inpragress to asdert~inthe significance of these.i, ,.

phenomena,

The unit energy data given’in T~b~& 3 for T-2 and T-2R’steels

shoiisthe same tiends with regard to thickness and aspect ratio ’asfor.

T-1 steel- The T-2”steel, however, appears

energy than T-1* “

The T-2R steel, based only upon a

*O absorb in general less

few ‘hes% in 3/4n’thickness,

absnrbs essentially the ss,iGenergy as T-2 steel. Considering the over-

all results it nay be concluded.that in a given thickness changes in

metallurgy or chemistry had little or no effect on energy absorption for

-.

-u-!,

these two steelqa ,.,

,~n,tgterestingcomparison between unit energy.$0 maximum Ioadj

width, and.thic~ess is shown in Fi;;ure15 for T-l steel. Theiun~t

energy tends to become ,equqlfor a given width of platq as the thickness

is increased from 1* to ;l~. ~heques~ion here is whether,or nOk this iS

indicative that the detail mechanism of ener~ absorption may be nearly,,.

similar for,the specimens of constant width in the In and 1~ thiclmess.

Such similarity might im@y identical plastic strain patterns generally

throughout the specimen with the probability th~.tconditions at the notch

would become similar for specimens of equal width in l?lor 1*-*1thickness.

If this should bs true,,then the transition temperatures of equal width..

specimens would be comparable instead of specimens of equal aspect,ratio-..

Furthermore, if this assumption is true,,the difference in tra~sitton tern- -,.

peratmre -sofound could,then be attributed to metallurgical differences

almem, 11odefinite generalizations can be made from the results, hence

thesespeculations must be,conside.redonly in the fmm of a query.

,.When the values of unit.energy to maximum load for 10C$ shear

failures are plotted on width rather than on aspect ratio,,Figure 16, the

values for constant thickness run.clo~ely parallel, the results for,.

greater thickii~sseslying abow the,s~ller thiokmesses rather than below,.

them. In Figure ~, where values of.pnit energy were plotted agaipst

aspect ratio @?t-l), the greater thickness gave lower ,yaluesof @t

energy.. Inferences from this fact might be drawn ~~ithrespact to the

., strain patterns

consideration.

.,”, ““

as affected by thickness, but these are ,leftfor later

,?F 8

-15-,<!.4.

In any case, it appears that by plotting on some function inter-

“1 and Wt” the curves coti.ldbe superimposed within themediate between Wt

..’, limits of experimental errm.. , ,,..... ....- ... .: >.-

:-,Transition Temveratwes ‘,+

,,., ,..,.. ..<..,,,:.,.,., ,.,,,

,., , Transition temperatuiks have been established by two methods: ““., 1“: ,.’, ;, .

“ ..’ ....,., -.. . .,, -

First, a temperature range was determined,

the pode of fracture chang~s frotis~eatito.,. .,. ., ,.

which the energy abso~ption shoti~a marked

of Wcertainty as to the temperature below

. ,. .. ..... . . ......

either the range within which ,:.,...”: ....

cleavage, or the ra~ge within

decrease. This is the range

which ductile behaviom is not

assured. Second, a single valve of transition temperature, instead of

range’;was determined by selecting a temperature at which either the-

energy value to maximum load ~r percent of shear in the fracture is m~dway,.>>,

betwem their respective maximum and minimum ~alues. -~na number of in-

stances the single value fails outside of the transition temperature,.

range (see Tables 4 and 5).

Figure 11-1 of Appendix II is t~ical of

the entire pro~ram, where the ensrgy El to maximum

cantly different in the fully ductile or the fully

the test results of

load is not signifi-

cleavage modes of ,

failme. Only sev~ral exceptions to ttis statement have been noted. (It

is to be recalled that in previois wide”pkate testsL#2 where jewelerts

hack-saw cut potch~s were used? there was a definite transition in energy

to maximum load.) As a consequence, the erergy to maximum load cannot beL .,

used here to obtain a transition temperature except in a few cases shown

in Tables 4 and 5. E2 and 122-Eldiagrams (Appendix 11) do show an

abrupt drop in energy levels in the tramition zone and a transition tem-

perature can be obtained by using either of themm However, in this program

TABLE 4v.’- ,.. J ,-,..’ .....(..~,..,..,.,”

TRANSITION TEMPERATURES ““,,, ,,. ,,- ‘,, ,- :.,.,

T-1 bT~L,,

.. ...l*,.;...,,.,,, ,,..

Transition Temperature Range o F——.,,..,.- ,“.,........ ,:..,,$itigl~Point

Plate A,AspectBLo~k,Based on energy Based on appear- All+Blocks TransitLon—Thick- ~~~o ~om “to”max.load -atice’offra’cttie : Combj.nkd-,. Tap. ‘F..ne~s. .,. ... .nfi, O.,, as,defined by % based on based,,on

~“.< ,. ,,. ~f.”ghea.rl.:,’::~~ Qar&n~&;” appearance

& ‘,4. ,-, ~ ,.‘fideter’rninate’

IL..,,“,J,. ~.~,.......,,111,.:: “ -40 to-3Q-35‘to-25-4C to -30.,,. . .bIv. 11

.:, .,, ., :,, ,,, ..: ,..:,::..!,,,;.,.,

,,, e 1,1 Indetertiate,,.,.’,, ,.-J,.-,,,..,...i. ,,

.,, :; :. .;..,.:;4,:, :. . . . ,,.,

-lO,,tozero,.b, -.4(...7,

,,.,., ,

-lo,,.-!., ,.,, t

-10 to zero , ,,,.,..

36. ,., ~., zero to ~7.0..: 11 Indetertiate

III, zero to +10‘.l.~,.,:,,;;,:...IV Indeterminate

zero to +10:+iO to +20zero to,+10-10’to zero

;l, ,., -.,

+10 to 20 ,,.,., .<. ,’

,.j.,. . ;,.-}:‘. ,. ‘f ,

-2,.,,.,..,,.,

,,,: & ~,

II

,.In

.-20 to -lo“’’’-10to zero

~,af a,.,,,

-10 to,,zero,,

s uf f i c i en t-20 to -10-LO to zero ‘:

-E!,,.. .

Indeterminate -20 to zero -20 to zero

Zero to +10

zero to +10

-23 ‘

zero

+5

II

IndeterminateII”’ zero *O +10

II zero t6;+iO” ‘Zeru to +1012

III

-20 ti-lo’

+30 to +&o.

+10 to +20

1616

IndeterminateII +15

+13

+13

+28

+joto 40

+loto +20

+10 to +20

II Indeterminate

II

1114

+10 -k +20

12 STv +30 to +40 4-30to +40 +3cto +40

I11111

Indeterminatetl

MO to +50++oio 50+50 to +6o

+50 to 60II

so to 60+50 to +606 II II +50

-17..-

TABLE 5

TRANSITION TEMPERANJ.RES ‘

T-2 and T-2R STEELSLi@e Point

Plate Aspect Transition Temperature Range”°F Transition Temp.:-

Thick- Ratio Eased on Energy Based on appear= ‘F based on ap-

ness “ to hw. load of fracture as. ~arance as de-defined by Z of’shear fiiiedby ~ Of

~.shear

..

3/lk~~ b’ Indetermbate

e“ 11

12 ‘;’” ‘t,..

16 : - 1’

l!! 4 11

6 II

El !1

12 zero to +20

1*” 4 Indeterminate

6 II

T-a s~L .,

-20 to -10

-10 to - 5

-10 to zero

+10 to +20

-10 to zero

+10 to +20

+30 to 4-40

zero to +20

-17

-18

“-5

‘ +,2

~.

-7,.

+iO

+33

+13

+30 to 440 +30

+6o to +75 +66

T-2R STEEL

3/4” .4 (In sufficient Data)

6 (In sufficient Data)

16 Indeterminate -V@ ‘Lo+50

-..

..,,-

these latter two diagrams w~l~ not determinwitransitiontemperature any: .,..... . . ‘., ,

-,, b’et’’ei.thanthe percentage of shear diagram~, For”this reason,~~,qppear-,,-“!’’..,...,,.,.,,:. ..+,,,..,!, ,,, ...... .. .* .: .,. : .,.-. ,,,,.,,.,ancq ,qf~~hefractke (as defined by the percent~ge,,;of,shea~) ha~’’beenus~~,.

,, ,, ,.,,,,,,,. ,.to deter~ine transition temperature range and single values of the trans-.......,,..............-.....”........ . .......... ,. . ..4.+...................,,,, .<..!,,.... . .,,,

ithn temperature. Transition temperature results so found are shown in,.

Table 4 for T-1 steel,and,,in,Table 5 for [email protected]::steels. ..

,,’,. In Table 4 relatimg to the T-1 steel, note that the transition

temperatures have been given for the various thicknesses, aspect,~atios

and,blocks indicating position within the plate, as indicated on the plate

layout figures. The transition temperature was Indeterminate by a con-,.,..

sideration of energy to”’rnaximumload in all except six instances.’ The

,.:. ,,. ...transition temperature did no-tvary significantly from block to block for

., ,.

tbe 1/211thick plate or:for the 3/4Vtthick plate except that the trans-,. -,

ition temperature was quite different ~m.blocks I and II for the Aspect

Ratto 16.* No reasons have been formulated to ,pxplainthis exception

It was thcmght bes% to incorporate all of ths data frop the various blocks

and determine the overall transition temperature for each thiclmess from

these composite res~ultsa Table ~“’summarizesthe transition temperature

ranges and the single values of transition temperature where both are

based on

ture for

the appe~rance of the fracture.

Figure 17 is a plot of the single

T-1 steel against aspect ratio for

involved. It will be

(AR) is aftected by a

one exception at AR 4

noted that transition

values of transition tempera-

te four plate thicknesses

temperature for any given

change in thickness with the thicker plates (with

far the 3/.4Mthick plate) showing the higher transi-

—— -- .——. ..— —. —

-JfJ-.

tion temperatures: For a,given thickness of plate the transition tempera-.,..

tures also generally increase with an increase in the aspect ratio.

FigW.e 16 reprpse~ts a repetition of.Figure 17 with a second.,, ,,.

parameter, the width of the te$t specimens, added, In order to cog@ete..

this diagram, an extrapolation of the test results in l$ttthickness was

made to widths of 4 and 10 inches- .With th~ two parameters, thickness

and width of specimen shown together, it is clearly indicated that as

width is increasad, for a given thickness~ the transition temperatures‘1 .

also increaseti This increase in transition temperature due to width

can only be accounted for by a modifying of the strain conditions at the.+.

notch since metallurgical effects may be,assumed to remain constant for-.:

a particular plate thickness.

Due to a combination of metallurgical and geometrical causes,,.

transition temperature rises with increasing platethic~ess. Also, in-

creased thickness causes a decrease in the average stress at maximum load

for geometrically sitiler.specitierw ‘Perhape these tw~ facts may be

coupled together by referring the degree of localization of stress or

.,strain at the nbtch to thickness

!:.,When the transition temperatures are plotted on widt~,<as‘in

Figure 19, rather than onwidth divided by thickness, the cur~s’for the

‘&iffetientthickn~sses, a~though’n~t ’reversingin order as they were in

‘plottingunit energy valties~a~e seen’to rise less steeply and appear to

be more nearly para~lel.’” “-This mig~t b~ coti~~deredto indicate that the

geometrical effect of kidth had”i~{t~is i~ay’beenmore completely elimina-

ted than in Figure ~7~TR~~idual :differendesbetween different thicknesses

—. -.. .—

-~lgy.

4. on the{ei&& scale wo-tidthen:be’a~tribtiteidto”’fion-g~olietrical(metallur-

gical) causes. ; -’ : ‘ “ “4”.“-:“,:”’:.”””.: .’

The limited;”results-.oftests oh T02%te&l”.[F%@re 20) exhibit

the same trends p~evi6usly noted for T-l%t@el.’~:’Ths-transition tempera-

ture for t = 3/4n is abotit100 lower than f6rT=1:Steel. Here, this

difference may certainly be Attributed td’mdtallur~~ alone. The Iriamd,, .

1P thicknesses, however, ha~e a transition temperature of’about the

same as

or firm

for T-l’steel. Insufficienttestsprevent any gdheral conclusion

compariso’tis~, .1.,,

Limitedliests ‘onT-2R st~el Indicate that the transition temper-

ature of the re-rolled 3/4? thidkplafes’ire about 400 higher than for

T-2 steel. (See Figure 20). It is etidegt’thai”’rnetallm~~alchanges

took place which incfiased the notbh=sensihitityd? fib*’T-2steel. (See

“ grain size classifictitions”under”~ection etititled~ml~~teri~sm).

,, ,: !,.’”” ‘:,”4. l“” 1.,;,,.,

CQ~LATION WITH TESTS BY OT.-,. ,. ,.. , ‘ .“” ,,,,.,

The Univer~ity of California(2) has reported on wide plate...!. ,,‘~,,’

tests for steel plates of 3/41]thickness in widths varying from 12 to/!’:.

108’1,or interpreted in terms of aspect ratio, tests were made withAR

varyinggreater

rose as

. . ..,

from 16 to W....

widths,there is.:,

the width of the

.-, .-,r

Although only a few tests were made in the,,“..,, ,.,.

an indication that the transition temperature,, .,4 ,“ ‘. ,,

plate was increased, with a trend toward con-

stant transition temperatures at great wid-ths~ This is in keeping with.,: .,,, ., !. ,, : i ● .

the trend fo~d in this investigation. It can be inferred from the test,,.,,,. .-F ,,, ,..-,,,..; 1.!,“ .,’. .,.,!..,!,.’ ,-;;,’:.

of the 1/2” and the 3~411thick pl,atesof this investi.gatlonthat plate.,4,’ .::” . ,’~ ““.{.! :..,)...” ,’.’

., .-. -. —

.,. J,

-21 -

.,,widthsof around 12w are nearly wide enough -Loestabl~sha “valuefor

transition temperatures bfinternally” notched specimeks of gr6at btdth.

The University of Ca”lifornla(2~reported investigations made

..on geomettiically‘similarspecimens. The specimenS reported were edge --

notched; with the thickness varying from”l/2f~to 1 l/81t* The thickness

was “theas rolled “p”lata”thiclniessin each instance. Since the width of

the 1/21~thick specirnenmas”only 211~ i% may be seen tliatthe “aspectratio

‘was in the lower range, whereas the teats reported ~erein”cover aspect

ratios uy to’and including 20, Howeve~z’”ttietrend”’titransition’tempera-.,. .,

“ture Shovii’ky;+heCAlifotiia tests, naniily,that transition tempertiture

may be expected to increase with plate thickness, confirms %he results

of this investigation, (Other California 2) tests using,.

notched specimens with thicknes$’vaging

frgm 1 1/811thick plates, show that with.,

from 1/211to 1

constant width

31’wide edge

1/8”,all machined

and va~ng thick-

ness the tranqiti6n tmperqture is generally lower for the thinner plates.

The same type of specimen using plates of ~~a:rolladcrthicknesses showed

more or less the same trend,with the exception that the transition tem-,.

peratures are lower than for the specimens machined from a single plate.

Professor. R. P~rker has reported(3) on work performed at the

University of California concerning the action mf geometrically similar,..

specimens which mere,a>l machined from ai~,ann:aledplate origi~ally ~t

thick, The speqimens we~e 3“, 6’1,and 3.2’1wide and 3/16n,3/8nand 3/4tt.,

thi@c* The stress raiser W3S a squarehole in the center of the plate,,,,

with its sides at 45 degree~ to the longitudinal axis of the plate. The

radii at the corners of the square hole were made proportional to plate..: !.~.

.-.

y 22.-

thicknessz Prof~ssar Parker points out’ttit geometrically similar

notched specimens e~bit a marked size effect.’ This Qtatement was

made ~tiththe assumption that th6 specimens were metallurgically

<.sitilar, arkl:~ht the s“izeeffects in.xstbe due to geometky.. Not enough

etidence is presented to permit a study of the trends and transition

temperature; ‘Professor”Parker contends that geometric similarity is

destroyed before the timum load is reached, This is a contention

which our intist~gatio’nsupports, sincb’1~ is”felt that after the crack

at the notch has become Vi&ibley the notch actity is essentially the

same in all specimens a“ndthat the “original””dimensionalsimilarity is

destroyed... . ,.,,,,

CONCLUSIONS

The tentative conclusions permitted on the basis of test,,,<

results of internally notched specimens are as follows~.. ..:

1. Witp plates rolled from the same heat the thick plates shift from,, ,’

shear to cleavage fracture at a higher temperature than thinner plates*. . . ‘. ,.,.

