28
1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität München Scope of bio-analysis Environmental analysis at the transcriptome level qPCR and microarrays as tools

1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

Embed Size (px)

Citation preview

Page 1: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

1

GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS

B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger

Technische Universität München

• Scope of bio-analysis

• Environmental analysis at the transcriptome level

• qPCR and microarrays as tools

Page 2: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

2

• Analysis of biomolecules (e.g., proteins und nucleic acids),c.f. Lottspeich, F., Zorbas, H. (1998): Bioanalytik. Spektrum Akademischer Verlag, Heidelberg, Berlin.

• Analysis with biomolecules Major applications of bioanalytical methods in medicine, pharmacology, food analysis and environmental monitoring.Use of biomolecules, whole cells and organisms.

Definition of bio-analysis

Page 3: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

3

Scope of bio-analysis• Biomolecular recognition

Basic principle: Specific binding of target moleculesof biological or non-biological origin by biomolecules.

• Examples for relevant biomoleculesEnzymes, antibodies, receptors, nucleic acids, and complex structures (ribosomes, organelles, cells).

• Biological responses are registered- at the level of the binding event (e.g., immunoassays, receptor assays)- at the level of signal transduction (e.g., reporter gene systems, gene expression analysis)- at the level of metabolism, development and reproduction (e.g., vitellogenin as an endpoint for endocrine disruption)

Page 4: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

4

• Chemicals that interrupt the endocrine system

• comprise exogenous natural or anthropogenic

agents

• produce adverse effects not only at the level of the

individual, but also of the population and the

community

Endocrine disruptors

Page 5: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

Wildlife species suffering endocrine disruption*

• ‘Feminisation’ of some species of fish-eating birds

(e.g. bald eagles, herons)

• ‘Feminisation’ of alligators in Florida

• ‘Feminisation’ of some species of top predator fish

(e.g. swordfish)

• Intersexuality in polar bears

• ‘Feminisation’ of the Florida panther

• ‘Feminisation’ of fish in Europe

• ‘Masculinisation’ of fish in U.S.A.

* list provided by John Sumpter

Page 6: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

6

Page 7: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

7

Biomolecular recognition of estrogensfollowed by signal transduction

Page 8: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

8

Vitellogenin as a biomarker

Page 9: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

9

Test organism zebrafish

Environmental genomics

Exposure units for zebrafish

(1 - 500 ng/L 17ß-estradiol)

Page 10: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

10

Exposure units for zebrafish

1

23

4

55

6677

8

1: Fresh water; 2: Overflow; 3: Heating tank (400L); 4: Pump; 5: Chemical pump6: Exposure tanks (20L); 7: Overflow; 8: Activated charcoal filter

Flow-through: 21 mL/min

Page 11: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

11

ö

ß -

-

productsubstrate

17ß-estradiol-BSA

estrogen receptor (ER)

anti-ER-antibody (biotinylated)

streptavidin

POD-biotin

ELRA:Enzyme-Linked Receptor Assay in microwell format for high-troughput screening of environmental samples

Page 12: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

12

Monitoring of 17ß-estradiol in tanks by ELRA

100 200 300 400 500

100

200

300

400

500

Mea

sure

d co

ncen

trat

ion

[ng/

L]

Calculated dose [ng/L]

Page 13: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

13

Quantification of gene expression(vtg 1, ef1a) by qPCR

• Exposure of zebrafish for 11 days(0; 1; 10; 100; 200; 300; 400; 500 ng/L 17ß-estradiol), two replicates

• Preparation of mRNA from liver and gonad tissue

• cDNA synthesis

• Quantitative PCR using specific primers

• Examination of threshold level

Page 14: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

14

LightCycler®

Page 15: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

15Vitellogenin Elongation factor 1α Negative

controls

LightCycler®

Page 16: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

16

0 1 10 100 200 300 400 5000,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Rel

ativ

e E

xpre

ssio

n R

atio

17ß-estradiol [ng/L]

Gene expression of vitellogenin 1

in male liver tissue

Page 17: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

17

DNA microarrays

Page 18: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

18

cy3

cy5

Page 19: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

19

Zebrafish 14k Microarray

X axis = intensity of control,Y axis = intensity of exposed

2 x 7k-Arrays = 14,000gene spots

Vitellogenin

Page 20: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

20

Bioinformatic tools are required to detect regulated genes in an organism.

