41
DPF May 2002 Ian Shipsey 1 CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University D o D o , D o K - + K - K + + e CLEO-c Collaboration ltech, Carnegie Mellon, rnell, Florida, Illinois, nsas, Northwestern, nnesota, Oklahoma, ttsburgh, Purdue, chester, SMU, Syracuse, xas PM,Vanderbilt, yne State

1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University D o D o, D o K - + K-K-

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 1

CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions

Ian Shipsey,

Purdue University

DoDo, DoK-+

K-

K+

+

The CLEO-c CollaborationCaltech, Carnegie Mellon,Cornell, Florida, Illinois,Kansas, Northwestern, Minnesota, Oklahoma, Pittsburgh, Purdue, Rochester, SMU, Syracuse,Texas PM,Vanderbilt, Wayne State

Page 2: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 2

• I am completely deaf • I communicate by lip

reading• BUT lip reading obeys

an inverse square law• Please write down your

questions• Pass them up to me• I will read out your

question before answering it

Page 3: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 3

CLEO-c : context

123310 scmLpeak

ON OFFCESR/CLEO(*) 1.3 16.0 6.7 34 KEKB/Belle 7.2 76.8 (ON+OFF) ~140 PEPII/BABAR 4.6 87.5 (ON+OFF) ~165

610'# sBLdt

SuperBaBarL =10 36

1010 BB/year

CLEOMajorcontributionsto B/c/ physicsBut, no longercompetitive.Last Y(4S) runended June 25 ‘01

(*) CLEONo longerOperating at Y(4S)Belle/ BaBarON/OFFMay 17 02

BB/year

year

Thread#1

Page 4: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 4

Flavor Physics: is in “the sin2 era” akin to precision Z. Over constrain CKM matrix with precision measurements. Limiting factor: non-pert. QCD.

CLEO-c : the context

Charm at threshold can provide the data to calibrate QCD techniques convert CESR/CLEO to a charm/QCD factoryCharm at threshold can provide the data to calibrate QCD techniques convert CESR/CLEO to a charm/QCD factory

LHC may uncover strongly coupled sectors in the physics that lies beyond the Standard ModelThe LC will study them. Strongly-coupled field theories are an outstanding challenge to theoretical physics. Critical need for reliable theoretical techniques & detailed data to calibrate them.

This DecadeThread #2

The FutureThread #3

Example:The Lattice

Complete definition of pert & non. Pert.QCD. Maturedover last decade, can calculate to 1-5% B,D,,…

“CLEO-c/CESR-C”

Page 5: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 5

CLEO-c Physics Program•flavor physics: overcome the non pert. QCD roadblock

• strong coupling in Physics beyond the Standard Model

•Physics beyond the Standard Model in unexpected places:

• CLEO-c: precision charm abs. branching ratio measurements

•CLEO-c: precise measurements of quarkonia spectroscopy &decay provide essential data to calibrate theory.

•CLEO-c: D-mixing, CPV, rare decays. + measure strong phases

CLEO-c will help build the tools to enable this decade’s flavor physics and the next decade’s new physics.

Abs D hadronicBr’s normalize B physics

Semileptonic decays: Vcs Vcd unitarity& form factors

Leptonic decays : decay constants

Tests QCD techniques in c sector, apply to b sector Improved Vub, Vcb, Vtd & Vts

Page 6: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 6

Vub/Vub 25%lB

l

D

Vcd/Vcd 7%lD

Vcs/Vcs =11%l

B D

Vcb/Vcb 5%

Bd Bd

Vtd/Vtd =36%

Bs Bs

Vts/Vts 39% Vtb/Vtb 29%

Vus/Vus =1%

l Vud/Vud 0.1%

e

pn

t

b

W

Goal for the decade: high precision measurements of Vub, Vcb, Vts, Vtd, Vcs, Vcd, & associated phases. Over-constrain the “Unitarity Triangles”- Inconsistencies New physics !

Many experiments will contribute. CLEO-c will enable precise new measurements at Bfactories /Tevtaron to be translated into greatly improved CKM precision.