,2. Transition temperatures, as judged by appearance of the fracture,,.

for plates of constant thickness (metallurgy constant) increase as,,, ,., /.;

width increases, tending to become umifo~. for large widths,-.. ..,’ ‘,”

.,3* The,averagemit stressatmaximuu.loadOf geometricallysimilar

notchedplatasindicat,e,sthat thickerplateswill withstanda:. ..,:,,, \

:,mall?,rstressintensitythant,hinnerplates. The amrage uni,tstress, ,,:

at maxtmumloadfor platesOf equalwidthbut of different,thick-!,”. ,,?.’..”,.,,

nessestendstowardthe same valueregardlessof thicknass~

L .— —. .— — —.

-23”,,

.

4* Unit energy absorption to m.@mumload for specimens failing in 100%

shear decreases with tncreased thickness for dimensionally similar

specimens; for plates of eqiml width but of different thickness the

thicker plates have a umit energy absorption greater than thinner

pl~t~Sm

5* Dimensional similarity of specimens d~fined by equal aspect ratios

does not establish geometric similarity of strah patterns when judged

6.

..

1.

2.

3.

by umit energy absorption for specimensfailing in 10G~ shear.

Differences in unit eqergy and transition temperature in plates of

different thicknessdue to non-geometrical (metallurgical)causes

are’not”fiompletelysegregated in comparisons made at equal aspect

ratio. It now appeads’’’th~{itisteadof aspect ratio (W *‘-1), another

function such as (W’~t~n), where m~ serv;”better foe segre-Q n>o’

gating the geometric from the metallurgical ef~dctsm.,,

BIBLIOGRAPHY

S. T. Carpenterj T. P. Roop, N. Barr, E* Kasten & Am Zen,SwarthruoreCollege, ‘iProgressReport on Twelve-Inch Flat PlateTestsil,Serial No- SSC-21, April 15, 1949 to the Eureau ofShips, U. S. Navy,

H. E. Davis$ G. E. Troxell, E. R. parker, As Boodberg, IL P-OfBrien, Universlky of California, “Final Report on Causes ofCleavage Fracture in Ship Plate, Flat Plate Tests and AdditionalTests on Large Tubes”, Serial No. SSC-~~ January 17, 1947, taBureau of Ships, U. S. Navy.

E. R. Parker, *YYb.eEffect of Section Size on the FractureStrength of Mld Steeltrin ItFracturingof &lAsltj p. 82,American Society of Metals$ 1948~,

7 ,,

4-

.ACKNQWI.EDGMENTS

,,, ,

The investigation herein reported has been under the direct

supertisionofSO T. Carpenter, Captain W_ Pm Roop, :mN (Retired) has

been a constant advi~er and collaborator. Th~ testing has be~n done

underthe supervision.gfA. W= Zen and E. Kasten. .’

Theodore Bartiiolomsw,Eugene Urban and Lawrence Robbins

prepared all specimens and assisted in testing. Drawinga of the report

were made by John Calvin, Roy Bosshardt aqd Hmry Rueger. Mrs. Ruth

..Sommerhas performed all stenographic duti~. . ,.

~he.investigat~rs are deeply tndebted to Dr.tiFlnnJonacsen,

Project Coordinator, and Dr. William

Structure Advisory Ccymittse,,and to. ,,.. , ,,.

much helpful advic~~ Y

. . , ..,.,, .’,

,., ,,:’,

f“ ,“., .,.

,L.

.,,

Baldwin .Chairmanbf the Ship-

t~e megbersofthe Committae, for

.,,

P,”,.

. ..,,.

%

.,.

.,.,,l. .! ‘., ., .“ ,,, .

. .....’-.. ,. 4

., ~., ,, ,;’! ,.

,., ., .,

,.,,

25

I

..--— ——— .

II

——

,

——— ———

--biDRI L HU_ES

——

-——— ——— ———— —

J

ASPECT RATIO = &

t DIA. OF DRILL HOLES

T. . . .

1“

T2-.. . . . . .

3“ ~’~-- . . . . . .._f34

111

y

_+- ------16~il 3“

‘2____ ___-.. m

DRILL HOLES

f —

ENLARGED

VIEW

FIG. I

TYPICAL SPECIMEN

EaWARTHMORE COLLEGE

9-6-49

.=-[3

E-15

.=-15 F-16 E-17

—9 ;

1–1 TD-4 D -5 0-6

G-8

G-12 ‘w.

+13 H-14

I-2

II F-21

+

G-5 H-3 H+

B-a 0-7 ~

❑ -3 B-5D-2

WI ❑ + D -3 G-7

I

It

m

n?

DE-27 c-32A.

I ‘“24I ‘“2’ I

‘-a FF

Z!!kiB-n ~-1,❑ -15

D-10 D-13 G-11— Diz8-14 B-I*

R44H-1.?

— G-16

0-15 ~+e B.lg

~-,* 0-21 D-[3

G-10 D -20

D-17 ~J/2 D-19

=-k#-d I H-[l IG-13

!G-14

1B- 17

I I III

G-la H+5 G-17

0-20__bd I “--l

~- 3“.8“- Dlf7EcT10N OF I?OLLIMG+

A– 2’X 8“

G - 4“X n“STEEL T-1

—D[sEcTlOH or ROLLING-

0- 6’= 8“

H- e’k [2”

G - 12-X 24”

I- 15’x 24”

STEEL T-1E- 8s: i2’r

F- 2+ 18”FIG. 2

F[G. 33“~ PLATE LAYOUT T-1

sWARTHMCI?E COLLEGE

,1,

+ PLATE LAYOUT T-1Swmmm couxGE

II-QmI

SCPLE - 0.5”= 8“ SCALE– 0.5-- B“q-7-49

9-7-49

.,

F1

E

I

Y

G-1

IG-2

I

T rG-203D-1 D-3 D -4

G-3D-2 C-5 D -6

c-? D-9 D-1 0

G-40-6 0-11 0-12

G- I I G-2 / WA?,

II

E -4c-4

G-3

1c-9 c-lo C-[1

E-8c-j 2

E-9

E-10 E-II E–12j Ci3 C-[4 I C-15 .

G-5 I G-6 I )-3$

~ /

I I

6 2’—.

=60-+

6 DIR~lON OF ROLLM3G _

c - 4’X B’E- O-X12”

G- ll$x24-

STEEL T-1

D– 6-X9”— DIRECTION G+ ROLUUG d

G - 12“)! 24”

STEZL T-1

FIG. 4 FIG. 5l’PLATE MYOUT ~-i

SWARTHM31?E CGLLEGE

9-6-49

1+’ PLATE LAYOUTT-Isw.wm+tmFIE WLLE.5E

9-7-493C4LE- a5.= *-

5Ck E— 0.5. = E’

‘h ,

,..,

XG-45

I m-3K- 3 X* 7 XG-I 2

XI-4 Xe -5

x B-a

xH-5XD-4

XG- 4 XG- 8 K-13XB-7

Xc-b

HH-0

XG-13XD-5

XG-V X-14Xn -9

XH- ? Xc-lo

‘OR CHA RP’f TEsT

LEGEND DIREcTIoN OF ROLLW4G

XG-3/i’X 12”X 24” FIG. 6,,XH-3/4 X 9’” x 12”

,,XD-3/4 X 6“X 12”’

XB-+4a’ X 3“ X 12”’

LEGEND

XG - rx r2”x Zi’

~[’ ~LATE LAYOUT )( D-~ 6:x 12;

4 STEEL T-2 ;~;;.; ;..; l;,5WARTHMORE COLLEGE

x1- I“)(l<x 30”8-29-50

DIREcTION OF ROLLING—.LEGEND

XD - O-X 12-

XH-9-X 24.

XG- 1 I XG-4 I XI- 1 I XI-5

XE- 1 XE-2XG- 2

XD-5 xD-5 X1-2 %1-61

XD- 1 x0 -2 xc-7 XC-4 xc-s

Kc-d XC-2 MC-3XE-3 xE-4

KC-4 x+ K-6x1-3 X1-7

XD-3 XD-4 ‘-‘0 ‘-” ‘-’2

XG-13 I xE-5 xE-6 I XI-4 I X1-B

I IXG- 3 I xc.- 5 I I

XH- 1 XH-2 XD-1

m-z

X H-3I ‘H-4 hz--1 I

SE CT ION-2

REROLLED T03/4” THICHNES3

SECTION- I I.REROLLED TO +4 THICKNESS

)iH-5XD-4

2-12%24”

XD-5

HH-4X D-4

DIRECTION OF ROLLING

FIG. 7

I“PLATE LAYOUT

ST’ EEL T-2

SWARTHMORE COLLEGE ,

e-20-50

L 1o’– 0“

II GIG I III

I‘0

-4 IG

IG

IG

I II I

B 10 BI ❑ c c

c c c

G G c c cI

RE -ROLLED

STEEL T-2R

LEGEND:AR

❑ -3-X 12” 4

FIG.8A

l~” PLATE LAYOUTI - t5° X 24 20

C-4)’JX 12” 6

G-12”X 24” 16

FIG. 8B

%’PLATE LAYOUT

FOR RE-ROLLED T-2 STEEL

STEEL T-2SWARTHMORE COLLEGE

SCALE: &= 1’-0’

SWARTHMORE COLLEGE

9-12-50

THICKNESS AND WIDTH THICKNESS AND WIDTH

4

6

a

12

15

lb

20

— 4

b

a

.6114,5’

6,, Ii,,-

22b.—

19‘,12

15

1612. 16m 24. w

15m 20. .?5“ YJ” 15’,2G

STEEL T-2

Indicates mecimm tested(

FIG. 10ASPECT RATIO PROGRAI,l T-2 ;

SWARTHMORE COLLEGE I

FIG. 9A5P!ICT RATIo PROGRAM T-1

5WARTHMORE COLLEGE

THICKNESS AND WIDTH

1/2’, >!L,, 1 “ ~:,, lN

2..

7 L“

611

w—

5“ 6r’—

9“

~~,, u“, J

4. 5“

L“—

& 15“ 18”1 ) 112

15

[6#.

—-1, ” 16.

1 1

25’, -!:,”15’, m2G ~ ,

STEEL T-2R

FIG. IIASPECT RAT!O PRoGRAM T-2R

SWARTHMORE COLLEGE

.29.

70000 ‘-’-..

4

— b 1,21’U-J in eo~ —

.I k..” *4U

3 i-

i I1,

Id4>

cc1- \u-l

500001-

Z3

w($J40000aew .—.

L,

2“”

. .0

4 a 16

ASPECT $+TIO

FIG. 12 VARIATION IN UNIT STRESS AT MAXIMUM LOAD

FOR VARIABLE THICKNESS AND ASPECT RATIO,

T-1 STEEL, 100~0 SHEAR FAILURES.

SWARTHMORE COLLEGE

.-

L0F

20

1

+

G.

L2

t=l”

a 10 12WIDTH-INCHES

3 VARIATION IN UNIT STRESS AT MAXIMUM LOAD

FOR VARYING WIDTH AND THICKNESS, T-l STEEL,

100y, SHEAR FAILURES

SWARTHMORE COLLEGE

kl II

0 4II

6 6 10 12 14 16 la 20ASPECT RATIO

FIG. 14 AvERAGE UNIT STRAIN ENERGY TO MAXIMUM LOAD FOR

VARYING ASPECT RATIO AND THICKNESS, T-1 STEEL ,

100~m SHEAR FAILURES

SWARTHMORE coLLEcE

4000

I

;-3000

3 4Iu IKILlL

U-j2000m 4)

— ~~

-1x,

z 7i=i7-_ “X “INDICATES ESTIMATED VALUE—

I*g 1000

Idzw ●

1-

530 ( (

. . p2

3/4 1~ I b2

THIcKNESS

FIG. 15 AVERAGE UNIT ENERGY TO MAXIMUM LCAD. VARIATION FOR

T- I STEEL WITH VARYING THICKNESS AND WIDTH. 100 %

SHEAR FAILURES.

SwARTHMORE COLLEGE

.3j -

.- ,

4000

3000

2000

IOoc

3\t=9Z”

o 2

I

+

. .t= I)..”

I

=+’-~=,11

-i

12WI DTH-l NCi E$

FIG. 16 AvERAGE UNIT STRAIN ENERGY TO MAXIMUM LOAD

FOR VARYING WIDTH AND THICKNESS, T-1 STEEL,

100%f. SHEAR FAILuRES

SWARTHMORE COLLEGE

1

[

t= I “ii

~=3,4°

c

. .

iASPECT RATIO

FIG.17 TRANSITION TEMPERATURE FOR T-1 STEEL

WITH VARYING ASPECT RATIO & THICKNESS

SWARTki MORE COLLEGE

“32’

I

,,1 1II,! 4 6

9-..‘.

‘.‘. -..

.—.

:

—...

8 12 16 iASPECT RATl O

FIG.18 TRANSITION TEMPERATURES FOR T-1 STEEL, SHOWING

EFFEcT OF ASPECT RATIO, THICKNESS AND WIDTH OF

SPECIMEN.

SWARTFIMORE COLLEGE

o 2 4 6 8 10WIDTH- INCHES

12

FIG.19 TRANSITION TEMPERATURE FOR T- I STEEL

WITH VARYING WIDTH AND THICKNESS

SWARTHMORE COLLEGE

T -1’

I

L-

-4\

\

0

:

m

ml

_Ll--

m

0lL

u)w

-34-

.-

APPENDIX I

TABIES OF EASIC DATA

1,

TABLEI-1

ispectRatio 4

Code: T-1 spe~imm si~e:l/2mx 2n

Block Spec. Temp. To VisibleCrack To Maximum Load To Fracture Xnergy % lnternalNo. 1<0. Deg Energy E Load EnergyEl Load EnergyE2 Lomd Difference Shear Notch

F in.lbs. lbs. in.lbs. lbs. in,lbs. lbs. E2 - Elin.lbs. +

Acuity

I A-3 o 2,740 46,500 6,4oo 52,000 U,300 14,0c0 7,9~ 100 1/32” notch11 A-2 -lo 3,000 47,2~ 6,503 53,8~ 7,350 53,600 850 0 1?11 A-32 ->0 3,200 47,500 6,750 52,900 14,700 l?,oco 7,950 100 nn A-1 -18 3,200 .48,300 6,500 53,300 8,500 50, DO0 2,000 811 A-4 -20 3,250 47,30 6,350 53,600 11,6oo 1+1,000 5,250!! A-31 -20 3,500 49@30 6,300 53,200 6,300

30 ~53,2~ o 0 17

11 A-17 -20 2,700 46,500 6,350 53 ,o~ 13,800 17,000 7,450 100 1711 A-M -64 3,850 48,200 7,850 54,000 7,850 54,mo o 0 11

11 A-5 o 1,69o .Q2,200 6,060 51,600 13,370 13,000 7,310 100 1131 A-22 -25 1,990 42,800 6,800 53,200 14,200 15 ,Goo 7,400 100 If11 A-6 -32 1,760 42,800 6,760 53,700 13,680 13,000 6,920 100 11II A-23 -35 2,100 42,000 7,250 53,500 7,250 53,300 0 0 1411 A-24 -@ 1,850 .L29600 7,350 5LS400 7,350 54,40Q o 0 11

la A-7 -52 l,w 42,500 6,870 54,700 6,870 54,’W3 o 0 It

Cole: T-1

Block Spec. Temp. To Visible CrackNo. No. Deg. EnergyE Load

F im.lbs. lbs.

