37
1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms Classification of turbines Performance characteristics

1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

Embed Size (px)

DESCRIPTION

3 Similarity Considerations Valid when: –Geometric similarity –All velocity components are equally scaled –Same velocity directions –Velocity triangles are kept the same –Similar force distributions –Incompressible flow

Citation preview

Page 1: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

1

Fundamental similarity considerations

• Similarity Considerations• Reduced parameters• Dimensionless terms• Classification of turbines • Performance characteristics

Page 2: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

2

Similarity Considerations

Similarity considerations on hydrodynamic machines are an attempt to describe the performance of a given machine by comparison with the experimentally known performance of another machine under modified operating conditions, such as a change of speed.

Page 3: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

3

Similarity Considerations

• Valid when:– Geometric similarity– All velocity components are

equally scaled – Same velocity directions– Velocity triangles are kept the

same– Similar force distributions– Incompressible flow

Page 4: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

4

These three dynamic relations together are the basis of all fundamental similarity relations for the flow in turbo machinery.

1

2

3 .Constu

Hg2.Const

cHg2

.ConstcpAF

.Constuc

22

2

Page 5: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

5

Velocity triangles

ru

wc

.c Constu

1

Page 6: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

6

Under the assumption that the only forces acting on the fluid are the inertia forces, it is possible to establish a definite relation between the forces and the velocity under similar flow conditions

tcmF

dtdcmF

cQFQt

m

In connection with turbo machinery, Newton’s 2. law is used in the form of the impulse or momentum law:

Page 7: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

7

For similar flow conditions the velocity change c is proportional to the velocity c of the flow through a cross section A.

It follows that all mass or inertia forces in a fluid are proportional to the square of the fluid velocities.

2

2

F p Const cA

p ch Constg g

2

Page 8: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

8

By applying the total head H under which the machine is operating, it is possible to obtain the following relations between the head and either a characteristic fluid velocity c in the machine, or the peripheral velocity of the runner. (Because of the

kinematic relation in equation 1)

2 .g H Constc

3

2 .g H Constu

Page 9: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

9

For pumps and turbines, the capacity Q is a significant operating characteristic.

2

3 .Q

QD Constn D n D

.c Constu

c is proportional to Q/D2 and u is proportional to n·D.

4

22 2

2

.. .g H H H D ConstConst Constc Q gQ

D

22 2 2

.. .g H H H ConstConst Constu n D gn D

Page 10: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

10

Affinity Laws

3

31 1 1

32 2 2

1 1

2 2

.Q Constn D

Q n DQ n D

Q nQ n

This relation assumes that there are no change of the diameter D.

Page 11: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

11

Affinity Laws

2 2

2 21 1 1

2 22 2 2

21 1

22 2

.H Constn D

H n DH n D

H nH n

This relation assumes that there are no change of the diameter D.

Page 12: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

12

Affinity Laws

3 2 2

3 2 2 3 51 1 1 11 1 1 1 1 1 1

3 53 2 22 2 2 2 2 2 22 2 2 2

31 1

32 2

. .Q HConst Const P g H Qn D n D

n D n DP g H Q H Q n DP g H Q H Q n Dn D n D

P nP n

This relation assumes that there are no change of the diameter D.

Page 13: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

13

Affinity Laws

32

31

2

1

nn

PP

22

21

2

1

nn

HH

This relations assumes that there are no change of the diameter D.

2

1

2

1

nn

QQ

Page 14: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

14

Affinity Laws Example

Change of speed

n1 = 600 rpm Q1 = 1,0 m3/sn2 = 650 rpm Q2 = ?

smQ

nnQ

nn

QQ

3

11

22

2

1

2

1

08,10,1600650

Page 15: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

15

Reduced parameters used for turbines

The reduced parameters are values relative to the highest velocity that can be obtained if all energy is converted to kinetic energy

Page 16: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

16

Hgc

Hgzzgc

zgchz

gch

2

2

22

2

21

22

2

22

21

21

1

Bernoulli from 1 to 2 without friction gives:

Reference line

Page 17: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

17

Reduced values used for turbines

Hg2cc

Hg2uu

Hg2ww

22u11uh ucuc2

Hg2QQ

Hg2

Hhh

Page 18: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

18

Dimensionless terms

• Speed– Speed number – Specific speed NQE

– Speed factor nED, n11

– Specific speed nq, ns

• Flow– Flow factor QED, Q11

• Torque– Torque factor TED, T11

• Power– Power factor PED, P11

Page 19: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

19

Fluid machinery that is geometric similar to each other, will at same relative flow rate have the same velocity triangle.For the reduced peripheral velocity:

For the reduced absolute meridonial velocity:

.u D Const ~

2 .m

Qc Const

D~

We multiply these expressions with each other:

2 .Q

D Q ConstD

Page 20: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

20

Page 21: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

21

Speed number

Q***

Geometric similar, but different sized turbines have the same speed number

D

Page 22: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

22

Speed number

2

2

12

21 2

1D Const

Q ConstConst

Q Const Const

cm

cmD

122

2

4

m

Q Qc Const

DD

u D D Const

1

2

ru

wccm

cuFrom equation 1:

Inserted in equation 2:

Page 23: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

23

Speed Factorunit speed, n11

11

260 2nu D Const D

g H

n D Const nH

ru

wccm

cu

If we have a turbine with the following characteristics:

• Head H = 1 m• Diameter D = 1 m

we have what we call a unit turbine.

HDnn11

Page 24: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

24

Speed FactornED

260 2

ED

nu D Const Dg H

n D Const ng H

ru

wccm

cu

If we have a turbine with the following characteristics:

• Energy E = 1 J/kg• Diameter D = 1 m

EDn DnE

Page 25: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

25

Energy

Reference line

z1

ztw

h1c1

abs

221

1 1

2 21

1 1

twabs atm tw n

twn abs atm tw

ccg h g z g h g z g Hg g

c cE g H g h g h g z g zg

Page 26: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

26

Specific speed that is used to classify turbines

75,0q HQ

nn

Page 27: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

27

Specific speed that is used to classify pumps

nq is the specific speed for a unit machine that is geometric similar to a machine with the head Hq = 1 m and flow rate Q = 1 m3/s

43q HQ

nn

43s PQ

n333n

ns is the specific speed for a unit machine that is geometric similar to a machine with the head Hq = 1 m and uses the power P = 1 hp

Page 28: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

28

Page 29: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

29

Page 30: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

30

Flow Factorunit flow, Q11

11 2

QQD H

ru

wccm

cu

If we have a turbine with the following characteristics:

• Head H = 1 m• Diameter D = 1 m

we have what we call a unit turbine.

22

112

4

m

Q Qc Const

DD

Q Const QD H

Page 31: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

31

Flow FactorQED

2EDQQ

D E

ru

wccm

cu

If we have a turbine with the following characteristics:

• Energy E = 1 J/kg• Diameter D = 1 m

22

2

4

m

ED

Q Qc Const

DD

Q Const QD g H

Page 32: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

32

Exercise• Find the speed number and

specific speed for the Francis turbine at Svartisen Powerplant

• Given data:P = 350 MWH = 543 mQ* = 71,5 m3/sD0 = 4,86 mD1 = 4,31mD2 = 2,35 mB0 = 0,28 mn = 333 rpm

Page 33: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

33

27,069,033,0Q***

Speed number:sm10354382,92Hg2

srad9,34

602333

602n

1m33,0s

m103s

rad9,34

Hg2*

2

3

m69,0s

m103s

m5,71

Hg2QQ*

Page 34: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

34

Specific speed:

43q HQ

nn

03,25543

5,71333n 43q

Page 35: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

35

Performance characteristics

200.00 400.00 600.00 800.00Turta ll [rpm ]

0.50

0.60

0.70

0.80

0.90

1.00

Virk

ning

sgra

d

Speed [rpm]

Effic

ienc

y [-

]

NB:H=constant

Page 36: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

36

Kaplan

Page 37: 1 Fundamental similarity considerations Similarity Considerations Reduced parameters Dimensionless terms…

37

EDn Dng H

0

1.3

1.0

0.7

0.3

0.60.8

0.9

0.7

2ED

QQ

gHD