100
Fundamentals of MAGNETICS Revised October 6, 2008 EEL 3211 © 2008, Henry Zmuda 1. Fundamentals of Magnetics 1

1. Fundamentals of Magnetics

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1. Fundamentals of Magnetics

Fundamentals ofMAGNETICS

Revised October 6, 2008

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 1

Page 2: 1. Fundamentals of Magnetics

Magnetic fields provide the fundamental mechanism by whichMagnetic fields provide the fundamental mechanism by which energy is converted from one from to another by means of:

•motors (electrical energy mechanical energy )

•generators (mechanical energy electrical energy)g ( gy gy)

•transformers (electrical energy electrical energy )

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 2

Page 3: 1. Fundamentals of Magnetics

Four basic principles:

1. A current flowing in a wire produces a magnetic field in the vicinity of the wire.y

2. A wire in the presence of a time-varying magnetic field will induce a voltage across the wire (transformer action).

3 A current-carrying wire in the presence of a magnetic field3. A current-carrying wire in the presence of a magnetic field experiences a force exerted on the wire (motor action)

4. A a wire moving in the presence of a magnetic field has a l i d d i ( i )voltage induced upon it (generator action).

Each of these will be considered in detail.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 3

Page 4: 1. Fundamentals of Magnetics

The fundamental postulate governing the electrical behavior of i fi ld i i b A ’ lmagnetic fields is given by Ampere’s law:

enclosedC

H d I

: Vector Magnetic Field (amperes/meter)H

g ( p )

: Vector Closed Path of Integration (meters)N t C t l d bI C

: Net Current ecnlosed by enclosedI C

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 4

Page 5: 1. Fundamentals of Magnetics

I

CC

H d I

I H

CC

Side view (along axis) H( g )

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 5

Page 6: 1. Fundamentals of Magnetics

C

I H r

I

rH

Right Hand Rule Convention

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 6

Page 7: 1. Fundamentals of Magnetics

C

I H r

rr

I 22C

IH d rH r I H rr

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 7

Page 8: 1. Fundamentals of Magnetics

We assumed that field produced by the wire exists in air. The h f h i fi ld d d l d d hstrength of the magnetic field produced also depends on the

material in which the field exists. Certain materials, called ferromagnetic materials, have the property of confining the f g , p p y gfield inside of it. Ferromagnetic materials are characterized by their permeability, .

The for air (or free space):

7 Henrys74 10oHenrysmeter

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 8

Page 9: 1. Fundamentals of Magnetics

The ratio of the permeability for a given material to that of free i k h l b lspace is known as the relative permeability,

r

o

For modern ferromagnetic materials,

1000 8000r

For an idealized case, r

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 9

Page 10: 1. Fundamentals of Magnetics

Note the similarity:

From circuit theory, the magnetic energy stored by an inductor is

212mW L I2

I L

From electromagnetic theory, the magnetic energy stored by a magnetic field is

212mW H

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 10

Page 11: 1. Fundamentals of Magnetics

The relationship that described the effect of the permeability ( h i l) h h i fi ld i i b h(the material) has on the magnetic field H is given by the relationship

B H

where B is the magnetic flux density.

Units:

2

Henry Ampere Ampere-Henrymeter meter meter

B H H

2

Weber Teslameter

H H

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 11

Page 12: 1. Fundamentals of Magnetics

B is the magnetic flux density. If we integrate the density over b i h l fl an area we obtain the total magnetic flux

ˆ ˆB d B d B d d

A A AB da B nda B ndxdy

dB

A dx

dy

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 12

Page 13: 1. Fundamentals of Magnetics

EXAMPLE

Mean path length c

Current i i

Cross sectional

N turns

Cross-sectionalarea AMagnetic

Core

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 13

Page 14: 1. Fundamentals of Magnetics

EXAMPLE

enclosed ccC

NiH d I H Ni H

cC

NiB B H H

c

A

NiAB da

i

c

Ac

iiiiiiii

xx

xxxxxx ix

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 14

Page 15: 1. Fundamentals of Magnetics

Circuit analogy for Magnetic circuits:

The simplifications and idealizations discussed imply that i l i i d l b d dsimple circuit models can be used to study magnetic circuits.