111 A-9 otl A-25 -25N A-10 -3511 A-1.l -35!1 A-26 -MIt A-12 -40

Iv A-1 3 0Ur A-14 -233rl A-15 -20!1 A-16 -3211 A-30 -42It A-33 -5514 A-29 -6o71 A-34 -&+

l,m2,4001,9502,1002,5002,200

2,800

393533,3503,6004,0003,0003,2202,8CI)

43, ao44,90043,50941+,500.I+.J+,lW44,200

45,5~L7,50047,300L@,wm.!+8,300.L6,50047,3@48,200

TABLE I-1a

d~speckRatio 4 Centinuecl

SpecimenSize:l/2°x 2“

To hxinwn Load To Fracture Energy $ lnternalEnergy El Laad Energy E2 Load Difference Shearin.lbs.

Notchlbs. inilbs. lbs. E2 - El ]y

in.lbs. zAcuity

6,350 53* 900 12, %0 13,0c0 5,950 100 1/321T hole7?333 54,500 15,1C0 13,00Q 7,800 103 “7,5fJo 55,0m U+,400 16,000 6,900 lm “6,2oo 53,500 6,200 53,500 0 0 ‘16,800 54, 1~ 6,800 54,100 0 0 “6,2oO 5L,400 6,200 54,400 0 0 “

5,8507,2006,6m6,7006,7007,4006,0007,500

51,%0053,1@352,80053,80353,2005.J+,200549~o54,000

14,33016,95015,40315,300

6,7oO16,5006,0c4)8,000

12,CO013,00017,Oco17,00053,20016,00054Yo~53,700

8,4509,7508,WO8,6000

9,1000500

100Mm103I-m

o103

00

n

W

H

11

!1

n

u

11

-36-

TABLE 1-2

A9pectRatio8

Code:T-1 Specimen~ze: 1/2!’x 411

Block Spec. Temp. To VisibleCrack To K.wimm Load To Fracture l?mev~y %No.

InternalNo. Deg. EnergyE Lo&d Ener~vEl Load EnergyE2 Load Difference Shear Notch

F in.lbs. lbs. in.lbs. Ibs. in.lbs. lbs. F2 - El yin.lbs. 4

I c-3 o 4,250 76,500 13,750 95,200 1.3,750 0 0 1/3211 hole

n c-8 ZL 3,750 72,5c0 14,500 ?3,7~ 37,000 16,000 22,500 100 nII c-6 o 3,500 73,700 16,250 94,800 Lo,000 25,000 23,750 lCQ n!! c-m o 3,370 73,900 15,000 91+,800 ‘w,500 20,000 25,500 100 IIII c-23 -10 3,750 73,700 17,000 95,000 40,703 16,OOO 23,700 100 IIII c-5 -lo 3,500 71,600 15,000 95,500 15,000 95,5Q0 o 0 !111 c-7 -20 3,750 7L,400 1s,100 97>7~ 2E,250 83,000 10,150 25 11

TABLE 1-3

AspectRatioM

Cede:T-1 Specimm Size:l@x 8“

Block spa . Temp. TO VisibleCrack TO Mxhtwi Load To Fracture We rg-y $ InternalNo. No. Dec. NnerqyE Load EnerRyEl Load EnergyK? Load Difference Shear

FNotch

in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2-E1 ~in,lbs. h

Acuity

I!1

II

11

11

11

tl

11

11It

11

II

19

,8

It

1!

E-13E-14E-27E-3E-1E-16E-2F-15

E-17E-29E-28E-5FA9M+EME-16’

+10o00

-10-lo-20-21

Lo302010100

-$

n ,00011,5009,50012,00010,0009,00010,00010,000

6,8CQ7,00010,0007,500E,5006,6006,3006,5c0

136,5oo140,30013s,500143,600140,000136,800139,200140,600

132,300133,m139,200133,000132,800133,3m132,800139,500

45>o~50,00032,5C046,5oo4b,00020,00033,50033,250

39,m43,30043,00027,10031,00050,90054,00028,00’2

168,3m173,100172,000177,000177,400160,500173,000175,200

172,500172,5C0173,900166,500169,000179,800177,700170,500

117,000125,000>2,500119,000118,00020,00033,50033,250

112,300101,2CO10F!,000

27,10031,00064,700103,00028,COO

20,00026,000172,00015,00022,000160,500173,000175,200

20,00015,00020,000166,500169,000170,00094,000170,500

72,00075;000o

72,50074,000

000

72,900

57,90065,00000

13,wfJ1+9,0000

1001000

100100000

1001001000

i350

1/32”hole11ItIIII11!!11

11

!1

II

H

II

II

11

,1

TLBLE I-3a

kpeet ~~kio 16 Continued

Code:T-1 Specinm S~ze:l/21!x 811

Block ,Spec. Temp. To VisibleCrack TQ ::kXiGIUllLost To Fracture Energy $No. NO. Deg. Znerg:yE Load

InternalEnerflyEl Lo~d EnergyE2 Load Difference Shew Notch

F in,lbs. lbs, in.lbs. lbs. in.lbs. lbs. E2-E1 ~in.lbs. 4

Ac~~ity

E-7E-qZ-8E-21E-20E-30

w1000

-lo-lo

9,2307,5007,50c7,0W8,5CKI6,030

135,300133,800134,200133,700lx, 800134,00C

43,0C043,00048,5C037,50036,50020,51?o

172,930176,300175,400173,50C174,500160,mo

175,6oo167,500176,cKx3172,&)0176,700M ,700167,000

101,000m9,000113,50037,500%,50020,500

116,5oo33,0C041,m80,0c0126,50029,50027,500

20,CKII63,9001?,700173,500174,500160,0m

58,Oco66,00065, OOO

000

100 1/32”hole

100 “lCO Ho “o “o 11

,1

11

t!

11

Iv LloE-12FP23E-nE-25E-26E-32

o-lo

11,50010,500

8,000ll,m

7,5005,5007,50C

14c ,500135,700135, mlx, 500135,0C0135 ,mo135,000

46,50033Jo~41,GQ352,50048,00029,50027,500

25,co0167,500176,000ly , 5m

a ,000166,700167,003

70,omo

100 IIo “

If

4; “100 ~jo rlo “

11

It

M

11

17

-lo 027,50078,500

0

-20-20-25-35 0

I

TABLE I-l

AspectRatio 19

Code: T-1 SpectitmSize: 1/2” x ?.5”

-., - m--- m- 1,: ..:hl - f-,,.-,.!. m, 11. + Fnl>rn Trlna To Fracture Ener~y % Internalergy E2 Load Difference Shear...—~ —— Motch

+n lha 7hq. in.lbs. lbs. E2-E1 ~in.lbs. 4

BLOCK apec, ltill~, LU VL2LULG U, =~r. ,“ “.U.., ,IU IL. -----

NO. No . Ileg EnergyE Load Fnm.uv 131 Load EnF in,lbs. lbs. L.-.w. ---

F-1 9,500 153,000 67,0W Zol,ooo 159,000 ‘y,oix 92,000 100 1/32”holeI

IIIIM

11

111M11

1!

11

it

203,.500206,3#205,000194,700

155,0001.60,0G0152,000

32,250

30,00025,00321,000

194,700

91,000~9,55091,000

0

lm100100

0

F-6F-4F-22F-5

8,5W7,5005,00Q9,500

15.4,800151},00015L,500160,200

6L+,00070,45061,00032,250

200

-10-20

11

,,

100lCO

o1000

!1

31

II

11

If

11

206,500207,000195,000208,Oml207,500197,000

156,ocol#,ooo

29,00075,@o46,CO028,000

Ui,ooo30,030195,000205,000207,500197,000

93,5~93,000

014,030

00

8,0009,5009,5~9,0006,OOO4,000

160,000159,700163,600162,800162,000174,500

62,50055,00029,00061,00046,co028,000

F-7F-9F-17F-18F-23F-8

o0

-10-10-20-60

TABLE 1-5

Asnect Ratio 4

Code: T-1 Specimen Size: 3/4” x 3“

B1 ock SFec. Te~p. To Visible Crack To Xaxinwl Load To Fr~cture Enerw % Interns.1ho. No. Deg. Energy T Load Fnw~ El Load Ener~ E2 bad Difference Shear NOt,ch

F in.lbs. Mm. in.lbs. lbs. i~.lbs. lbs. E2 - El yin.lbs. .4

Acuity

11 r?-15 o 5Y500 88,000 18,650 110,300 42,5CCB-16 6,250

27,000 23,850 10Q .046rI Hole-20 90,300 18,650 112,200 i+.)+,ooo 30,000 25,350 100 Ii

%4 -20 6,000 92,100 19,400 113,000 39,000 23,000 19,600 100 if

B-lo -20 6,075 92,%0 18,300 11>,600 19,470 113,400 1,170 0 !1II B-12 -20 5,125 89,600 17,500 112,900 42,503 27,0C0 25,000 100 11

B-l& -30 6,250 83,800 21,300 114,500 21,300 114,500 0 0 IIB-1 -jo 4,L~ 87,700 17,250 11.4,50017,250 114,500 0 0 n

B-9 -30 5,525 90,000 18,750 113,900 23,150 111,000 4,40C 10 11II B-n -40 6,000 94,000 19,425 114,300 20,500 114,000 1,075 0 11

I

TABIE 1-6

Aspect,RaLio 8

Code: T-1 Specimen Size: 3/4’1x 6“

Block Spec. Temp. To Visible Crack To MaxinnunLoad To Fracture Energy $ Internal

No. No. Deg. Energy E Load Energy El Load Energy E2 bad Di.ffermce Shear ilotch

F in.lbs. lbs. in.lbs. lbs. in.lbs. lbs, E2 -El ~in.lbs. 4

Acuity

H 10121

311 9

1000

-lo-lo-20-20-30-40

17,500H?,00018,00019,00018,00017,7601%,00015,00019,300

165,m0165,300W, 800167,000167,Go0168,500169,300168,~co175,800

54,00044,0!)047,500%,00050,00048,4004(5,00040,00038,600

200,000195,500202,400196,000202,900202,500202,200205,000205,90Q

118,0004.4,000119,00038,000124,000122,000116,00040,00038,600

40,000195,50015,000196,00033,5~35,0m37,000

205,cmo205,900

64, O@J

71,:00

74,:0073,6oo70,000

00

10001000100lmmlo0

.046” Hole11It

Ii

11

H

n

71

II

Ti!RT3 1-7

Aspect Ratio 12

code: T-1 Specimen Sb2e: 3/4” x 9 ‘t

Block Spec. Temp. To Visible Crack To Wxiumn Load To Fracture Energy % Internal

NO* No. Deg. Energy E Load Energy El Load Energy E2 Load Difference Shear NotehF in.lbs. lbs. in.lbs. lbs . in. Ibs. lbs. E2 - El ~;

in.lbs. I

11 H-8 20 16,900 218,800 80,600 285,300 212,500 .45,o~ 131,900 100 .04611HoleH-6 10 16,500 221,200 90,000 284,000 2oo,2m 40,000 110,200 100 MH-7 10 17,500 222,2m 78,Oco 2f15,700H-5 o

219,(I3O16,500

20,000 lIJ,000 100 “224,400 58,000 281,900 58,000 281,900 0 0 11

H-10 -lo 16,000 220,500 73,o~ 279,500 73,000 279,5~ o 0 If11 H-9 -20 19,500 230,0W 62,800 285,500 62,800 285,500 0 0 11

TABLE 1-8

Aspect Iiatio16

Code: T-1 Specimen Size: 3/4” x 12”

Block Spec. TmIp. To Visible Crack To Msximum Load To Fracture Energy $ Internal

No. No. Deg. Energy 1! Load Ener~ El Load Energy E2 Load

F

Differefice Shear Not.ch

in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2 - El ~

in.lbs. 4Acluity

I G1 x 23,0MI 2~4,J@ 136,000 369,Om 350,000 50,000 214,000 100 .0L6~’HoleG2 20 23,000 282,800 135,500 369,100 322,500 109,000 187,000 103 ‘iG5 o 21,503 284,803 129,M0 379,5W 354,000 63,200 225,000 la) “

!1 G-3 -lo m ,OCC 287,800 129,000 3731400 341,a30 54,000 212,000 100 11

G4 -20 22,000 286,800 121,500 375>500 121,500 375,500 0 5 “!1 G7 -20 24,000 294,8C0 F37,W0 359,C00 87,000 359,CO0 o 0 “

11 G6 +l+o 16,200 266,800 127,300 362,400 33$,600 35,000 211,300 103 “G8 30 26,003 280,000 138,0Lm 366,500 13~,0Dl 366,500 0 0 “G12 20 25,00) 281,Q30 134,002 365,7u3 365,000 15,00C 231,0c0 100 “

M G-l? 20 22,0C0 276,400 123,000 364,000 327,000 66,000G1O 10 26,Y30

204,000285,500 94,800

100 “352,500 949800 352,5~ o 0 If

0-11 0 17,400 275,500 145,700 370,900 145,700 370,900 0 0 ft!1 G-9 -lo 23,500 283,900 80,000 347,500 80,000 3L7,500 o 0 “

1+0 -

00000000000*0*00000

-!-.

..m

.!j

IIl-l====.=

HHs====

r. 1

TABLE 1-11

Aspect Ratio 12

Block Spec. Temp. To VisibleCrack To MaximrnLoad To l+acture Energy $No. No. oe~ EnergyE Load Ener~ El Load Ener&vE2 Load DifferenceShear Notch

F in.lbs. lbs. in,lbs. lbs. in.lbs. lbs. E2-E1 ~in.lbs 4

acuity

IV G? 40 32,c00 357,Soo 21L,o~ l@l,loo 599,o~o 22,000 385,000 180 1/16”holen G1 39,000 358,1+00194,0C0 483,0CQ 512,0m 79,MOII

318,OCO 1’20 “G2 $ 39,0m 36!3,000 200,000 487,.U30 395,000 363, ooo 195,000 55 “

,4 G6 30 35, m 359,000 203,500 i+88,5C0 218,500 l&, ooo 15,000 10 “

v G3 75 30,000 326,m30 198,000 449,500 5.L9,~o m ,000 351,000 lm “r, C-7 50 42,5m 363,900 198,003 478,7~ 502,000 55,Om 30.L,000,t ~G8 20 30,CW

100 “354,800 122,020 468,403 122,000 4W,4CM3 o 0 “

,1 o-l+ 10 31,0CC 358,000 147,W0 480,0CK ll+7,coo 4~o,coo o 0 11

TLDLE 1-12

Jls ps ct Ratio4

Code: T–1 Suecimen Size: 1~11x 611

Block Spec. Tap , To Visible Crack To !Jaximm Lo&d To Fracture EnerFJ !$ InternalNo. No . Dep. Energy E Load Enerp.yH Low! Ener~y G Load Difference Shear Notch—. .-

F in.lbs. lb:.. in.lbs, 15s. ‘in.11>s. lbs. E2 - El ~in.lbs. L

IM

It

,1

IfIt

rnn11

11,1

II

,1

,1

,1

11

11

H

11

D-15D-3D-)+W6o-5D-2o-lbD-160-13

D-9D-17D-19B20o-1oD-18D-8D-n0-12D-7

38,5m33>40335,000%,50045,0001+6,00040,00033,0~28,2C0

32,50035,CMJI+4,00040,330.!+4,000.!+4,000.K2,0HI41,60035,00040,m

332,300329,000333,5~331,500340,5003M, 5003%,00031.8,300343,o~

328,500322,0003L3,5003112,000339,0m339,000337,700336,000320,003327,000

104,000109,500110,00090,000115,000108,500110,000119,0W83,400

116,000l16,0)o110,000100,2CC106,ooc115,200119,000112,000118,000114,000

40$,90C405,000401+,000399,~o39%,320402,000401,330398,E300427,600

415,500./+0+,500403,500403,CO0396,ooo1101,8004d5,000399,CO0392,50038s,000

1011,000

109,500157,00090,000250,000108,500255,(xIO235,50084,250

116,0Lm116,000263,ooo102,200105,000262,000125,0002.JJ+,000285,000246,000

406,9CC435,0003M 500399,@Jo13,000402,0m1L5,000125,000426,o0o

415,500.!+06,500145,000403,000396,000135,000L02JOOC135,GO0120,000125,000

0

0

L7,01Xo

140,0000

L45,000116,500

850

00

153,00000

1/+6,8026,000

132,000167,o0o132,0m

o

0

50

100

0

1001030

0

0

1000

0

1005

100

10C100

3/32”HoleIIil

M

n

,1

,,

,,

u

14

,1

n1,

II

M

II

nr,rr

TABLE I-12&

Aspect Ratio ‘$

Code: T-1 Specimen Size: 1*1Ix 611

Block Spec. Temp. To Visible Crack To Maximum Load ‘foFracture Energy % InternalNo. No. Deg. Eneru E Load EnerW El Load Energy E2 Load Difference Shear Notch

F in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2 - El Nin,lbs.