Precision Flavor Physics

CKMMatrixCurrentStatus:

W cs

Page 7: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 7

Importance of measuring fD & fDs: Vtd & Vts

22

ts

td

BB

BB

s

d

V

V

fB

fB

M

M

ss

dd

~5-7%

i1

1

i

2

3

2

1

108.820050.0

tdBB

d

V

MeV

fBpsM dd

Lattice predicts fB/fD & fBs/fDs with small errorsif precision measurements of fD & fDs existed (they do not)We could obtain precision estimates of fB & fBs and hence precision determinations of Vtd and Vts Similarly the ratio fD/fDs checks fB/fBs

d

d

BB

BB

d

d

Bf

Bf

M

M )()(5.0

)(

1.4% ~15% (LQCD)

Page 8: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 8

|f(q2)|2

|VCKM|2

I. Absolute magnitude & shape of form factors are a stringent test of theory. II. Absolute semileptonic rate gives direct measurements of V cd and Vcs. III Key input to precise Vub vital CKM cross check of sin2

b

c

u

d

HQET

l

l

1) Measure D form factor in Dl. Calibrate LQCD uncertainties .2) Extract Vub at BaBar/Belle using calibrated LQCD calc. of B form factor.3) But: need absolute Br(D l) and high quality d (D l)/dE neither exist

223K

2cs3

2F

2|)(qf|p|V|

24

G

q

d

d

B

D

Importance of absolute charm semileptonic decay rates..

Page 9: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 9

310)8.10.24.19.46( cbV

The Importance of PrecisionCharm Absolute Branching Ratios I

Stat: 3.0% Sys 4.3% theory 3.8%Dominant Sys: slow, form factors

& B(DK) dB/B=1.3%

Vcb from zero recoil in B D*l+CLEO LP01

CLEO has single most precise Vcb

by this technique (so far)

Page 10: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 10

*+o

o +B

DB1

D

h

h

Understanding charm content of B decay (nc)

Precision Z bb and Z cc (Rb & Rc)

At LHC/LC H bb H cc

The importance of precisionabsolute Charm BRs II

HQET spin symmetry test

Test factorization with B DDs

Page 11: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 11

•CESR-c:

•Modify for low

energy operation:

•add wigglers for

transverse cooling

(cost $4M)Expected machine performance:

• Ebeam ~ 1.2 MeV at J/

s L (1032 cm-2 s-1)

3.1 GeV 2.0

3.77 GeV 3.0

4.1 GeV 3.6

CESRL(@Y(4S)= 1.3 x 1033

One day scan of the :(1/29/02)

L ~ 1 x 1030

(~BES)

J/J/

Page 12: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 12

CLEO-c Proposed Run Plan

2002: Prologue: Upsilons ~1-2 fb-1 each at Y(1S),Y(2S),Y(3S),… Spectroscopy, matrix element, ee, B hb

10-20 times the existing world’s data (started Nov 2001)

2003: (3770) – 3 fb-1 ((3770) DD) 30 million DD events, 6 million tagged D decays (310 times MARK III)

2004: MeV – 3 fb-1

1.5 million DsDs events, 0.3 million tagged Ds decays (480 times MARK III, 130 times BES)

2005: (3100), 1 fb-1 –1 Billion J/ decays (170 times MARK III, 20 times BES II)

CLEO c

A 3 yearprogram

4140~S

Page 13: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 13

1.5 T now,... 1.0T later

93% of 4p/p = 0.35%

@1GeVdE/dx: 5.7%

@minI93% of 4E/E = 2% @1GeV

= 4% @100MeV

83% of 4% Kaon ID with

0.2% fake @0.9GeV

85% of 4For p>1 GeV

Trigger: Tracks & ShowersPipelinedLatency = 2.5s

Data Acquisition:Event size = 25kBThruput < 6MB/s

CLEO III Detector CLEO-c Detector

Page 14: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 14

How well does CLEO III work?1st CLEO III were presented at LP01

3.18.186.182.29 8.26.2

0.35.44.31.4

1.74.6

Yield BR(BK)(x10-6)BK CLEOIII CLEO(1999)

Good agreement: between CLEOIII& CLEO II & with BaBar/BelleCLEO III works well

(Preliminary)B(B-D0K-) = (3.8 ±1.3) x10-4 CLEOIII (2.9 ±0.8) x10-4 CLEO II

Page 15: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 15

Y(4S) event: (3770) event:

(3770) events: simpler than Y(4S) events

•The demands of doing physics in the 3-5 GeV range are easily met by the existing detector.

•BUT: B Factories : 400 fb-1 ~500M cc by 2005, what is the advantage of running at threshold?

•Charm events produced at threshold are extremely clean•Large , low multiplicity

•Pure initial state: no

fragmentation•Signal/Background is optimum at threshold

•Double tag events are pristine–These events are key to makingabsolute Br measurements

•Neutrino reconstruction is clean•Quantum coherence aids D mixing & CP violation studies

DoK-+ Do K+e-

Page 16: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 16

Tagging Technique, Tag Purity

• (3770) DD s ~4140 DsDs Charm mesons have many large branching ratios (~1-15%) High reconstruction eff

high net tagging efficiency ~20% !