This idea is used extensively in the design of motors and y ggenerators to simplify what would otherwise be an extremely complicated electromagnetic problem.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 15

Page 16: 1. Fundamentals of Magnetics

Circuit analogy for Magnetic circuits:

10 turns

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 16

Page 17: 1. Fundamentals of Magnetics

Circuit analogy for Magnetic circuits:

I Flux

+_V R +

_NiY c

Ae

Magnetomotive Reluctance

Flux

Force Reluctance

VIR

c c

NiA ANi

c c

Ye

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 17

e

Page 18: 1. Fundamentals of Magnetics

Circuit analogy for Magnetic circuits:

Electrical Circuit Magnetic Circuit

Electromotive Force (emf)

VMagnetomotive Force (mmf)

NiYCurrent

IFlux

Y

eResistance ReluctanceVR

I I

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 18

Page 19: 1. Fundamentals of Magnetics

Circuit analogy for Magnetic circuits:

Note the polarity – determined via a modified right-hand-rule

I

+_V+_V

I

+_

YII

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 19

Page 20: 1. Fundamentals of Magnetics

Jargon – Just as the conductance is the reciprocal of the resistance,

1GR

the permeance, is the reciprocal of the reluctance.

R

cp p

1c ce

This circuit analogy is always an approximation to the real system.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 20

Page 21: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 21

Page 22: 1. Fundamentals of Magnetics

mean path5 + 20 + 2.5 = 27.5

7.5 + 15 + 7.5 = 300

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 22

Page 23: 1. Fundamentals of Magnetics

ANi

Ye

1c Y

e

left top right bottom

eY

e e e e eleft top right bottom

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 23

Page 24: 1. Fundamentals of Magnetics

top bottome e

e

rightelefte

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 24

Page 25: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 25

Page 26: 1. Fundamentals of Magnetics

Magnetic cores often require “gaps”.

N

Ae

“ideal” gapgg

A

e

Sgap

o A e

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 26

Page 27: 1. Fundamentals of Magnetics

Fringing fields in a gap. Note that the cross-sectional area of the gap is greater than that of the metal.g p g

N “real” gapgapg

Ae

eff

eff

o A

A A

g

S, 1.05ffTypically A A, 1.05ffeTypically A A

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 27

Page 28: 1. Fundamentals of Magnetics

i

Model:core

c

Ae

+_NiY

gape

core A

gapg p

o effAe

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 28

Page 29: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 29

Page 30: 1. Fundamentals of Magnetics

Mean path0.37 m 0.37 m

0.37 m0.37 m

0.37 m 0.37 m

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 30

Page 31: 1. Fundamentals of Magnetics

+_

NiY

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 31

Page 32: 1. Fundamentals of Magnetics

1 / 3e 3 / 3e

e

5e1 / 6e 3 / 6e

left right

+_

2e4e

Ni/ 3e/ 6e / 3e / 6e

fgap

ggap

1 / 3e1 / 6e3 / 3e 3 / 6e

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 32

Page 33: 1. Fundamentals of Magnetics

1e 4e5e

+_

2e e2 3e

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 33

Page 34: 1. Fundamentals of Magnetics

1e 4e 5e

+_

2e eNi

2 3e

TOT 5 1 2 3 4 e e e e e e

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 34

Page 35: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 35

Page 36: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 36

Page 37: 1. Fundamentals of Magnetics

Example – A Simple Synchronous Machine – Assume that h d h i fi i bili i d h ithe rotor and stator have infinite permeability. Find the air-gap

flux and the flux density Bg. Use I = 10 A, N = 1000 turns, gap length g = 1 cm, and Ag = 2000 cm2.g p g g , g

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 37

Page 38: 1. Fundamentals of Magnetics

Example – A Simple Synchronous Machine

gap0, ,2 2

gap o gapcgap

o gap gap gap

NI AA A

Y

e ee

gape

o gap gap gap

gap

erotore

e+_

statore statore

Y

gape

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 38

Page 39: 1. Fundamentals of Magnetics

Example – A Simple Synchronous Machine

2 2o gap

gap

NI A

Ye

7

2 2

1000 10 4 10 0.2 0 13

gapgap gap

Webers

e

0.132 0.01

Webers

0.13 0.650 2

gapgapB Tesla

A

0.2gapA

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 39

Page 40: 1. Fundamentals of Magnetics

Real Magnetic Materials

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 40

Page 41: 1. Fundamentals of Magnetics

Recall from Slide 14:

NiH Y

c c

H

and

andNiBA A AHA Y

cc

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 41

Page 42: 1. Fundamentals of Magnetics

Saturation or Magnetization Curve

Saturated Region

A Y

Linear

Y

NiY

LinearRegion

NiY

The permeability is constant only for air (o).