111 D-23 30 349OOQ 324,500 107,800II D-28 30 36,OW) 334,90 lll,oco?1 D-2L+ 24,000 301,000 106,omII D-.27 z 27,500 309,C-oo 110,000II D-26 32,000 325,3~II

100,600E-25 z 34,Om 322,500 Izo,000

!1! D-29 60 36jom 32$;300 l12;ooo71 0-21 20 14,000 26T,0~ 25,000

n D-22 83 8,0(m 236,300 ml ,0001!*4 G17 6,5oo 247,600E

45,000II;-SG17 6,2w 237,5~ 85,00071*6 G-17 75 8,500 234,500 !M,occlI*+3 G17 90 8,oO0 233,400 89,Mx)

* Cut from G17

404,400W&, 50Q40$,000400,200403,90039997004m ,000303,000369,30033$,500375,0-003k3,m361,500

107,800 LO4,4OOllljooo 404,500252,000 145,000133,000 398,800176,000 350,000208*000 100,000245;000 _=--,lg;o(x)25,000 303,000256j000 i20900045,000 33~,50085,000 375,00058,COO 348,000

243,000 110,000

00

lL6,00c23,00075,@o168,000-J~3,000.,--

0

4Acuity

0 3/32” holeo “102 n

5 IT

20 “100 “100..~o J.H.Saw cut

mo “o “5“o “MO II

TABLE1-13

Aspect.Ratio 6

Code: T-1 Specimen Size: l+” x 9“

Block Spec. Temp. To Visible Crack To !~zximm Load TO Fracture ,j%ergy RX “Tllterflal

l\]o. No . Deg Energy E Load Energy El LCad Energy E2 Load Differerice Y=m !Iotctl

F in,lbs. lbs. in.lbs. lbs. in.lbs. lbs. !32-El 1417,

in.lbs. L,

11 18 100,000 507,500 210,Oco 56L,0cc 568,000 185,000 358,000 100 3/32”~0~~11 5 :; 67,000 459,500 200,000 56k,000 4/+0,0:0190,000 240,000 100 ‘!1! 13 50 84,003 495,000 165,000 568,000 165,000 568,000 0 0 “lt 4 50 70,000 @o,2C0 205,0Cc 568,500 477,009 155,000 2’72,000 100 “If 16 4c 6.L,500 463,000 206,000 578,500 534,000 150,0m 3m,ooo 100 “M 14 30 ,70,0W 480,0Q0 193,000 579,000 193,000 579,0m o 0 “!1 15 @ 71,000 l+79,0m 203,000 574,0N 203,000 574,000 0 3 “

1,

TABE3 1-14

Aspect Ratio 4

Cede: T-2 Specimen Size: 3/4~rx ?rix 12rf

Spec. Temp. To VisibleCrack To MSJ&UUM Load TO Fracture Energy %No. Deg. Energy E Load

InternalEhergy El Load Energy E? Load Difference Shear NotCh

F in.lbs. lbs. in.lbs. lbs.. in.lbs. lbs. E2 - El ~in.lbe. L

XB-9

XE1

XB-3

x13-f3

XE-7

XE-6

o 5,0C0 94,000

-lo 5,000 93>5@3

-20 5>500 94,000

-20 5,750 96,703

-w 59590 94,m

-40 !4,5m 89,000

17,000 112,500 36,750 20,mc 19,750 100 .046°Hole

16,500 1.12,mo **375 35,000 21,875 100 11

18,250 114,200 25,0m 108,600 6,750 20 n

14,000 113,030 37,m 52,(M3O 21,000 60 n

13,625 114,000 13,625 lu,000 o 0 11

15,003 115,000 15,000 115,C-W o 0 H

1-15

Aspect Ratio 8

Code: T-2 Specimen Size: 3/L” x

TO Visible Crack TO Maximum Load To Fracture Energy $ InternalSpec. Temp.

No. Deg. Ener~ E Load j?ner~ El Load Energy E2 oad Difference Shear Notch

F. in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2 - El ~in.lbs. 4

Acuit ~

XJP5 +10 10,000 161,700 l+l$,ooo .046’1204,500 103,OOO I+o,oco 59,000 100Hole

Xo-1 o 12,000 165,000 43,~o 207,3W 112,CO0 25,000 69,000 100 “

XE-6 -5 10,OW 161,80Q U,ooo 204,800 102,000 40,000 58,000 100 “

XD-3 -lo 13,00Q 168,500 45YNo 206,500 54,0~ 198,000 8,500 15 “

XD-2 -20 12,500 169,500 .L6,50Q 20S,900 49,500 26,500 3,0W 15 “

XD-4 -30 10,000 164,0C0 28,500 199,000 28,5N 199,0m o 0 ‘1

TABLE 1-16

Aspect 8atio 12

Code T-2 Specimen Size: 3/4kH

Spec. Temp. To Visible crackNo.

To Maximum LoadDeg. Energy E Load Energy ElF

Loadin.lbs. lbs. in.lbs. lbs.

InternalTo Fracture Energy %

Energy E2 Lmad Difference Shearin.lbs.

Notchlbs. E2 - El w

in.lbs. T

ill-9 +10 15,m0 229,500 68,500 28k,700 185,000 )+5,000116,500 100 .046’1

XH-1 o 16,250 226,w 77,5mhole

291,300 163,50c 70,000 86,000 100 ~fl

XH-7 -5 15,000 231,500 76,0cQ 293,500 155,000 215,000 79,000 50 l!

XII-8 -lo 15,0C0 231,700 42,000 276,500 42,CH30 276,50Q o 0 11

m-3 -20 16,5c0 230,wm 71,000 293,000 79,0m 281,500 8,000 10 11

m-5 -m 16,250 235,700 57,5CQ 293,002 57,50) 293,000 0 Ofl

TABII 1-1?

Aspect Ratio 16

Code:T-2 SpecimenSize 3/4fux 12’1x 24”

Spec. Temp. To Visible Crack To 5fzxLmm Load To Fracture Energy $

No. Deg Energy E

Internal

Load Energy El Load Snerg,yE2 Load Difference Shear Notch

in,lbs, lbs . in.lbs. 1’0s. in,lbs, lbs. X2 - El ~

in. its. L

10 306 2015 201 2011 103 1013 104 05 014 0

-202 -208 -309 -40

21,00020,00021,0001%,00020,00020,00023,00031,00018,00024,00018,00023,50021,00019,000

292, koo296,000301,200296,500294,500295,000301,600309,000294,500302,600300,000304,100308,801312,600

116,00012.6,030130,020130,0:’0116,5C0ll+o,o,2066,000113,02Cll?,000120,000140,00012k,500122,5007?,500

370,Loo375,000374,5C0375,800374,500376,200352,800379,5m373,50037?,coo386,700392,000391,200379,000

335,000300,000279,030300,000291,000272,00066,0201.26,000207,0:0W+ ,000146,000129,500122,50077,5~

25,0co45,000

200,00060, ow

11s ,000182,000352,80037fi,ooo323,000364,500391,9:0330,030391,200379>000

220,000174,0C0lLL,000170,0C0174,500132,000

013,Oco90,03044,0006,0005,00000

1~~ .04k” hole100

1,

55 ,E100 ,1

,1

:: 11

0 11

10 11

30 ,1

15 1110 11

10 11

10 11

0 ,1

TABLE 1-18

Aspect Ratio 4

Code: T-2 Specimen Size 1“ x 41t x 8’1

Spec. Temp. To Visible Crack To MaximnmILoad To Fracture Energy d InternalNo. Deg. Energy E Load Energy El Load Energy E2 Load Difference Sh~ar Notch

in.lbs. lbs. in.lbs. lbs. in.lbs. lb. E2 - El yin.lbs. 4

Acuity

6 +20 9,002 153,400 29,0m 187,0C0 71,500 25,000 4-2,500 100 1/16”hole

u +10 12,003 163,000 25,500 187,500 68,000 33,000 42,500 100 11

9 0 10,500 165,000 24,500 191,700 71,500 35,000 47,~o 100 !7

7 0 12,500 168,500 25,000 191,500 70,000 30,000 45,000 100 !1

8 -lo 7,200 158,0C0 32,%o .193,CO0 56,500 167,500 24,000 30 II

1 -20 10,003 163,000 33,000 191,500 33,000 191,500 0 0 11

t

TABLF 1-19

Aspect Ratio 6

Code T-2 Specimen Size: 1!1~ 6!!x 8!1

Block Spec. Tamp. To Visible Crack To MaximJM Load To Fracture Energy 6 Intw na.1

No. No. Deg Energy E Load Energy El Load Energy IQ Load Difference Sh~ar Notch

F in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2 -El ,?,,,in.lbs. I

3 +20

1 .2010

i 107 106 08 02 -lo

16,000

22,00016,00017,50022,00018,50013,50017,500

225,000

2.40,OQO221,800237,200236,400235,000232,000233,700

54,000

53,50051,00055,00052,00057,500@, 50052,500

270,000 131,000

271,800 138,0M272,200 100,350271,020 65,000271,000 139,000273,200 98,500273,000 50,150278,300 89,000

45,000

41,000205,000259,00040,00021.5,000272,500246,000

77,000

84,50049,35010,00087,00041,0007,65036,500

100 .046“hole

100 “30 “22 IT100 1’33 “10 “33 “

TABLE 1-20

hspect Ratio 8

Code: T-2 Specimen Size 111x 8H x 121!

Spec, Temp. To Visible Crack To Maxinmm LoadNo. Deg.

To FractureEnergy E Load Energy El

EnergyLoad

% InternalFmergy E2

FLoad Difference Shear

in,lbs, lbs.Notch

in.lbs. lbs. in.lbs. lbs. E2”- El ~in.lbs. L

6 50 28,0m 289,000 76,0XI 336,030 200,000 63,003 l12,0fM 1!20 1/16 IF hole

km 26,I+oo 293,600 92,5C0 3&2,6oo 200,000 78,0CKI 107,500 lCO n

1 30 20,5aI 280,5cQ 68,000 346,500 U7 ,OCO 287,000 62,5C0 30 H

2 10 19,500 281,8(M 88,000 346,80C198,000 130,mo 110,000 70 n

3 -lo 18,500 285,400 86,0m 355,6oo135moo 303,0C0 49,000 w 11

5 -20 17,003 292,900 80,0c0 354,1m 80,000 353J50C o 0 rl

TABLE 1-21

Aspect Ratio 12

Cede: T-2 Specimen Size: 1’[x 12” x 24”

Spec. Temp To Visible Crack To MaxtiwrJLoad To Fracture - Energy g Internal

No. Deg Ener~ E Load Energy El Load Energy E2 Load Difference Shear Notch

F in.lbs. lbs. in,lbs. lbs. in.lbs. lbs. E2 - El yin.lbs. 4

Acuity

5 50 47,0~ 417,000 152,500 @,m 372, Wo 130,000 220,000 102 1/16 H hole

4 40 31,0m 3%9,500 163,000 L93,00Q 393,000 140,000 230,000 100 “

1 3 34,0m L03,000 157,0m I@,ocm 372,000 2y3,0cn 215,CG0 75 n

3~ 40,0CKI 43.4, m 152,0co l+98,0co 376,ooo 195,mxl 224,000 75 “

2 0 40,0c0 &16,500 105,OOO 49LOO0 105,000 494,~o o 0 11

TABLE 1=22,

Aspect Ratio 4

Code: T-2 Specimen Size I+” x 61f

Spec. Temp. To Visible Crack To Maximum Load To Fracture Energy %NO. Deg.

InternalEner~E had Energy El Load Energy E2 Load Difference Shear Notch

F in.lbs. lbs. in.lbs. lbs. in.lbs. lbe. D - El ~4

Acuity

XW2 10 30,000 345,600 9$,000 Q3,400 133,000 397,~ 35,000 10 3/32” drillhole

X&l 20 30,0CHI 343,000 92,000 413,500 92,000 413,5~ o 0 It

XO-4 30 36,000 354,500 95,W0 .u5,000 208,000 215,000 113,000 50 71

x&3 .l+O 28,000 331,800 lm,ooo 1+13,200 210,000 170,000 110,000 100 H

x%5 76 35,0~ 334,90 94,000 400,900 224,000 145,000 lW,OW 100 !1

X0-6 100 37,~o 3U,200 82,000 396,400 222,030 145,m lLO,000 100 lt

I

-&--J

TABIF I-21

AsEct Ratio 6

Code: T-2 Specimen Size l& x

Spec. Temp. To Visible Crack To Maximum Load To Fracture Energy % InternalNo. Deg. Energy E Load Energy El Load Energy E2 Load Difference Shear Notch

F in.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2-E1 ~Ji

IAcuity

XH-6 w 52,002 5ol,ooc 155,000 59,5W 182,000 597,5~ 27,000 10 3/32”drillhole

XH-5 Lo 52,0W 1+98,000 160,003 593,5~ 390,0m 175,000 230,000 100 !1

XH-1 60 62,003 .497,200143,Om 581,000 1.J+3,000581,000 0 0 If

XII-3 75 60,000 L92,500 lW,00Q 578,700 443,000 1L5,000 253,000 Ill 11

TABLE I-24

Aspect Ratio 4

Code: T-2R Specimen Size 3/.4l~ x 3“ x ).2”

Spec. Temp. To VisibleCrack To MaximumLoad To Fracture Energy % InternalNo. Deg. EnergyE Load EnergyEl Load EnergyE2 Load Difference Shear Notch

F in.lba. lbs in.lbs. lbs. in.lbs, Ibs. E2 - El ~.4

Acuity

B-l 75 6,250 100,700 13,500 106,800 3.4,750 22,000 21,250 100 .046’1

B-4 74 9,0cm lm ,500 16,25o 107 ,Om 36,200 21,000 19,950drtll hole

100 H

I

TABLE I-25

Aspect Ratio 6

Code: T-2R Specimensize 3/4” x 4*H x 1211

Spec. Temp. To VisibleCrack To MaximumLoad To Fracture Energy % InternalNo, Deg. EnergyE Load EnergyEl Load EnergyE2 Load Difference Shear Notch

F in.lbs. lbs. Ln.lbs. lbs. in.lbs. lbs. E2-E1 yL

Acuity

7 85 11,000 130,200 23,000 154,300 65,000 30,000 42,000 10Q .0461idrillhole

4 73 lo,om 129,300 32,500 152,500 75,000 31,000 .42,5M 100 II

TABLE I-26

Aspect,Ratio 16

Code: T-2R Spscimen Size 3/4” x K?r’x 24’i

Spec. Temp. To Visible Crack To Maximum Load To Fracture En erg % InternalNo. Deg. Ener~ E Load Energy El Load Ener~ E2 Load Difference Shear Notch

F in.lbs. lbs. in.lbs. lba. in.lbs. lbs. E2 - El 1in. lbs. 4

Acuity

OR-4 60 29,0m 308,800 11O,OCO ?67,700 310,000 IAo,om 200,000 100 .0k61’ Hole

OR-7 50 26,002 302,800 142,000 374,w 337,0~ 35,000 195,m lco n

GR-3 40 27,000 309,500 124,000 376,9oo 285,000 215,000 161,m 60 “

GR-1 w 25,000 ?05,000 57,5~ 3k5,000 57,5cf3 345,cm3 o 0 n

GR-8 +10 27,500 311,500 138,000 384,500 1%,000 384,500 0 10 n

OR-6 -lo 27,0C0 310,000 1.29,000 ?s2,800 147,000- 30,000 18,COo 15 11

GR-2 -20 20,500 W7,8~ 68,000 368,000 75,@30 368,0C0 7,000 0 If

TABLE I-27

AspectRatio20

code:T-2R specimenSize 3/4nx 15” x 24”

Spec . To Visible Crack To Maximum Load %Te,mp. To Fracture llner~ Internal

No. Deg Ener~ E Laad Energy El Load Energy E2 Load Difference Shear uOtCh

F i.n.lbs. lbs. in.lbs. lbs. in.lbs. lbs. E2-E1 Y{7

in. lb. 4

1-1 +50 38,00Q 373,0m 170,000 L51,9m U-2,o~ 60,000 272,000 lCO .046’7drill hole

1-2 35 40,0C0 373,8c0 180,000 456,500 316,000 375,0m 136,000 40 “

I-3 20 34,0m 377,300 178,000 L61,800 230,000 449,500 52,000 20 “

-5~-

APPENDIX 11

GRAPHICAL SUMMARIES OF BASIC DATA

.