D K tag. S/B ~5000/1 !

Ds (KK) tag. S/B ~100/1

Beam constrained mass

Anticipate 6M D tags 300K Ds tags:Anticipate 6M D tags 300K Ds tags:

MC MC

Logscale!

Logscale!

Page 17: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 17

~ Zero background in hadronic tag modes

Measure absoluteBr (D X) with double tags Br = # of X/# of D tags

CLEO-c sets absolute scale for all heavy quark measurements

KD

tagD

MC

Decay s L Double PDG CLEOc fb-1 tags (B/B %) (B/B %)

D0 K-+ 3770 3 53,000 2.4 0.6D+ K- ++ 3770 3 60,000 7.2 0.7Ds 4140 3 6,000 25 1.9

Absolute Branching Ratios

Page 18: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 18

• Measure absolute Br (Ds

• Fully reconstruct one D (tag)

• Require one additional charged track and no additional photonsDs

Vcs, (Vcd) known from unitarity to 0.1% (1.1%)

Ds tag

Reaction Energy(MeV) L fb-1 PDG CLEO-c

f Ds Ds+ 4140 3 17% 1.9%

f Ds Ds+ 4140 3 33% 1.6%

f D+ D+ 3770 3 UL 2.3%

|fD|2

|VCKM|2

•Compute MM2

•Peaks at zero for Ds+

decay.

Expect resolution of ~Mo

MC

fDs from Absolute Br(Ds

Page 19: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 19

Semileptonic Decays |VCKM|2 |f(q2)|2

U = Emiss - Pmiss

Assume 3 generation unitarity: for the first time measure complete set of charm PS PS & PS V absolute form factor magnitudes and slopes to a few% with ~zero bkgdin one experiment. Stringent test of theory!

TaggedEventsLowBkg!

D0 l

D0 Kl dp

d

p

CLEO-C

Lattice

dp

d

p

D0 lD0 l

Page 20: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 20

eD:11

eKD:10

eKD:9

eD:8

eD:7

eKD:6

eKD:5

eD:4

eD:3

eKD:2

eKD:1

s

0*s

0s

0

0

_0*

_0

0

0

*0

0

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Decay modes

Err

or (%

)

CLEO-c Impact semileptonic dB/B

CLEO-c

PDG

CLEO-c will make significant improvements in the precision with which each absolute charm semileptonic branching ratio is known

Page 21: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 21

Determining Vcs and Vcd

If theory passes the test…..

combine semileptonic and leptonic decays to eliminate CKM

(D+ l(D+ lindependent of VcdTest rate predictions at ~4%

Test amplitudes at 2%Stringent test of theory!

(Dsl(Dslindependent of VcsTest rate predictions at ~ 4.5%

Use CLEO-c validated lattice to calc B semileptonicform factor + B factory Blv for precise Vub

Vcs /Vcs = 1.6% (now: 11%) Vcd /Vcd = 1.7% (now: 7%)

eKD0

eD0I

II

Page 22: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 22

Unitarity Constraints

|Vud|2 + |Vus|2 + |Vub|2 = 1 ??With current values this test fails at ~ 2.7 (PDG2002)

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 ??CLEO –c: test to ~3% (if theory D K/lgood to few %)Also 1st column

)(

1)1(

2

11

)(2

1

4

23

22

32

O

AiA

A

iA

VCKM

1

b

s

d

VVV

VVV

VVV

b

s

d

tbtstd

cbcscd

ubusud

'

'

'

Compare ratio of long sides to 1.3%Also major contributions to Vub, Vcb, Vtd, Vts.

|VubVcb*||VudVcd*|

|VusVcs*|

Page 23: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 23

COMPARISON

0

5

10

15

20

25

30Er

ror (

%)

DfsDf

)KD(Br

)D(BrS

)KD(Br 0

PDG

Compare B factories & Compare B factories & CLEO-CCLEO-C

CLEO-c 3 fb-1

Statistics limited

BFactory 400 fb-1

Systematics & Background limited

M=M(M( GeV/c

CLEO: f DS : DS*DS DS

bkgd

S/N~14

B Factory CLEO technique with improvements

CLEO-c

%Error

Page 24: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 24

CLEO-c Probes of New Physics

D mix & DCPV suppressed in SM – all the more reason to measure themDD mixing x = m/ y =/2 (3770)DD(C = -1) exploit coherence, no DCSD. (4140) DD (C = +1)

rD=[(x2+y2)/2] < 0.01 @ 95%CL (KK, Kl,Kl)