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 42

Page 43: 1. Fundamentals of Magnetics

Recall from Slide 14:

NiH Y

c c

H

and

an

BA H

dNi AA A Y

c c

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 43

Page 44: 1. Fundamentals of Magnetics

Saturation or Magnetization Curve

B Saturated Region

Slope = o

Linear

The slope of this curve definesthe permeability of a given material

Slope =

H

LinearRegion

HSince generators/motors rely on the flux to produce voltage/torque, we wish to produce as much flux as possible. In practice we operate near the knee of the curve

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 44

but not in the saturated region.

Page 45: 1. Fundamentals of Magnetics

Saturation or Magnetization Curve

B Saturated Region

Linear

The slope of this curve definesthe permeability of a given material

H

LinearRegion

HSince generators/motors rely on the flux to produce voltage/torque, we wish to produce as much flux as possible. In practice we operate near the knee of the curve

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 45

but not in the saturated region. Why?

Page 46: 1. Fundamentals of Magnetics

.B vs HH

.B vs Ho H

SaturatedRegion

LinearRegion

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 46

Page 47: 1. Fundamentals of Magnetics

The advantage of using a ferromagnetic material for cores in electric machines and transformers is that one gets many times more flux formachines and transformers is that one gets many times more flux for a given magnetomotive force (mmf) with iron than with air. However, if the resulting flux has to be (approximately) proportional

h li d f h h b d i h dto the applied mmf, then the core must be operated in the unsaturated region of the magnetization curve.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 47

Page 48: 1. Fundamentals of Magnetics

Hysteresis Effects in Magnetic Materials

i2

t1

2

, B2

, HY

2

1 , HY

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 48

Page 49: 1. Fundamentals of Magnetics

Hysteresis Effects in Magnetic Materials

i2

t1 3

, B2

, HY

2

3

, HY1

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 49

Page 50: 1. Fundamentals of Magnetics

Hysteresis Effects in Magnetic Materials ii

2

t1 3

4

, B2

, HY3

11

4

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 50

4

Page 51: 1. Fundamentals of Magnetics

Hysteresis Effects in Magnetic Materials

i2

6

t1 3

45

4, B

26

, HY

3

1

5

1

4

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 51

Page 52: 1. Fundamentals of Magnetics

Hysteresis Effects in Magnetic Materials

Residual Flux

Coercive mmf

Y

Coercive mmf

A Typical Hysteresis Loop – Present flux in the core is determined not only by the applied mmf but also on the previous history of the fluxin the core.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 52

Page 53: 1. Fundamentals of Magnetics

What causes hysteresis effects?MODELMODEL

The permanent magnetic moment of an atom comes about from:

Electron orbitElectron spin (primary contributor in solids)Nuclear dipole momentNuclear dipole moment

Ferromagnetic materials (Fe, Ni, Co, Cd., & alloys)These tend to be high conductivity metals (like iron and steel) and also

it lquite lossy.

On a macroscopic scale, a piece of ferromagnetic material is made up of magnetic domains where each domain is in effect a smallof magnetic domains, where each domain is in effect a small permanent magnet. These domains are randomly oriented.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 53

Page 54: 1. Fundamentals of Magnetics

What causes hysteresis effects? With no externally applied mmf or magneticapplied mmf or magnetic field, individual magnetic domains are randomly li d d h flaligned and the net flux

is zero.

Wi h llWith an externally applied mmf or magnetic field, individual magnetic , gdomains align and a net flux occurs.

When no further alignment is possible,

iEEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 54

saturation occurs.

Page 55: 1. Fundamentals of Magnetics

First Major Effectj

Faraday’s Law – Induced voltage due to a time-changing magnetic fieldtime-changing magnetic field.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 55

Page 56: 1. Fundamentals of Magnetics

Faraday’s Law – Induced voltage due to a time-changing magnetic field. g

i t

t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 56

Page 57: 1. Fundamentals of Magnetics

Faraday’s Law – Induced voltage due to a time-changing magnetic field. g

i t

t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 57

Page 58: 1. Fundamentals of Magnetics

Faraday’s Law – Induced voltage due to a time-changing magnetic field. g

A look ahead: Transformer Action

Pi t Si t

+ Pv t Sv t

PN SN P S

PN SN

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 58

Page 59: 1. Fundamentals of Magnetics

Faraday’s Law: If flux passes through a turn of a coilFaraday s Law: If flux passes through a turn of a coil of wire, a voltage will be induced in the turn of wire that is directly proportional to the rate of change of the flux.

appliedinduced

de

d

applied t

AppliedFlux:

einduced is the induced voltage

induced dt+

-inducede

is the flux passing through the loop

li dd t 0appliedd t

dt

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 59

Page 60: 1. Fundamentals of Magnetics

Lenz’s Law (explains the minus sign in Faraday’s Law)

First, a slight variant of the right-hand-rule:

II I

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 60

Page 61: 1. Fundamentals of Magnetics

Lenz’s Law: For a short-circuited loop, the applied change of flux produces a current that would cause a flux opposing the

flux produces a current that would cause a flux opposing the original flux change. This a statement of the conservation of energy. Applied

applied t inducedB t

Flux:

i

0appliedd t

dt

induced

i dtInduced

Flux: induced tThe induced current is such as to OPPOSE the CHANGE inapplied field.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 61

Page 62: 1. Fundamentals of Magnetics

Lenz’s Law: The polarity of the induced voltage at the terminals of the coil is such that the current produced would cause a flux in a pdirection opposing the original flux.