-5/-

75

1“-:.._.““--”-~:..-.,,..-

MAX. LOAD 50● 9 4I ). . .– ..––

vS. TEMP. $25 -–-–

-%0 -60 -40 –20 0 20TEMPERATuRE “F

ENERGY ‘0 .

TO MAx. f 4I* 4b #I*5

LOAD El I

:VS. TEMP -% -m “40 -20 0 20

TEMPERATURE “F

ToTAL

ENERGY $

E2 .

vS. TEMF+

15 .—. ..--. — bb d

4P10

●●

#b4D

~

%0 -60 -40 -20TEMPEU4TURE “F

‘IB333&iTEF.4PEU4TURE “F

100

T“’“0””=.-..

PERCENT .

SHEAR ; 50 -——

VS. TEMP. m.>.

f 00 -60 -40 -50 0 20TEMPERATURE ‘F

MAX . LOAD

VS. TEMP

ENERGY

TO MAX.

LOAD EI

VS. TEMP

TOTAL

ENERGY

E2

VS. TEMP

E2 ‘El

FIG. ~-l

:PECIMENS - A

~“x; ASPECT RATIO 4

BLOLX I CODE T-1SWPRTHMORE COLLEGE

8.31–49

~~fl-pfw]o

–m ~MERATuR~2Q*-4U

MAX. UIAD

vS. TEMP

ENERGY

TO MAX.

LOAD EI

VS. TEMR

TOTAL

ENERGY

E~

VS. TEMP

E2-EI

VS. TEMP

PERCENTSHEAR

vS. TEMP

~~yf::~F~:[~+

-60 -40 –20TEMPERATURE %

$,.””1~ ‘“- ‘“”””””””-:~“60 “40 -20 0 20

TEMPERATURE “F

i:-Elm4!~!‘:”--W -4C –20 o 20

TEMPERATURE ‘F

MAX. LOAD

VS. TEMP.

ENERGY

TO MAX.

LOAD E I

VS. TEMP,

TOTAL

ENERGY

VS. TEMP

E2-EI

VS. TEMP

PERCENT5HEAR

,S, TEMP

TEMPERATURE “F

FIG. n-2SPECIMENS- A,,.

~“x ~ ASPECT RATIO 4

BLOCK x COUE T–1SWAPTHM08E COLLEGE

9-1–49

7’“---L;]“-”D”-““‘1;”’j ~““”0““”””””

I

““--’50 —.

r3

25 -- —-– —.

% -60 “40 –20 0 20TEMPERATuRE “F

10

EIm ● J I

-5 —.””—.4.

j 1 “ “ “ ‘~80 –00

; -:,.; LJ -’;_20-20 0 20

TEMPERATURE %

fi~oTEMPERATURE “F

FIG. IL-3SPECIMENS-A

;X + ASPECT RATIO 4

BLOCK = CODE T-lSWARTHMORE COLLEGE

9- I –49

FIG. IL-4

SPECIMENS- A

Z“x& ASPECT R4TI0 4

BLOCK TJ! CODE T-1SWARTHMORE COLLEGE

9-1-49

75

J a ., ., ,’ > J,z J ,,MAX. LOAD 50 — — — ~ : ‘ - $

.

VS TEMI? $25

-ono -no -40 -20 0 20TEMPERATURE “F

ENERGY ‘0 .’ , .’*,TO MAX. ; J ; ::# J 4;*, ,

I tLOAD EI ; 5

VS TEMP. ~%0 .m ~40 .20 0 20

TEMPERATURE ~;J

TEMPERATuRE “F

MAX. LOAD

VS. TEMP.

ENERGY TO

MAX. LOAD El

VS. TEMP,

TOTAL ENERGY

E2

VS, TEMR

lo- .,

E2-EI f., ‘:: , ,

.’.,

VS TEMP. : ~ t

5< ./

J ,, , ,,%0

/ *,-60 -40 .? 0 20 ‘“p E!JEfE3

TEMPERAWRi i 20TEMPERATURE “F

40

z ,., .,4100

PERCENT mSHEAR % 50

VS TEMP. :<,0

I ,, , ,: ,,, ,

-80 -00 -40 -20 0 20TEMPERATURE ‘F

NOTE:FIG. IL-5

NuMBER ADJACENT TO SUMMARY FOR ALL 13LOCKS

[bHTWcKNESS ASPECT RAT[04PLOTTED POINT INDICATESNUMBER OF $PEC!MEN9.

STEEL T-ISWARTHMORE COLLEGE

200

T~“u* “;{4 b“ _.E

I50

MAX. LOAD* Icu

VS. TEMP. ~z

50—

–040 -20 0 40TEMFfR4TURE20°F

,2 f+~p~pp;

TOTAL ENERGY~

VS. TEMP.-40 -20 0 40

TEMPERATURE20°F

‘2’”PiammTEMPERATURE ‘F

‘= E13EB3BTEMPERATURE “F

FIG. D-6

SPECIMENS-C+id? ~3pEcT ~*T,o ~

—.BLOCK X CODE T-1

SWARTHMORE COLLEGE

0-3-49

~= :.=1

MAX. LOAD El

-20

‘:Y[[F];’-1” 1 I 1’ w

o 20 40TEMPERATURE “F

““pill 0 20TEMPERA7JRE % 40

FIG. II-7SPECIMENS- E

~*xB. ~EcT ~AT,o ,8z

BLOCK Z CODE T-1

SWARTHMORE COLLEGE9-2-49

FIG. J1-8

SPECIMENS–E

+’XU’ @SPECT RATIo !6

BLOCK ~ CODE T-I5WARTHMOWE COLLE~-

9–2-49

-.53.

200 —- ---- . . . . .

:N

-T . . . . .. . . ..

t50

f3

100 ““””-”“--T’””-”-

50 -— ‘,

-o& -20 40? EMFCRATUUC= ‘F

200 -.--..r- -..

It--’”””” ““ ‘ -

.-

.*150--

I ‘: “-:. “:

1 .-

:100 ——.— ——

x

50 -– -- L-–——, .-

!I,odo%0 -20

%PERATURE ‘F

MAX. LOAD

VS, TEMP.MAX. LOADvS. TEMR

ENERGy ToMAX. LOAD El

VS. TEMP, :EhEH+E3‘:’-0% -20~EMPERATURC20’F 40

ENERGY TO

MAX. LOAD EI

vS. TEMP.

;~;-;]---~: ,:_~””--T

-40 –20isTEMPERATURE % 4Elmi-i’”l-”””-TEMPERATUR~‘F

TOTAL ENERGY

E2

VS. TEMP.

E2

vS. TEMP

~.~-20

%MPER4TURE ‘F

i--20 0 20 40

TEMPEPATUW ,F

E2- El

VS. TEMP.E2-E,

vS. TEMP.

PERCENT

SHEAR

VS. TEMP.

PERCENT

SHEAR

vS. TEMP

FIG. II-9

SPECIMENS-E

+’XB’r AsPECT R4T[0 IB

BLoCK HC CODE T-1$WARTUMORE COLLEGE

9-2-49

FIG. 11-10SPECIMENS -E

,,+% B<’ ASPECT RATIO 16

BLOCK ZZ CODE T–1

SW&RTHMCUE COLLEGE

9 -2-’I9

200ri--77-f’W7- rzoo .,, , ,,

k, , ,

●,,,,J ●,,i

150

[00&*

30

-040 -20 &~EMPERATUP;?F

MAX.LOADvS. TEMP.

~lo:r. .Jm . . ..T II

-20 20 doTEMK-iATURE ‘F

1

IA&X. LOAD

VS. TEMP.

ENERGY TO

MAx. LOAD El

VS. TEMP.

ENERGY TO

TOTAL ENERGYtzE2 ~

vs. TEMP. i

NOTE: NUMBERS ADJMENT TOIIOTTED POiNT INDICATES NUMBEROF SPECIMENs. E#FSCRIPT ‘d REFERSTO BLOCI(D AND bREFERS TOBLOCK X =CIMENS.

FIG. II-14A - SPECIMEN TEsTED AT -OO° FNOTE:

NUMBER ADJACENT TOPLOTTED FOINT INDICATESNUMBER OF SPECIMENS,

FIG. 1-11

SUMMARY FOR ALL BLOCKSI “TH,,-KNEss AsPECT RAT~o ‘E4

sTEEL T-1

“ SPECIMENS-F

;X 9.5” QP--T RbT!O 19

BLOCX Z & ~ CODE T-1REV 9-2[-51

5wARTHMORE COLLEGE9–3 +9SWARTHMORE COLLEGE

ij+Ff-:}”+’!T’~-20 20 40

TEMFfROAIV?E “F“’’”~iEBEIEE

TEMPER4TJRE“F

u’::~:~+<’m~~1iAX LOAD El

20TEh4PE;ATuRE *F

40

MAx. LoAD

VS. TEMP.

ENERGY TO

MAx. LOAD El

VS. TEME

‘oTALENERG’’E13+HHb%0 –20

TEM&UPE *F20 40

‘:K:tEiwmE1-20 m

TEMPERATURE “F+

E2

V&. TEME

HHEEIll# -20TEMPERATURE ‘F 20

40 ‘EBEEB3TEMPERATuRE “F

EZ-EI

vs. TEMI?E2–EI

VS. TEMP.

EfEHEEI-+0 -20TEMPEI?ATuRE “F

20 40 1-”E TEMPERATURE“F

PERCENT

SHE4R

VS. TEMP

PERCENT

SHEAR

VS, TEMP

FIG. II-16 ..FIG. II-15

SPECIM”ENS-B

$ X 2? ASPECT RATIO 4

BLccN Z CODE T-1

SPECIMENS-D3’” ,,XX 6 ASPECT RATIO BBLOCK II CODE T-1

5WARTHMOWE COLLEGE

9-13–49

3WARTHF.+ORE COLLEGE

9-13-49

qf~+

–20 20TEMPE&uRE ‘F

40

MAX, LOAD

VS. TEMPI

~40I I I I I 1 1- 1 I

-2’0 0 20 40Temperature” F

. . .-

iBEEEEH“’’’’’i==+=%3 -20 20 40

TEMP~OATU@E “F 400- —...

TOTAL ENERGY?

E2 ~ 200~

VS. TEMi? ~ f

~40 - 20 0 Zo 40

ENERGY TO

MAx, LOAD El

vs. TEME~40 –20 o 20 40

TEMPERATURE”F

iHIEEE%0 -20 20

TEMPERATuRE ‘F40

TOTAL ENE-

E2

vs. TEME TEMPERATURE-F

EEFH-40 -20 0 Zo 40

TEMPERATURE%iEEIBER– 20 20 40

TEMPERATURE “F

EZ- El

VS. TEMP

‘EEEHB3a.40 -20 0 20 40

T EM PER4TUR E-F

PERCENT $SHEAR ~Y

VS. TEMP. sL+EEmBTEMPERATURE“F

PERCENT

SHUR

VS. TEMP.

FIG. II-17FIG. II-18

, SPECIMENS-H

+X 9“ 4SPECT RATIO 12

QLoCK n COD E T~l

SWA~HMORE COLLEGE

9. I 6-49

SPECIMEN9-G,“~ x 12”ASPELT RAT,O ,8

BLOCK 1 CODE T-1

SWARTHMORE COLLEGE

12-12-49

FEEHEEEl-40 -20 0 20 40

TEMPERATuRE*F

+EEEm3n.40 -20 0 20 40

TEMFERATLRE “F,

MAx. LOAD

VS. TEMP.

MAX. LOAD

VS. TEMP.

c:.~-20 20 40TEMPE~ATUFE “F

i“fB3RH-20

TEhWERiTURE “F.20 40

ENERGY TO

MA X, LOAD El

VS. TEMP

ENERGY TO

MAX. LOAD El

VS. TEMP.

E2

VS. TEMP. VS. TEMP.

ill-20 20

TEMFER;TURE ‘F.40

E2- El

vs. TEMF

E2- El

VS. TEMP.

100

2:50.

.+

-040

T T

-20 20 40TEMPE;ATUFE ‘F

PCRCENT

S HEAR

vS. TEMP.

PERCENTSHEAR

VS. TEMI?

FIG. ~-19 FIG, H-,20,, SPECIMENS G

:X12’” ASPECT RATIO !6

BLOCKU cODE T-l

SWARTHMORE COLLEGE

SPECJMENS - G

:x 12“ ASPECTR4T[a [6BLOCK IUI CODE T-[

SWARTHMCRE COLLEGZ

“’””+EBHEEl-20 0

TEMPE~A7URE ‘F40 eo

MAx. LOAD

VS. TEMP.

ENERGY TO

14Ax. LOAD El

VS. TEMP.

‘:::::EEEEEEI-20 0 40 60

TEMP&?ATURE ‘F

.-.

E2-EI ;fso “-

VS. TEMP. 5:0 ●

-z 0 0 40 60TEMPE2R0ATURE ‘F

i’:~

100 .—.

—.—

0

:20 0 40 60TEMPE%ATURr *F

33EIEERTEMPEiiT”RE‘F 60

E2- El

VS. TEMP.PERCENT

SHEAR

vS. TEMP

PERCENTSHEAR

vs. TEMP.

FIG. II-21

SPECIMENS- Ci’x4“ ASFECT RATIO 4RLOLKS CODE7-1SWb$lWIJORKCOLLECC

lo–la-do

FIG. II-22SPECIMENS -E

I X * ASPECT R~TIo 8BLOCKu- cou T-r

3WARFHUOPEco~~~~~9-7-40

‘g’”;’‘+&EEEEH20 40 60 *O

TEMPERATURE ‘F

:qTm_~l20 40 60 80

MAx. LOAD

VS. TEM E ~

~R~J~~2ErEEBElMAX LOAD El

0 20 40 eo aoEMPEP.ATURE “F

ENERGY TO [

MAx. LOAD E, 73VS. TEMP. ~

‘OTALENER’yIEEEBTlo 20 60 80

TEMP~ROATURE‘F

TOTAL ENERGY

E2

VS. TEMP.

qIHH3H20 40 eo 80

TEMPERATURE “F

100 .. .

2:~ 50 .,. 4*

.e0 T

0 20 40 60 aoTEMPERATURE “F

ZIIHEH0 20 40 60TEMPERATuRE ‘F

80

E2-EI

VS. TEMR

‘f+~+’fl-p-”fl20 40 @o 80

TEMPER4TUFE “F

PERCENTSHEAR

vs. TEMP.

PERCENTSHEAR ~

VS. TEME ~

PILI. JL<3

SPECIMENS-G

FIG. II-25SPECIMENS-G

ix I 2“ A5EECT ~ATIo 12— .—= ..—_BLOCK= & BLOCK T C013F T-1

SWARWMRE MLLEGE12-(3-+9

5WAETWMRE coLLEGE--

lz-l a-49

MAX. LOAD

VS. TEMP.

ENERGY TO

MAX. LOAD ~

VS. TEMP.

TOTAL ENERGY

Ez

VS. TEMP

I I I I Ill:20

Io jdm

T EMFE2R0ATuRE *F40

E2 -El

vS. T~P.

E2 -El

vs. TEMR

HEmEEBT EMPERATUFIE “F

PERGENT

SHEAR

VS. TEMI?

PERCENT

SHEAR

VS < TEMF?