Distinction between significant effects due to treatment and natural variability within a population is crucial

Normalization on-chip normalization (non-linear)inter-chip normalization (linear)

Detection of differentially expressed genesp-value thresholdingsignificance assessment by sample permutations

Data evaluation

Page 21: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

21

Data normalization

Raw data (mean signal minus mean background)

Normalized data (on- and inter-chip normalization)

Page 22: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

22

MA Plot

M: fold change (between exposed and control fish)

A: average expression value(in exposed and control fish)

M = log2 (xexposed / xcontrol)A = ½ log2 (xexposed * xcontrol)

Mean expression values over 10 arrays

Page 23: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

23

Exposure to 17β-estradiol (male liver tissue from 10 exposed and 10 control fish)

• Exposure for 11 days with 500 ng/L 17β-estradiol

• Selection of (potentially) differential genes by thresholding

p-values from 1-sample t-test

• 186 probes identified (116 up-regulated, 70 down-regulated)

• Signifance assessment by sample permutations

• Number of selected genes is significantly higher than

expected from the null distribution (p=0.008)

• Estimated sensitivity 89%

Page 24: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

24

Up-regulated genes Fold

change Name Function

128.9 vitellogenin 1; vg1 egg yolk protein, lipid transporter activity

31.0 homeo box a3a; hoxa3a homeobox gene, embryonic development

15.9 vitellogenin 3; vg3 egg yolk protein, lipid transporter activity

9.8 vitellogenin 3; vg3 egg yolk protein, lipid transporter activity

6.8 nothepsin; nots liver-specific aspartic protease, similar to mammalian cathepsin E and D, function: post-translational processing of vitellogenin in liver prior to secrection into the blood stream

6.7 estrogen receptor; er nuclear receptor, ligand-inducible transcription factor

6.1 rev-erb beta 2 nuclear receptor, "orphan receptor", DNA-dependent regulation of transcription

5.9 activin A receptor, type IB; tarama

membrane-bound, kinase activity, receptor activity

5.7 decapentaplegic and vg-related 1; dvr1

regulation of cell cycle and cell proliferation, growth factor activity

Page 25: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

25

Up-regulated genes (continued) Fold

change Name Function

3.4 mesoderm posterior b; mespb

anterior/posterior pattern formation, somitogenesis, transcription factor activity

1.9 Kallmann syndrome 1b sequence; kal1b

prior pubertal development; congenital, isolated, idiopathic hypogonadotropic hypogonadism (IHH) and anosmia

1.5 one-eyed pinhead; oep somitogenesis, determination of left/right symmetry,germ cell migration, induction of positive chemotaxis, mesoderm development, notochord development

1.4 translocon-associated protein beta signal sequence receptor beta

embryonic development

1.4 steroidogenic acute regulatory protein; star

steroid biosynthesis, cholesterol and lipid binding, cholesterol transporter activity

1.4 \bg738177 gi:14087866 fp05c04.y1 zebrafish gridded kidney danio rerio cdna clone

embryonic axis specification

1.3 T-cell acute lymphocytic leukemia 1, tal-1

transcription factor activity

1.3 LIM domain only 2; lmo2 erythrocyte differentiation

Page 26: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

26

Fold change Name Function

-2.7 pleiotrophin 1; plei1effects on neural crest and floorplate development, growth factor activity

-2.4 carboxypeptidase A proteolysis and peptidolysis

-2.1 GATA-binding protein 2; zg2 DNA-dependent, regulation of transcription

-1.9 ephrin B2a; efnb2a neurogenesis, synaptic target recognition

-1.8 caspase 8; casp8 regulation of apoptosis, proteolysis and peptidolysis

-1.8 POU domain gene 50; pou50 DNA-dependent, development: transverse and longitudinal subdivisions of the embryoniczebrafish forebrain, regulation of transcription

-1.7 leukocyte cell derived chemotaxin 1; peroxisome proliferator activated

embryonic development: cartilage morphogenesis

-1.5 receptor alpha; ppara DNA-dependent, regulation of transcription

-1.4 transcription factor 7-like 1a; tcf3 embryonic development, determination of anterior/posterior axis, regulation of transcription

-1.4 HIV-1 Tat interactive protein 2; tip30 immune-type receptor gene

-1.4 runt-related transcription factor 1; runxa

hematopoietic development, DNA-dependent, ATP- and DNA-binding, regulation of transcription

-1.3 transcription factor AP2 alpha 2neural plate border and neural crest cells during somitogenesis

-1.3 claudin c; cldnc structual molecule activity

Down-regulated genes

Page 27: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

27

Conclusions and outlook

• A set of biomarkers is available to examine estrogen exposure

• Potential use of biomarker arrays to discriminate fordifferent classes of endocrine disruptors

• Strong influence of estrogen on developmental events in male fish

• Elucidation of signal transduction pathways and networksfeasible on the basis of up- and down-regulated genes

Page 28: 1 GENE EXPRESSION PATTERNS AS A TOOL FOR BIO-ANALYSIS B. Hock, M. Alberti, U. Kausch, J. Budczies, N. Theilacker and R. Leibiger Technische Universität

28

Acknowledgements• Dr. Martin Seifert• Steffi Haindl• Martin Alberti • Ulf Kausch• Dr. Jan Budczies• Robert Leibiger• Nora Theilacker

• European Union for supporting the EDEN project

• METROPOLIS [email protected]