Applied

i d dB t

ppFlux: applied t

+

_inducede

i

inducedB t

iInduced

Flux:

0appliedd t

dt

induced tAn induced electromotive force generates a current that induces a counter magnetic field that opposes the magnetic field generating the current

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 62

the current.

Page 63: 1. Fundamentals of Magnetics

For N turns all with the same flux,

i t Applied Flux

0d t

dt

+

inducedde Ndt

dt

_

Induced (opposing) flux

N t h thi i l i l GENERATOREEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 63

Note how this is also a simple GENERATOR.

Page 64: 1. Fundamentals of Magnetics

Flux Linkage:

d de N inducede N

dt dt

Flux Linkage: N

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 64

Page 65: 1. Fundamentals of Magnetics

In practice the polarity of the induced voltage isIn practice, the polarity of the induced voltage is determined from physical considerations. As a result, the minus sign in Faraday’s law is often omitted. The

(Ch i f i d ) i h i itext (Chapman is from industry) omits the minus sign for the remainder of the book. This could be confusing.

inducedde Ndt

Text omits the minus sig .n

dt

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 65

Page 66: 1. Fundamentals of Magnetics

Example – Consider a coil of wire (10 turns) wrapped around an ironcore. If a flux has a peak value of 0.1 Weber and varies sinusoidally at ap yfrequency of 60 Hz. What is the value and polarity of the inducedvoltage (flux is increasing in the direction shown).

10 turns

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 66

Page 67: 1. Fundamentals of Magnetics

Solution –

0.1sin 120t t

10 0.1 120 cos 120inducedde N tdt

120 cos 120dt

t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 67

Page 68: 1. Fundamentals of Magnetics

Solution – (Note how this one-half of a transformer – the secondary)

ii +

inducede10 turns_

120 cos 120inducede t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 68

Page 69: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

B Fi ld Cross-Sectional Area A = 0.4 m2B – Field(1 Tesla)

10-Turn Coil

Axis of RotationS d 3600

Find the induced voltageat the terminals.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 69

Speed = 3600 rpm

Page 70: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

A = 0.4 m2

B = 1 T

Prc

ojectedos

AB da B A

ProjectedArea

t

3600 rpmAngular Speed:

t

2 1360060 sec

radians revolutions radians minutesecond minute revolution onds

120 377 60radians Hertzsecond

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 70

Page 71: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

B Fi ldB – Field(1 Tesla)

A

A

cosB A B A

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 71

Page 72: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

B = 1 T

A = 0.4 m2 cosAB da B A

t

cost BA t

cos

sininduced

t BA tde t N NBA tdt

1508sin377dt

t volts

What is the polarity of the induced emf?EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 72

What is the polarity of the induced emf?

Page 73: 1. Fundamentals of Magnetics

Polarity of induced emf:

d B Ade t N N

inducede t N Ndt dt

:

?

Two questions

is B A

?disdt

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 73

Page 74: 1. Fundamentals of Magnetics

Polarity of induced emf: A mathematical approach

A

Convention for positive loop orientation

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 74

Page 75: 1. Fundamentals of Magnetics

Polarity of induced emf: induced

d B Ae t N

dt

90 0B A

d B Ad

90 0B A

d B Ad

0 increasing

d B Addt dt

0 decreasingd B Ad

dt dt

A

A

B

B

+ _

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 75

_ +

Page 76: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

In this example, is constant but is changing with time.B

B A

A

A

B

B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 76

B cos cos

Page 77: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

cosB A B A

d0B A

d

cos sind t tdt

sin

sin

d B A tdt

B A t

sin

induced

B A t

d B Ae t N

sin

induced dtN B A

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 77

Page 78: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

iiLoopOrientation

_ +

Orientation

+ sininducede t N B A

inducede t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 78

Page 79: 1. Fundamentals of Magnetics

Example – A Primitive AC Generator

Approach used in text:Current direction opposesoriginal change in flux.