FIG. II-26FIG. D-27

,,SPECIMENS- D SPECIMENS -DI;*X 6“ !$.$P@C7 PATIO 4BLOCK~ CODET-l

5WARTHMORFCOLLEGE

9-3-49

1~~ 6“ ASPECT RATIO 4

BLOCK T— CODE T-1SWAdT141MRE COLLEGE

10-21-49

-..

-5,%-

vS. TEMR X

ENERGYTO ~

MAX. LOAD Elz

VS. TEMP. s

TOTAL ENERGY

E2

VS. TEMP.

E2-EI

VS. TEMP.

PERCENT

SHEAR

VS, TEMP.

MAX. LOAD

VS. TEMP.

ENERGY TO

MAX, LOAD El

VS. TEMP.

TOTAL

ENERGY E2

VS. TEMP.

E2-E,

vs. TEMP.

PERCENT

SHEAR

vS. TEMP.

.

‘:f3m31H0 20 40 wTEMPERATURE “F

FIG. 1-28

,.SPECIMENS-D1~~ # ASFECT RAmO 4

BLOCK?5 CODE T-l$WART ME COLLEGE

10-2549

‘EHEEEBTEMPERATURE “F

MAX. LOAD

vs. TEMP.

ENERGY TO

MAX. LOAD El

VS. TEMP.

450I I I I I I I I

!iwMi4–64 O 10 20 30 40 50 60 70 80

Temperature ‘F

~i~

-64 0 10 20 30 40 50 60 70 80TEMPERATURE “F

“’;’yiLe.6.4 0 10 20 30 LO 50 60 70 80

TI)4PER*TURE ‘F200 __ .,..,. ...._r ________

V::-:p.~lo:l-.:l......~........l...j... ~ \ I .1–64 O 10 20 30 40 50 60 70 80

“’’”TTEEEEEEvS. TEMP. ~+

.64 0 10 20 30 40 50 60 70 EC

TEMPER AT URE°F

FIG. 31-29 SPECIMENS- D,lllX ~!l2

-T ~’lAELOCMS 1, ’U, IT CODE T-1

5WARTHMORE COLLEGE

200

MAx. LOADm

VS. TEMP. ~ ’00I1

0.-40 -20 0 20 40

TEMPERATURE”F

‘~~R~’EEEE-40 –20 0 20 40TEMPERATUREOF

30-

E2-E, :

VS. TEMP, ~ m;

0-40 -20 20

TEMPERATURE ‘f40

‘ ‘;;::iEBEEEH-40 -20 0 20 40

TEMFERATUREOF

FIG. ~-31SPECIMENS B-T-2

FIG. 11-30SPECIMENS - H

I +“X 9“ ASPECT RATl O 6

34 h’ 3“ ASPECT RATIO +

$WARTHMORz COLLEGE

0- 15-50

COOE T-1

3WARTHM3RE COLLEGE

1-10-50

“;’iBEl%fH-40 -20 0 20 40

TEMPERATURE ‘F

::; [~+++MAX. LOAD EI

-40 -20 O.zo 40Temperate RE”F

E2

VS. TEMI?‘oTALENERGyiwB-40 -20 0 20 40

TEMPERATURE *F

E2-EI

VS. TEMR

PER CENT

SHEAR

VS. TEMP

MAX. LOAD

VS. TEMP.

ENERGY TO

MAX. LOAD El

E2

VS. TEMR

E2-EI

VS. TEMP

PER CENT

SHEAR

VS. TEMP.

M AX. LOAD

VS. TEMP. :IiEEBEH-20

TEMPERATU!W ‘F

$~~’Emil%-40 -20 2G

TEMPERATURE ‘F40

,~TEMF’ERATUORL ‘F

40

[~:+++l=pq ,~EzMp ;’:~fl:~~~-40 -Zo 20 40

TEMPER AT~REOF’40 -20

TEM PERATU\E ‘F20 40

ffql++++f: .+-40 -20 20 40

00TEMPERATURE F

FIG. lT-32-SPECIMENS D-T-2

a/; x ~“ AsPECT RATIO 8

SWARTHM08E COLLEGE

9–15–50

iI+EEELRF].20 0 20

TEMPERATURE%

TEMPERATURE-F

TEMPERATURE ‘F

iBEBs-40

TEMPERATuRE%

~’:=-40 -20

TEMPERATUBE ‘F

FIG. ~-33-SPECIMEIYS H-T-Z

34 x 9“ A9PEC7 RATIo 12

$WAFTHMOR& COLLEGE

o – 15.50

‘x”’!FI13Hl-.20 -,0 0 20

TEMPERATURiOOF

75

w

.“ . .. ..—

w $0 . . . . . .m

TOTAL ENERGY f: 23

Ez .

VS. TEMP. - ~-20 -10 0 10. 20

TEMPERATURE ‘F -

E2- El

VS. TEMP.

PERCENT

SHEAR

VS. TEMP,

iEFiEEElTEMPER; TUR~OoF

:=-20 -,0 20

TEMPEW;TURi O “F

FIG. Itu34

,,SPECIMENS-G

; x 12” AsPECT RfiTIO 16CODE T- 2

5WARTHMORE cOLLEGE

5- 18-50

FIG. II-35

SPECIMEN- c

I x 4“ 4SPELT R*T,O 4

CODE T-2

SWARTHMORE COLLEGE

-5-$-.

q+HEEl-20 20 40

TEMPE~TURE “F

3jIEuHR0 20 40 00TEMPERATURE ‘F

MAX. LOAD

vS. TEMP.M4X. WAD

VS. TEMR

‘;:;”3HIEEEHMAX.@AD El $

-40 -20 0 20 m

ENERGY TO

MAX. LOAD El

VS. TEMP.

—.TEMPERATURE “FTEMPEF!ATURE “F

ToTALENRG~~ff~l

-20 0 40 00TEMP;;ATURE ‘F

150

I lTf

‘“TALENERG’E4=-20 20

TEMFfR%URE ●F40

E2

vs. TEME%

vs. TEMP.

!’:=:0 -20

TEMP~TuRE “F20 40

200

t; ,00 . .

$z

O*-Zo

QiZFikE“ 20 0 40 60

TEMP;;&TUFE %

Ez - El

vs. TEMP.

E2‘E 1

vS. TEMP.

qJ+f+++++p20

TEMPEiTuRE “F40

PERCENT

SHEAR

VS. TEMP.

PERCENTSHEAR

vs. TEMP.

FIG. ~-36SPECIMENS- D-T-2

I“x e“ A3PECT SAIIO a

?.WWHMORE CmLEGE

4 -27– 50

FIG. It-37SPECIMENS E-T-2

I’x 8“ ASPECT RATIOLCODE T-2

SWA.QTHMORE COLLEGE

‘STEMP‘!OEIEEEEH20 ’40 00 en iEEEEEl

i,,0 10 20 30 40 50 60 70 80 100TEMPERATuRE “F

MAX. LOAD . MAX-LOAD

VS. TEMP.

TEMPERATURE ‘F

2!~o 20 40 60 80

TEMPERATUP& “F

ENERGY TO #

MAX. LOAD El +

vs. TEMP. :

ENERGY TO

MAX. LOAD E,

VS. TEMP,

iBEH3110 20 40 80 aoTEMPE~TURE “F

‘OTALENn ,0 20 30 40 50 60 70 60 100

TOTAL ENERGY.

E2 E

vS. TEMP 6z

EZ

VS. TEMP.

—.TEMPERATuRE “F

.

Ez- E,

vs. TEMP.

TEMPERATuRE “F100

PERCENT %SHEAR : 50

VS. TEME ~

0●

0 20 40 no C4 H+EEEER0 10 20 60 70 80 100

T~MPER%RE50° F

PERCENT

SHEAR

VS. TEMP.TEMPERATURE “F

FIG. IC-38FIG. II-39

SPECIMENS D- T-2

Ik”x e“ ASPECT RATIO 4

SPFGI MENS G-T-2I“X 12” ASPECT RATIO 13

SWARTHMORE COLLEGE

SWARTHMORE COLLEGE

‘:x’’”‘ZEIIEF53043 70 ~

TEMPERATuRE%r

E2- El

VS. TEMi?

PERCENT

WEAR

VS. TEMi?

Em3040%6070 80

TEMPERATuRE “ F

TEEEEEm m 60 70 80

TEMPER5&JRE 0F

FIG. H - 40

swATw.ir w c< Li [m,;, —,: .!.

ENERGY TO ;

MAX LOAD El -z

VS. TEMP. :

.E2-EI ~

VS. TEMF j

PERCENTSHEAR

;#

VS TEMR ;

i3dIEHlmziTki3

20 40 60TE!”l PE%4TuRE”f

200 —

f

100

~2 o?

‘:i%il%ll:20 0 20 40 60

TEMPERATURE” F

509

w

TOTAL ENERGY

~2 400 . .

VS. TEMP.300 . .

2000 40

T;; PERATu RE ‘F.50

E2- El

VS. TEMP.

PERcENTSHEAR

VS. TEMP.

300

=

-.

200 .

100 - .

00 40

T~; PERATu RE ‘r60

FIG. II-41

SPECIMENS-G

3/:x 12,, A5PECT R&’j-,o ,G

CODE T-ZR

SWARTHMORE COLLEGE

11-4-50

FIG. II-42

SPECIMEN -I

3/4 x 13” ASPECT RAT,O 20

LODE T-2R

SWARTHMORE COLLEGE

-61-

ATPENBIX111

.LOAD-ELONGATION CURVEQ

.—

— 62-

..

M Ah’. LOAD 53,100 LBS.

Vls, ( ,RACK47,50 0 LB?,,

50 I \

I

I \/ I I

I40

I I\

I I

I I

w I I

:30/ I

xI

II

..\

)I

II

I20 1 I

ENERGY TO VI S. ICRACK 3,35o IN. LBS,\

tENERGY TO MAXI LOAD

ENERGY TO FR&TURE ~’=::wkdI 1

101

I1

II

II

I SPECIMEN SIZE:

I I L#x Z“x 8“

I0. I I 1

.1 .2 ,3 .4

ELONGATION IN INCHES

FIG. III-l

LOAD-ELONGATION CURVE

SPECIMEN A-14

CODE T-1

-20°F, 100% SHEAR

SWARTHMORE COLLEGE

ll-[a -50

I00MAX. LOAD 04,800 LBS.

/ *r’ I

I

75 1 \VIS. CRACK 73,700 LBS.

1

/ ! ! I L

: I

I I

f-50, I \*

, ENERGY TO VI S. CRACK 3,500 IN. LBS.

1 ENERGY TO MAX. LOAD 16,250 IN. LBs. \

I ENERGY TO FRACTURE 40.OC.3 IN. LBS.

I!

25 I FRACTUREI

I 25,000 LBs, 1If

ISPECIMEN SIZE:

I

I I/:x 4“X :“II

n I I,1 .2 .3 ,4 .5 .6

ELONGATION IN INCHES

;:;;;;}’ 53,moLBs.

50 /VIS. CRACK 413,300 LBS.

I 1

/ ! /

I40 I

II

II

* /If

:30 q 1I

x I

1;

1

I I20

ENERGY TO VI E., cRAc K 4.0~ IN. LBS.

tENERGY TO hlAX. LOAD

ENERGY TO FRACTURE) 6,700 IN Lea.

H

‘EEIEiZm.1 ,2 .3

ELONGATION IN INCHES

FIG. Itt-2

LOAD-ELONGATION CURVE

SPECIMEN .A-30

CODE T-1

-42”F, O% 5NEAR

SWARTHMORE COLLEGE

11-18-50

,.

I 00~;:fl,} 95,200 LB3.

I

1VI S, CRACK 76,500 LBs,

W [

L II I

x ( I I

50* 1

IENERGY TO VI S. CRACK 4,250 lN. LBS.

ENERGY TO MAX, LOAD

}13,750 IN, LBS,

ENERGY TO FRACTUREH

2131FKm.1 .2 .3ELONGATION IN INCHES

FIG. III-3

LOAD-ELONGATION CURVE

SPECIMEN C-6

CODE T-1

o“F, 100% SHEAR

SWARTHMORE COLLEGE

11-2s-50

FIG. ~-4

LOAD-ELONGATION CURVE

SPECIMEN C-3

CODE T-1

O*F, O % SHEAR

SWARTHMORE COLLEGE

11–2S -50

-6 J-

Jrm=mMAX. LOAD 173,900 LBS.

150 I/V!S, G RACK1 139,2 00 LOS

[

~ — ~ — — 7 — ‘.

wflea , !, I

x ENERGY TO vIq. cRhcK 10,000 IN, LBS,

IENERGY TO MA;. LOAD 43,000 INLBS.

ENERGY To FRACTURE 108000 lN.LB$. M I50 \

I –1 SPECIMEN klzE “

V2”X a“ x 12”

I FR.4$URE ;20 00< I LBS.l

0 I0 .1 ,2 .3 .4 .5 .6 .7 .U

ELONGATION INCHES

FIG. IU-5

LOAD-ELONGATION CURVE

SPECIMEN E-28

CODE T- I

20”F, IOO%5HEAR

SWARTHMORE GO LLECIE

11-27-50

250 ~~ .

MAX ~O*D 2 07,000 LBS.

~__ . ..-

w-- : —* - I200

# ‘p I “ Im

/

1

I

‘ ‘ “: ,j 1

ENERd YTO~ 19~CPACK 9,d ODIN lBS.ENERC .Y TO u h. LO D 55, 000 IN LB5,

.,” tENERd ;Y TO F3ACTU E 14 3000 lN, L@S~..

,50 .Li! I5. CR* VK 15~ 700 <es.

p,

. . . ..—. ‘)

l– --- . . .

100 —.. —.-.

I. . ...1

: F ‘-

~ .—–

50 ——

I ‘ sPZCIME N SIZE:l,; x 9.5,1X la,,

● FRAC URE

II 30’O\OLe=

o I .-,. — ..0 0,1 0.2 0.3 0,+ 0,5 Oe 0,7 on 09 1.0 1.1 1.2

ELONGATION IN INCHES

FIG. 31C-7

LOAD VS ELONGATIONCODE T-I ;’t F- 9

TEMF! O“F 100%SHEAR

5WARTHMORE COLLEGE2-13-50

ELONGATION IN INCHES

FIG. IE-6

LOAD-ELONGATION CURVE

SPECIMEN E -213

CODE T- I

o°F, O % SHEAR

SWARTHMORE COLLEGE

11–27-50

200

8( : :1

.,* AX L< AD AM D FI?Ao:TURE/ I 95,000 LB:,

.—.. -.. .—

/

Iv S CR!4 F 16? ,600 L 3s.150 ,-. —

EVE RGY TL Vls, <tRACK 9,3 30 LBS

100 ./.. ‘ME ‘G’ ‘< ‘Ax ‘-o~”)29,08 >0 LBS

ENE RGY r< D FRAC ?UREJ

1--1 -- -—I ~

50I I SPECIMEN SIZE;

).’$, ,,#’x 10,,

I I-- . . ..— .——

I 1o~ J,. II

0 0 l“” 0.2 0.3 0.4 0.5 0 6 0,7 0.9 0.9 1.0 1,1 1,2

ELONGATION IN INCHES

FIG. III-8

LOAD V9 ELONGATION

CODE T-1 ~F-17

TEMP. -IO”F O% ?,I’IEAF!

SWARrHMORE COLLEGE

2-15-50

1 I IMAX LOAD 113,000 Lns.

8-1

-8.

1100

IVIS. CRACK ,

I 9Z,1OO LB5,

I 1I I

75 /

I11

w I \ ,. I

;/

II I

50 I 1 IENERGY TO VIS. CRACK 6,200 lN. LBS.

t

ENERGY TO MAX, LOAD 19,400 lN. Ln$.

ENERGY TO FRACTURE 3*,W lN. LHA.1 +M

25 [ I FRACTUF!E 1h

I 1 23,000 LES

I 1I

\1

, SPECIMENSIZE. I

I 1I

0~“x 3“ x n“

.2 .3 .* .5

ELoNGATION IN INCHES

FIG, IJI-9

1 I.—.- .— —./ &..a!fL?!?:!Fs

1100 I1

IVIS, CRACK LIEJ800 LHS

I

75 / II

. I 1

. I

;/

1I I

50, s I

ENERGY TO V15. CRACK 8,250 IN LBS.