•CP violating asymmetries• Sensitivity: Acp < 0.01• Unique:L=1,C=-1 CP tag one side, opposite side same CP CP=±1 (3770) CP=±1 = CPV•CP eigenstate tag X flavor mode

K+K- DCP (3770) DCP K-+

Measures strong phase diff. CF/DCSD cos ~0.05. Crucial input for B factories Needed for in BDK

Gronau, Grossman,Rosner hep-ph/0103110

y’= ycos-xsin x’= xcos+ysin

Rare charm decays. Sensitivity: 10-

6

Page 25: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 25

and Spectroscopy

– Masses, spin fine structure

• Leptonic widths for S-states.– EM transition matrix elements

resonances winter ’01-summer’02 ~ 4 fb-1 total

• Uncover new forms of matter –gauge particles as constituents

– Glueballs G=|gg Hybrids H=|gqq The current lack of strong evidence for these states is afundamental issue in QCD.Requires detailed understanding of ordinary

hadron spectrum in 1.5-2.5 GeV mass range.

Probing QCD

Study fundamentalstates of the theory

J/ running 2005 109 J/ x 20 BES

Confinement,Relativistic corrections

Wave function Tech: fB,K BK f D{s)

Form factors

Verify tools for strongly coupled theories Quantify accuracy for application to flavor physics

Rich calibration and testing groundfor theoretical techniques apply to flavor physics

Page 26: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 26

•Gluons carry color charge: should bind!

•CLEO-c 1st high statistics experiment with modern 4 detector covering 1.5-2.5 GeV mass range. •Radiative decays:ideal glue factory:

•(60 M J/X)

Gluonic Matter

X

cc̄

•But, like Jim Morrison, glueballs have been sighted too many times without confirmation....

fJ(2220)

Example: fJ(2220) Inclusive Exclusive:

corroborating checks:Anti-search in : /Search in (1S)

BES ’96 44CLEO-c 18K

Note: with more data BESII nolonger see evidence of fj(2220)

Page 27: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 27

• Crucial Validation of Lattice QCD: Lattice QCD will be able to calculate with accuracies of 1-2%. The CLEO-c decay constant and semileptonic data will provide a “golden,” & timely test. QCD & charmonium data provide additional benchmarks. (E2 Snowmass WG)

CLEO-c Physics Impact

Imagine a world Where we have theoreticalmastery of non-perturbative QCDat the 2% level

B Factories only ~2005

Page 28: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 28

• Crucial Validation of Lattice QCD: Lattice QCD will be able to calculate with accuracies of 1-2%. The CLEO-c decay constant and semileptonic data will provide a “golden,” & timely test. QCD & charmonium data provide additional benchmarks. (E2 Snowmass WG)

CLEO-c Physics Impact

Imagine a world Where we have theoreticalmastery of non-perturbative QCDat the 2% level

B Factories only ~2005

Theoryerrors = 2%

Page 29: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 29

The potential to observe new forms of matter- glueballs& hybrids, and new physics D mixing/CPV/rare Provides a discovery component to the program

• Knowledge of absolute charm branching fractions is now contributing significant errors to measurements involving b’s. CLEO-c can also resolve this problem in a timely fashion

• Improved Knowledge of CKM elements, which is now not very good.

CLEO-c Physics Impact

Vcd Vcs Vcb Vub Vtd Vts

7% 11% 5% 25% 36% 39%

1.7% 1.6% 3% 5% 5% 5%B Factory/Tevartron

Data & CLEO-c

Lattice

Validation

(Snowmass E2 WG)

CLEO-cdata andLQCD

PDG

PDG

Competition? Complimentary to Hall D/HESR/BEPCII-BESIII(All late decade none approved)

Page 30: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 30

The Road to Approval

•CLEO-C workshop (5/ 01): successful ~120 participants, 60 non CLEO•Snowmass working groups E2/P2/P5 : acclaimed CLEO-c• HEPAP LRPC “The sub-panel endorses CESR-c and recommends that it be funded.”

CESR/CLEO Program Advisory Committee 9/01 endorsed CLEO-c

•Proposal submission (part of Cornell 5-year renewal) to NSF 10/ 01.

•External mail reviews uniformly excellent

• NSF Site visit panel; 3/2002 endorsed CLEO-c

• National Science Board will meet in August.