cos

sin

B A

dN N B A t

i

g gsin

decreasing

N N B A tdt

i

_ +

B

sininducede t N B A +

inducede t

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 79

Page 80: 1. Fundamentals of Magnetics

Second Major Effectj

Lorentz Force Law: A magnetic field induces a force on a current-carrying wireinduces a force on a current-carrying wire in the presence of the field.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 80

Page 81: 1. Fundamentals of Magnetics

Lorentz Force Law – Force exerted on charges

EF qE

of little interest here

MF q v B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 81

Page 82: 1. Fundamentals of Magnetics

BB

B

C C

B

CA

A

Right-Hand Rule for determining the direction of A B C

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 82

Page 83: 1. Fundamentals of Magnetics

Right-Hand Rule for determining the direction of F q v B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 83

Page 84: 1. Fundamentals of Magnetics

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 84

Page 85: 1. Fundamentals of Magnetics

Lorentz Force Law – a more useful form for our application

is the velocity of the charge MF F q v B v q

s t e ve oc ty o t e c a geM q v v q

qq B B

q B Bt t

i B

i B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 85

Page 86: 1. Fundamentals of Magnetics

Lorentz Force Law

F i B

:F force

::

F forcei current

:

:

oriented conductor path length

B magnetic flux density

:B magnetic flux density

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 86

Page 87: 1. Fundamentals of Magnetics

Lorentz Force Law BF i

x x x x x x x x x x x x x xx wire

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xB into page

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x F

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x x x x x x x x x x x xx

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 87

Page 88: 1. Fundamentals of Magnetics

Lorentz Force Law

F i B

F

B

sinF F i B i

Where is the angle between vectors and B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 88

Page 89: 1. Fundamentals of Magnetics

Lorentz Force Law

Recall Faraday’s Law: induceddedt

andB A

For constant B (with some hand-waving)

d dA d x dxB B B B vdt dt dt dt

What is the polarity?

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 89

Page 90: 1. Fundamentals of Magnetics

Lorentz Force Law

d B B vdt

What is the polarity?

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 90

Page 91: 1. Fundamentals of Magnetics

Lorentz Force Law

Recall: q v BFF qE Eq q

q q

F B

E v B

For constant B,

inducede E d v B induced

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 91

Page 92: 1. Fundamentals of Magnetics

Lorentz Force Law

B inducede v B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 92

Page 93: 1. Fundamentals of Magnetics

Lorentz Force Law – An intuitive approach

wire x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x wire

+++++

F q v B

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

B into page v

B

+

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xB into page inducede v B

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x_

____ F q v B

x x x x x x x x x x x x x xx

The direction for is such that is positive. (upwards in B v

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 93

this example)

Page 94: 1. Fundamentals of Magnetics

Example – A Primitive Generator Revisit our previous example.

i Coil End LengthendF

B

iL

gCoil Side Length

i i

ix

endF

sin 90F Ni B

Bx

FEEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 94

sin 90endF Ni B endF

Page 95: 1. Fundamentals of Magnetics

Example – A Primitive Generator

i Coil End Length iL

gCoil Side Length

F Bi i

sideFsideF

i

sideF NiLB

B

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 95

Page 96: 1. Fundamentals of Magnetics

Example – A Primitive Generator

Axial view:

BdF NiLB

d

F

sideF NiLB

sideF xt

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 96

Page 97: 1. Fundamentals of Magnetics

Torque

r

F

F

sin

T r F

T r F Newton Meters

sinT r F Newton Meters

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 97

Page 98: 1. Fundamentals of Magnetics

Example – A Primitive Generator

B F NiLB d

F

sideF NiLB

sideF x

t

2 sin2

sin

T F

NBiL

sinsin ,

NBiLNBiA A L loop area

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 98

Page 99: 1. Fundamentals of Magnetics

Observations:

•As the coil turns, the forces on the ends will vary with position, but will be equal and opposite, thus creating no net force on the coil as a whole, nor any torque about the axis of rotation.

•The forces on the sides of the coil will also be equal and oppositeThe forces on the sides of the coil will also be equal and opposite in direction, and will not vary with position, but will exert a torque about the axis of rotation.

•Note that the torque resists motion in the given direction, which generates a current. In other words, mechanical energy is being converted to electrical energy as the coil is turned.

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 99

Page 100: 1. Fundamentals of Magnetics

Example – A Primitive Generator

Mechanical Power: sinmP T i NBA t

Electrical Power: sininducede t i i N B A

Mechanical Power = Electrical Power

M ch more on this laterMuch more on this later...

EEL 3211© 2008, Henry Zmuda

1. Fundamentals of Magnetics 100