‘EFFiii#,1 ,2 ,3 ,4

ELONGATION IN INCHES

FIG. III-IO

LOAD-ELONGATION CURVE LOAD-ELONGATION CURVE

SPECIMEN B- 4 SPECIMEN 6-14

CODE T-1 CODE T-1

-20”R 100% SHEAR -30” F, 0% SHEAR

SWARTHMORE COLLEGE

12-2-50

I I I I I 1 III I LAM. LOAD 20.. WLB5. I I

200 1.

I-%

!

VIS. CRACK ~\

/ I 165,000LRI150

I I.&

1 1

iI 11

I 00 IENERGY TO V[S, CRACK f7#O0 IN, LBS.

ENERGY To MAX. LOAD 34,000 lN. LBs.

ENERGY TO FRACTURE I18,CO0 IN. LBS. \

‘DIS!?Pa,1234,5 .8 .74

ELONGATION IN INCHES

FIG. III-II

LOAD-ELONGATION CURVE

SPECIMEN D-10

CODE T-1

IO*FIOO% SHEAR

SWARTHMORE COLLEGE

12-2-50

I T:~\200 ‘Ax’ LOAD 205bOOOLP._ _

? FRACTURE

/ ;

/vl

‘;S. CRACK 168,500L8S

!50 I

I !I \.:100

,!

I

IENEWTOVIS.C”RACK 15,000 MLB5

I ENERGY TO MAX LOAD 40,000 lN.LB5.

ENERGY TO FRACTURE 40 000 lN. LBs,I

5 0 )SPECIMEN SIZE

I \ 3/4”x B“X e“

I001.2. s4

ELoNGATIONIN INCHES

FIG. III-12

LOAD-ELONGATION CURVE

SPECIMEN D-3

CODE T-1

-300F 100’%SHEAR

SWARTHMORL COLLEGE

12-4-50

$WARTHMORE COLLEGE

[2- 2-%

- 6d-

3001 1 I

MAX. LOAD 285,700 LBS,

d/ ~

I250 /

1

I\

v15.CR ACK 2 2z\zo o LBS.

200 .“ k

\

. —

? 150

z! “ - j

— ENERGY TO VI S. CRACK [7,s,30 IN. LB=.\ENERGY TO MAX. wAD qooo IWLBS

100 — ENERGY TO FRACTURE Z19,000 lN. LnS. -

1

I \

so

1- I“-— ——

SPEC!MEN SIZE:

—1 34’, ,“X ,,,, \FRACTURE .20,000 LBs, &

~!llllI I I

.1 ,2 .3 .+ .3 ,, ,7 ,a ~ ,0 ,,

ELONGATION IN INCHES

FIG.~-13 LOAD-ELONGATION CURVE

SpECt MEN H-7

CODE T-1

IO”F, 10o~ SHEAR

40o

I “rrr”-— MAX. LOAD 369,000 LBS,

350 n -..

\

300 --- I

VI S. CRACK 284400 Las.

I

.-

\

. .

250

I

I\

!flk 200 ax

[

I I \130

I1

II_ ENERGY TO “1S, CR+CK 23,0oo IN-LBS, \j ,N,RG, TO MAX,WAD ,36,00 .,...,.,

100 I ENERGY TO FRACTURE ase,000 IN. LRS

I I

\

I I “, FRACTU RE 70 ,000 L Ss.I

so 1 I

I 5PECI MEN slz’E: I

34X 12”X 24”1 L——

I I0“

.1 .2 .3 ,4 5 .6 7 .4 w ,~ ,2 ,,3

ELONGATION IN INCHES

300 .“.—1

~—-. r-_ rMA X. LOAD

270,5o0 LB$,

200

I

I150 — . .

( —1

tYTtHi0 .1 .2 .3 .4

ELONGATION

IN INCHES

FIG. 111’-I5 LOAD-ELONGATION CURVE

SPECIMEN G– I

CODE T- I

30”F, 100~. SHEAR

?.WARTHMORE COLLEGE12-13-50

FIG. LOAO - ELONGATION CURVE

lIt-14 SPECIMEN H-10

CODE T-1

-lo°F, 0% SHEAR

SWARTHMORE COLLEGE

12-5.50

“—MAX LOAD

}~

375,500 LRS,FRACTURE

350 / ‘!

/

-.

/I

I

I300

/ IVI%CRACK 28E,400 LB s.

*~ zoot

150

ENERGY TO VIS..CRACK 22,000 lN-LBS.

ENERGY To MAX. L.yfio

50

0.1 ,2 .3 .4 ,5

ELONGATION IN INCHES

FIG. LOAD-ELONGATION CURVE

III-16 SPECIMEN G-4

CODE T- I

-20” F, 5 % SHEAR

SW&RTHMORE COLLEGE

12-!3-50

. ..—

- .4A--

350

300

250

200

VI.:

I$0

Ioc

5C

200-MAX. LOAD 1678500 [email protected]. -

. ..II

\ . .

V!?,. cRACK

/ ] 1041200 L Bs. _150

I ;

I\

e I /: 100* I

I !$PECIMEN SIZE: \I“x 4“X 8“

I II50

F<ACTURE 4S,000 LBS.

L&-dENERGY TO VI% CRACK !e,000 [N-LB=.

ENERGY TO MAX. LOAD 34500 IN-LBS.

ENENGY TO FRACTURE 87,000 IN-LB$,

.1 ,2 ,3 .4 ,5 ,$ ,,

ELONGATION [N INCHES

FIG. IK-17

LOAD-Elongation CURVE

SPECIMEN C-19

CODE T- I

15°F, 100% SHEAR

SWAVTHMORE COLLEGE

12–16-50

I I IMAX.LOAD 335,800 LB%

>

A

Vls, c Fmc K Zel, 5 00 LB5,

II \

I\

I \EN E&Y TO $’1S.CRACK 28,000 IN- LB?..

\ENERGY TO MAX, LOAD 115,000 IM-LBS.

ENERGY TO FRACTURE 270,000 IN-LBS.

I \

\

I SPECIMEN sIZE:FRACTU RE 45 ,000 LB q

_ -l_ ,“X n“x ,2”

I

,2 .3 ,4 .5 .6 .7 .8 .e I.0

ELONGATION IN INCHES

FIG. III-19

LOAD-ELONGATION CURVE

SPECIMEN E-6

CODE T- I

30=F, 100~m SHEAR

$WARTHMORE COLLEGE

12-13-50

200

R

IMAX. LOAD

}1FRACTU RE

18&~00 LBs,

VIS. CRACK 187,300 LB$,1s0 —

-1 ‘ _

IImk 100x ENERGY To Vls. CRACK 1.9,000IN-LB

IT+?ldENERGY TO MAX. LOAD

1

37,000 !M-LBSENERGY 70 FRACTURE

50 . ~ ,..

IISPECIMEN SIZE:

I“x 4“ x 8“

oII j

,1 ,2 .3 ,4 ,5 .6

ELONGATION IN IN CHE5

FIG, 111-18

LOAD-ELONGATION CURVE

SPECIMEN C-8

CODE T-1

10”FI 0?. SHEAR

5WAPTHMORE COLLEGE

12- la–50

350

/300

II IVIS. CRACK 280,200 LE$.

I250 t

!I

III

II

:: I ;

150, ,

I

ilENERGYT0v15,cRACK 31,000 [N-Lss.l

-t%d100 ENERGY TO MAx, LOAD

191,000 IN-LB$.

ENERGY TO FRACTURE

II50

sPECIMEN SIZE:

l“x 8“% 12”

u.1 .2 ,3 .4 5

ELOMGATION IN INCHES

FIG. 111-20

LOAD-ELONGATION CURVE

SPECIMEN E-17

CODE T- I

‘IO-F, 0?. SHEAR

$wARTHMoRE COLLEGE

12-13-50

—.

-67.

500-MAX, LOAD 483,000 LBS,

I

I

I400 1

I

\

VIS, CRACK 358,400 LBS.

I \

II

300I

Iw I

\

& 1— Ix I I

200 I \

I ENERGY TO VIS. CRACK 39,000 IN, LBS.

_ -l ENERGY TO MAX. LOAD 194,CO0 IN. LBS. FRAcTURE79,wo LF, S, l—

1ENERGY TO FRACTURE 512,000 IN, LBS.

1I

100 I! 1 I

ISPECIME!4 SIZE: I

I“X [2”X 24”I

I

I [

In I.

.1 .2 ,3 .4 .5 ,6 .7 .* ,9 1,0 1. I 12 1.3 I .4

ELONGATION IN INCHES

FIG. 111-21

LOAD-ELONGATION CURVE

SPECIMEN G-1

CODE T-1

30” F, 100% SHEAR

3WARTHhiORECOLLEGE12-23-50

MAX. LOAD 399,700 LBS.400

/ \

vI.S. CRAC K 322 ,500 LBs.

300\

wu

2I

\

200ENERGY TO VIS. CRACK 34,000 IN- LBS.

ENERGY TO MAX. LOAD 120,000 lN–!-Bs.

ENERGY TO FRACTURE 288,000 IM– LBS. \

I

100I FRACTURE 100,000 LB%

I I

SPECIMEN SIZE:I

I &“x ~“~ ,2”I

I0

I

.1 .2 .3 .4 .5 -e .7 ~ .9 1,0

ELONGATION IN INCHES

FIG- IIL-23

LOAD-ELONGATION CURVESPECIMEN D-25

CODE T-1

ISO”F) IOO%5HEAR

SWARTHMORE COLLEGE

ENERGY TO VIS, CRACK 30,000 tN. L 0S. II200 -

ENERGY TO MAX. LOAD

} n122,002 IN. LBS.

ENERGY TO FRACTURE1 -—..

I I

I I100

I SPECIMEN SIZE:I

II I“X 12”X 24”

l-.1

I 1

n I I

.1 .2 .3 .4 ,5 ,6 ,7

ELONGATION IN INCHES

FIG. III-22

LOAD-ELONGATION CURVE

SPECIMEN G-8CODE T-1

20” F, O% sHEAF?

SWARTHMORE COLLEGE12–23-50

IMAX. LOAD

400 — - ..— — 404,400 LBs. —IF RACTURE

d ~I

, VIS. CRACK 324,500 LBS,

300 I

I I

I

I

I I

I I!

w.- 200+ 1 I 1 Ix ENERGY TO VIS, CRACK s4,0c.c IN. LBs,

ENERGY TO MAX, LOAD—I07,6W3 [N,LBS.

ENERGY To FRACTUREI I

100 - I

I I SPECIMEN SIZE:

I I I1+”X 6“X [2,,

1.. .

I I

nI 1

,1 .2 ,3 .4 .5 .6 .7

ELONGATION IN INCHES

FIG. III-24

LOAD-ELONGATION CURVE

SPECIMEN D-23

CODE T-1

30” F, O% SHEAR

.,,

...

SWARTHMORE COLLEGE

12-23-50

— .- -L—

-.4&

600MAX, LOAD 568.500 LBS.

1

I h

I ●

500 IV($. CRACK

I 4e0,2W LBS .1—.

I 1

I\

I400 i ! 1

I I

I I

I I

\

!0

~ 300 f !, I —

Y ENERGY TO VI E., CRACK 7Q.~0 IN. LBs. \

}ENERGY TO MAX. LOAD 205.00o 1~. LBs.

+-l+ENERGY TO FRACTURE 477,000 lN. LBs.I I

200h. —

1 I II I FRACTUREI I !55,000 LBS. ,

I I I[00 1

ISPECIMEN SIZE: r

I I $:X 9“X 24” I

! --

I I I

I0 . I I

.1 2 ,3 .4 .5 .6 7 .8 .9 lo 1,!

ELONGATION IN INCHES

FIG. XL-25

LOAD-ELONGATION CURVE

SPECIMEN GH-4

CODE T-l

50” F, 100% SHEAR

SWARTH MORE cOLLEGE1-8.5!

MAX. LOAD I I 2,000 LBs.

II

100 /I

,Vls CRAC K 935 ,000 LB s.

I

\

II

75I

II

\

u!m I

z ““ I I

I ks o, + EN ER’GY TO VIS. CRACK 5,000 1N, LBS.

ENERGY TO MAX, LOAD 19,500 IN, LBS. I 1)1 I“-ENERGY TO FRACTu RE 38,375 IN, LBS. FRAcT~RE ?5,000LBs-

1

I I I23 .

I I I

I I

I I SPECIMEN SIZE:

I I *:X f-x 12”I

I Io ,1 ,2 ,3 .4 ,5

ELOMGATION IN INCHES

FIG. 711-27 LOAD ELONGATION CURVE

SPECIMEN +%B- 1, T-2

-lee F,l OO~o SHEAR

SWARTHMORE cOLLEGE

11–1-50

u 00

574,EO0 LB5.

500

[ 479,000 LB$,,

4C0

[ ‘1 i; ! -

.. . . . - ““.-..,

.L– —.... ,-

Wy 300$* ENERGY TO VIS. CRACK 71,~0 lN, L@S.

tENERGY TO MAX, LOAD

)203,000 (N, LBS.

LNERGY TO FRACTURE i

200 -.-—’1 I

II II _ I1 I

I100

I

.5PECIMEN $lZE:

1&X 9“X 24”1,

I

~1 I ,; ~ ,n.1 .2 .3 4 .5 .6 .;

ELONGATION IN INCHES

FIG. TIC-26

LoAD-ELONGATION CURVE

SPECIMEN GH - IS

CODE T-1

40” F, 3% SHEAR

SWARTi+MORE COLLEGE

1-6-51

125

100

I

II

75 1

II

: I: / I

I

30, II !

1ENERGY TO VI S, CR4C6 $,500 !N. LBi.

ENERGY TO MAX, LOAD

}

13,625 lN. LBS.ENERGY TO FRACTURE

25 ~-- 4

,t&kw,1 ,2 3

ELONGATION IN lhl GHE$

FIG. ~-28 LOAD ELONGATION CURVE

SPECIMEN +k, T-2

’30” F, O?w SHEAR

3WARTHMORE COLLEGE

11-1-50

-6 y-

.—

.-. -

Z50 ENERGY TO Vl$, CRACK 10,000IN.LB5,

Ulm ENERGY TO MAX LOAD 44,000 lN.LBSi

ENERGY TO FRACTURE 102.000 IN LBS.

& ~..+’.~-200

I —

—..I

VIs, CBA Cv 180,000 LB?., .,150

:z

I.. . \

100

.— —-- —

I

50 —1 -– ‘ - ““~RP,CTURE 40,000 LBS

II1

-.]. ,d_

ISPECIMEN SIZE,

j 3/<X 6“X 12”

“.1.2 .3.4s.6 7B.91.o

ELONGATION IN INCHES

FIG.~-Z9 LOAD ELONGATION CURVE

SPECIMEN XD-6, T-2

‘5*F, 100% SHEAR

SW.4RTHMORE COLLEGE

11-1-50

300 I,-....

IMAX LOAD 284,700 LBS,

250? (

v Is CR ACK 229, n OoL&

I \

200 I. ..

–. ~.-.

I \: 150 — - – — .. —., .-

:I ! \

[

,,ENERGY TO VIS. CRACK

w

15,000 IN. LB5. - ‘----

ENERGY TO MAX, LOAD e8,500 IN. LBS,

100 ENERGY TO FRACTURE I 65)000 IN LBS.

-L --—1 \50 —

AFRACTURE 43,000 LBs,

I——.. . 1SPECIMEN SIZE:

*“X 9“X 12’” I

o.1 .2 .3 ,4 5 ,8 ,7 .8

ELONGATION IN INCHES

FIG.~-Sl LOAD ELONGATION CURVE

SPECIMEN ;’iH-9, T-2

10-F, 100”/. SHEAR

[?~. -Tfl250 ENERGY TO VIS, CRACK ,0,000 ,M LB,,

‘00+++++4ILL. IL..LI

50diH”&EELONGATION IN INCHES

FIG. 111-313 LOAD ELONGATION CURVE

SPECIMEN +D-4, T-2

‘300F, O% SHEAR

SWARTHMORE COLLEGE

11-1-50

“.‘— yMAx LOAD

}

~RAcTu RE .293,000 L@.$,300

—. .—.

~‘“ I “ ;i

1.

250

V15 CRAC K 235,700 LBS,

200

,,

150 I_

. .

cuERGY TO VIS CPACK 18,25’0 !N, LBS

w100 ENERGY TO MAX, LOAD

}ENERGY TO FRACTI.IRE 5’>’”; 1“’8s

-1

50 -1-- ,P,C,MEN;j~,1. *~x 9“% ,2”

0 .1 2 .3

ELONGATION IN INCHES

FIG,~-3p LOAD ELONGATION CURVE

SPECIMEN ~’iH-5, T-2

‘30”F, 0~. St+ EAR

...

SWARTHMORE COLLEGE

11-1-50

5WAFTHMOPE COLLEGE

11-1-50

-/7J.

.

.

350

300

250

~ 200

&

:

150

10(

3(

.—I

MAX, LOAD 4*8,000 !-0S.

VIS, C-R-Ac k 414,30 0 LBS.

~ ENERGY TO V15, cRACK jE,OOO IN- L=. . ‘ \I ENERGY TO MAX. LOAO 13~Q001NLB5 I I \ I I1.ENERGY TO FRACTURE 300,000 [N. LB5. — 1~

I II I \.- 1 I I

1’ I ‘“- ““- /

.1 ,2,34.5 e,7e.9 !.0

ELONGATION IN INCHES

FIG. ~-33 LOAD ELONGATION CURVE

SPECIMEN ~“XG-1, T-2

20”F, 100~e SHEAR

SWARTHMORE COLLEGEH-l-50

.?00

! 50

: 100 u

? ENERGY TO Vl$. CRACK 1o,500 lM-LBs.

_ ENERGY TO MAX. L04D ~4,500 !N-LBS. h

ENERGY TO FRACTuRE 71,5°0 lN– LBS.

150

I I II

II 1! FRACTURE 35,a00LBS.1

_ SPECIMEN SIZE:

I,, X 4“X a“ I

! I 1!o .2 .3 ,4 ,5

ELONGATION IN INCHES

FIG. m-35

LOAD- ELONGATION CURVE

SPECIMEN XC-9

CODE T-2

O*F,100% sHEAR

35

301

Z5[

20[

?z

150

100

50

0

‘ ““””~1MAX, LO&D 379,500 LRS,

—. .I

;11’

V13 CRACK 309,0 QOLB5.

I

II

/j 1“‘“

/ III

.-

—./ “

IIil ‘ ‘-

-. II

II

.. “.J I ““

UERGJ ,0”, ,. CRACK 1 /,,000 ,..LB=,

ti

dERGY TO MAX. LOAD 113,000 IN. LBS

dERCY TO FRAcTURE 12e,000 IN, LB$.

II

i—.

H—...! ISPEC, MEN *,ZE:

3/. 12“ x 24”-. —.

II12 .3.4,5

ELONSATION IN !NCHCS

FIG. m-34 LOAD ELONGATION CURVE

SPECIMEN ;’;G-4, T-2

O-F, 10 ~. SHEAR

SWARTHMOPE COLLEGE

[1-1-50

. .

200 MAX LOAD 194,000 LBS

FRACTUF!E 19!,500 L8S.

1I

VI3.CRACK 183,000LB3.

150 /I

w.;

I

II

100 ~

ENERGY TO Vl$, CRACl! 10,000 lN. LaS.

— EN ERGr TO MAX, LOAD 31,000 IN LB%

ENERGY TO FRACTURE 3a,000 lN, LE5. N

5EEi3EBl,1 ,2 .3 4

ELONGATIOF4 IN lNLHE$

FIG. IU--36

LOAD- ELONGATION CURVE

SPECIMEN XC-1

CODE T-2

-20”F, 0% SHEAR

SWAF!THMOUE COLLEGE1-8-91

9WARTHMORE COLLEGE

11-20-50

-..

-rl -

3“0rTrrT-1-rlMAX. LOAD 271,000 LU$,

250 \

11VIS. CRACK

236,400 LB$,

I\

200 1

I\

I Imx !30 I \

z I ~II ! \

100 EN EP.ZY TO VI!j. CRACK 2ZOO0 !N-LBS.

ENERCY TO MAX. LOAD 52~00 IN-LBS.

EN&RGY To FRACTURE 130,000 lN-LB$

I Iso

FRACTURE 40,000 LB s, \I II

—s ?ECIMEN SIZE: I 1

I r x .,,r .,, I

Io

.1 .2 .3 .+ .5 .a ,7

ELONGATION IN INCHES

FIG. IIC-37LOAD- ELONGATION CURVE

SPECIMEN xD-7

CODE T-2

10-F, 100 ~. SHEAR

300

II=J

T : :4

+CTURE‘272,500 LBS,

250

IllVls CRACH 232,000 LBS,

11—200

I l—

: 150 -1

z ~~

ENERGY TO V!S, CPACK 13,500 IN- LBS,

ENERGY TO MAX. LOAD 42,S00 IN- LBs.

100 ENERGY TO FRACTURE 50,150 IN-LB*, 1

&+II

50

‘%%” I 1

0,1 ,2 ,3

ELONGATION (N INCHES

FIG. m-3.9

LoAD- ELONGATION CURVE

SPECIMEN XD-B

CODE T-2

O-F , I O~. SHEAR

SWARTHMOFIE COLLEGE

1-10-50SWARTHMORE COLLEGE

l-a.51

.-. ,,,MAX, LOAD 336,000 LBS,

I

I \

300 ,

VIS. CRACK \] 2B9, W0 LB5

II

1250 \

r :

I

/1

200, -!I \I

. I ,

. I .

Y I I \[50 1! I 1 I I I I \l I

ENERGY TO VIS. CRACK 28,030 )N. LBS,

tENERGY TO M4X LOAD 78,000 IN, LBS, \ENERGY To FRACTURE 200,000 IN. LBS, I

I100I

1 I \

II

III FRACIUUE iI 83,000LB!., I

50 1

1I SPECIMEN 51ZE: I

I I“x 8“ x 12”I

1 I 1

I I I0

IJ .2 .3 .4 .5 .6 ,7 .8

ELONGATION IN IN LHES

FIG. III-39LOAD- ELONGATION CURVE

SPECIMEN XE - 6

CODE T-2

50” FJ 100% SHEAR

SWARTMMORE COLLEGE

1-.13-51

r I I I 1 1 1 I 1I I I I MAX. LOAD 354.100 LB% I

350 -

300

250

I

I —-’- “1 ,

II ,

200 —. . .— -.— ,.. . I

I I.. ; II

Ii I

150 —1; I.—

IENERGY To Vls. CRACK !7,0G0 IN, LHS

ENERGY TO MAX, LO*D

)80,M0 [N. LBS,

ENERGY TO FRACTUREII 4

(90 I

II

I ;1

II I

I ,50 1

SPECIMEN SIZE!’ ,I

I“x a“ x 12” II

I1

I I

n I 1 1

.1 .2 ,3 ,4

ELONGATION IN INCHES

FIG. IIL-40

LOAD-ELONGATION CURVE

SPECIMEN XE - 5

CODE T-2

-20° F O% SHEAR

SWARTHMORE COLLEGE

l-r3-50

_

-72-

.

I I I

14AX.LOAD 49~000 LBS.500

/

VW,, CRACK d14300 LB5.400 /

I I /300

I

!,3

E 2ca\]

. I FRACTURE LO*D 195,000 L85,ENERGY TO V15, CRACK 4QOO0 lN. LB5. I I II

tENERGY TO MAX. LOAD 152,000 IN LB5.

ENERGY 75 FRACTURE 370,000 IN, LB5. ~I

100 SPECIMEN $12E:

I“X 12T’X 24,’

00 .2 .4 .6 .B 1.0

ELONGATION IN INCHES

FIG.111-41

LOAD-ELONGATION CURVE

SPECIMEN XG-3

CODE T- 2

20” ~ 75”/. SHEAR

SWAeTHMORE COLLEGE1-25 ’51

400

3m

MAX. LOAD .U3,200 L@S

k

~S, CRACK 33 l.~ LBS )

~

/ \

F& ACTURE LO D !70,0~ LBS

ENERGY TC VIS. CRACK 2B,CCC IN. LBS. IEtdERC~TO !4AX.LOAD 100,003lN.LBS.

100_ ENERGY TO FRACTURE .210,wo lN\LBs.

$PECIMEN SIZE,1~ XU’’XI2’

1I

00 .1 ,2 .3 ,4 ,5 .E .7

ELONGATION IN INCHES

FIG. III -43

LOAD-ELONGATION CURVE

SPECIMEN XD-3

CODE T-2

40” F,100”/. SHEAR

.—I I I

500 MA X. LOAD 494,000 L8S.

/ A

?

I

400[ 416, 500,0 s.

300

200 - ENERGY To, vls. cR4c K 40.000 IN LB3,

mL - :=: :::.:::: } !’05’000‘N:LB’G

,00 _l II I i

SPECIMEN SIZE,

I“x 12”X 24”

I I

o Io .1 .2 3

ELONGATION ,N ,NCHE5

FIG. ID-42

LOAD -E L0t4GAT10N CURVE

SPECIMEN XG-2

CODE T-2

O “F, O?o SHEAR

400

300

200L5

5WARTWMORE COLLEGE

1-24-s1

MAX, ~OAD 4 Iqsoo LB5.

r

—— .. .

ENERGY TO VIS. CRACK 30,0CQ IN.LBS.m

-1-- }1ENERGYTO MAX LOAD ~2000 ,NLB5,

xENERGY TO FRACTURE ‘1, I +4

100 —3PECIMEN ~,zE:lb; X6-X 12-

[! I

0 I0 .1 .2 ,3

FIG. 131-44

LOAD-ELONGATION CURVE

SPECIMEN xD-I

CODE T-2

20” F, O“feSHEAR

SWARTWMORE COLLEGL1-25– 51

–73-

600

5Ei3p500 LBS.

500 — VIS. CRACK 40e, 000 LB s.

1!

I !400

[ I

1

m: 300 / \,

* IENERGY TO VIS. CRACK 52,0001 NULBS.

\ I‘ENERGY TO MAx. LOAD lao,ooolM-LBs.

ENERGY TO FRAcTUUE 300,000 lN-LB$.

200I

~ \ I

I ~100

I I FR4CTURE 75,000 LBS.

—SPECIMEN SIZE: I I II

lb; x 9“X 24”1I

o I 1 I

.l.2. ~4.5e .78.9ELONGATION IN INCHE$

FIG. IU-45

LOAD-ELONGATION CURVE

SPECIMEN XH-5

CODE T-2

40” FI 100”/- SHEAR

SWARTHMORE COLLEGE

1“18-51

MAx, LOAD 10e,aoo LBS.

100~lvIs, cRACK !00,700

I I ‘us”A

1

I i

75

m/

I ~ \&z

[ /

50

I ;

\

II

=$-ENERGY TO VIS cRACK 6,2S0 IN. LBSb

ENERGY TO MAX. LOAD 13,500 lN. LB$. FVACTU RE

34750 IN. LE.S, 22?00~Bs.ENERGY TO FRACTUFIE ,

I ISPEC(MEN SIZE >iX 3“~12”~

o,1 ,2 ,3 A

800

:1=--JdAX, LOAD 5~1,000 LBS.

FRACTURE

5001 VI S. CRACK 4 07,200 LBS,

400

/

/’

dE 300x

lEMRGYTQ”,S.CRACK,2,!300,H’B~,+ENERGY TO MAX, LOAD

200 ‘ENERGY TO FRACTURE)

143,000 IN– LB$,

100 .

SPECIMEN SIZE

I 1/~ X U“ X 24”

0,1 ,2 ,2!

ELOMGATION IN INCHES

FIG. III-46

LoAD-ELONGATION CURVE

SPECIMEN Xi+-l

CODE T- 2

60”F, o“~ SHEAR

1 i 1ENERGY TO vIs. CRACk 10,000 IN. LRS,

ENERGY TO MAX. LOAD 32,500 IN, LBS.

ENERGY TO FRACTURE 73,000 lN. LB$.

MAX. L9AD 152,500 L5s-

150

IVIS.. CR ACK 120,300 L

LBS.

100

I\

50

I /FRACTURE 3!/000 ~,

I LBS, —

I ;’SPECIMEN $lZE:3~X4~’Xl? “

I I0

.Z .3 .4 .5 6 7

ELONGATION IN INCHES

.-

...

ELONGATION IN INCHES

FIG. lJ1-47 LOAD ELONGATION CURVE

SPECIMEN ;“ B-1, T“2R75*F, 100% SH EAR

FIG. 111-49 LOAD ELONGATION CURVESPECIMEN 3/; C-4{ T-2R

73”~ 100% SHEAR

sWARTHMORE COLLEGE

1!–!-50

SW& RTHMORE COLLEGE

11-1”50

— —.-J

-74<

350

300

250

200

m

100

0

I

MAX. LOAD 37d,9~ LB%

1- \ –. .

Vls. L RACK 302#ao0 L=.

I

/ r

— ENERGY TO Vl$, CRACK 25000 lN.LB5-

ENERGY TO MhX. LOAD 142000 lN.LB5- \

ENERGY TO FRACTURE 337.000 lWLBS.

SPECIMEN $IZE:

~i’ x 12’”%24”’\,

1

\

FRACTURE LOAD 35,000 LBS, I

I

0 .1 .2 .3 ,6 .7 ..9 .U 1.0 l.] 1.2ELtiiGATl Oi IN INCHES

FIGIII-51 LOAD-ELONGATION CURVESPECIMEN GR-7

CODE T-250= F IOO%SHEAR

‘r~- —350 MA X, LOAD 345,000 LB5,

*

d 1“

300 -~ Vls, c RACK 305,000 LBs.

I.. . .

250 1 /J

-1

200 ENERGY TO V15. CRACti 25.000 lN. LBS. _

}ENERGY TO MAX, LOAD

57,500 IN. LBS,— ENERGY TO FF4CTURE

mm._150

t

-—

x

SPECIMEN SIZE, . .3/4” x 12,,’f24-

100 ..

-.

30 ..-. —

00 .1 .2 .3 ,4 .5 ,6 .,ELONGATION IN INCHES

FIG. IU-52LOAD-ELONGATION CURVE

SPECIMEN G- ICODE T2. R

30” F 0“4 SHEAR

SWARTHMORE COLLEGE1-.?.3 -51

‘“”m+=l+fffflI l#vls. cRAcK 373,090L;s.

. . .

-%.

400 I AY

II -?—++

D ~.’‘:>7 ~

........-”.LA.....- ...

300 .!r.— . .- .-*L —.-. ...”- — ...-:

200

~ENERGYTOV[3, &RACK 38,0001 N, L8s,

L iEi-4ERcyTOwAx, LoAD

100 ‘70;00”’N”LB’u.....uLLENERGY To FRACTURE 442,000 IN. LBs

I SPECIMEN SIZE.3/~X 15”X 24”

II— .;---- I FRACTUe E 50,0001 J __

LB$, ]

I I

oI

1 .2 3 .4 .5 e .7 .8 ,9 1,0 II 1,2 1.3

ELONGATION IN INCHES

FIG. IIL-53 LOAD ELONGATION CURVE

SPECIMEN ~ I-1, T-2R

50mF/100>e SHEAR

500I I

MAx LOAD 4e!,000LB5m-

FRAGTURE 440,500 LBS

d c .1—L!400

,VIS CPACK 377,300LBs I

I1

I ;

300 1 I.m; r—

------ -.-..-–..+

I

~. .

I200 J

1“ I1

.,1 .2 ,3 ,4 5 ,0 ,7

ELONG4TION IN INCHES

FIG. IJI-54 LOAD ELONGA;j,ON CURVE

SPECIMEN z T-3, T-2R

20” F, 20>. SHEAR

5W4FTHMORE COLLEGE

11-1-50

SWARTHMORE COLLEGE

11-[–50

..J