• Expect approval shortly thereafter

•See http://www.lns.cornell.edu/CLEO/CLEO-C/ for project description

•We welcome discussion and new members

Page 31: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 31

The CLEO-c Program: Summary

• Powerful physics case• Precision flavor physics – finally • Nonperturbative QCD – finally• Probe for New Physics

•Unique: not duplicated elsewhere• Highest performance detector to run @ charm threshold• Flexible, high-luminosity accelerator• Experienced collaboration

• Optimal timing• LQCD maturing• allows Flavor physics to reach•its full potential this decade• Beyond the SM in next decade

The most comprehensive& in depth study ofnon-perturbative QCD yetproposed in particle physics

Direct: Vcs Vcd &tests QCD techniquesaids BABAR/Belle/CDF/D0/BTeV/LHC-bwith Vub,Vcb,Vtd,Vts

Page 32: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 32

Backup Slides

Page 33: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 33

Analysis Tools

T

T

p

pTRKSIM

GEANT

KK

Ds

•Our estimate of CLEO-C reach hasbeen evaluated using simulation tools developed during our long experience with heavy flavor physics

•Fast MC simulation: TRKSIM•Parameterized resolutions and efficiencies•Standard event generators•Excellent modeling of resolutions, efficiencies and combinatorial bkgd•No electronic noise or extra particles

•Performance validated with full GEANT simulation (CLEOG)

Page 34: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 34

Excess of over e fakes Background measured with electrons

CLEO signal 4.8fb-1

–Search for Ds* -> Ds , Ds ->

–Directly detect Use hermeticity of detector to reconstruct –Plot mass difference but Backgrounds are LARGE!

•Use Ds -> e for bkgd determination but precision limited by systematics

–FDs Error ~23% now (CLEO)

–400 fb-1 ~6-9%

FDs at a B factory Scale from CLEO analysis

Compare to B factories, example f Ds

CLEO-c

M=M(M( GeV/c

Ds

Page 35: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 35

ISR Charm Events at B Factories

Initial State Radiation photon reduces s

Measurement #events

BaBar/Belle CLEOc 500 fb-1 3fb-1

Ds+ 330

1,221D+ 50 672D+ K- ++ 6,750 60,000 Ds

+ 221 6,000

D

D

tag

D tag

D study

ISR projectionsmade by BaBar showISR technique is notstatistically competitivewith CLEO-c. Systematic errors are also much larger.

Page 36: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 36

The fJ(2220) :A case study

Glueballs are hard to pin down, often small data sets & large bkgds

BES (1996)

MARKIII(1986) ??

LEAR1998

pps

sCrystal barrel:

New BES data does not

find the fJ(2220)! (but not published)

Page 37: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 37

fJ(2220) in CLEO-c?

Anti-search in Two Photon Data: fJ2220 – CLEO II: B fJ (2220)/KSKS < 2.5(1.3) eV

– CLEO III: sub-eV sensitivity (new UL to appear ~1 week)– Upsilonium Data: (1S): Tens of events

5000–

850032pp

530023KSKS

1860046K+K-

1300018

3200074

CLEO-CBES

CLEO-c has corroborating checks:

2

3

Page 38: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 38

Inclusive Spectrum J/ X

Inclusive photonspectrum a good place to search: monochromaticphotons for eachstate produced

Unique advantages of CLEO-c+ Huge data set+Modern 4 detector (Suppress hadronic bkg: J/X)+Extra data sets for corroboration , (1S):Lead to Unambiguous determination of J PC & gluonic content

Page 39: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 39+ HESR at GSI Darmstadt p p complementary, being proposed: physics in 2007?

Quantity BES II CLEO-CJ/psi yield 50M > 1000MdE/dx res. 9% 4.9%K/pi separation up to 600 MeV 1500 MeVmomentum res. (500Mev) 1.3% 0.5%Photon resolution (100 Mev) 70 MeV 4 MeVPhoton resolution (1000 Mev) 220 MeV 21 MeVMinimum Photon Energy 80 MeV 30 MeVSolid angle for Tracking 80% 94%Solid angle for Photons 75% 95%

Comparison with Other ExptsChina:BES II is running now. BES II --> BES III upgradeBEPC I --> BEPC II upgrade, ~1032 2 ring design at 1033under consideration (workshop 10/01)Physics after 2006? if approval & construction goes ahead.

HALL-D at TJNAL (USA)p to produce states with exotic Quantum NumbersFocus on light states with JPC = 0+-, 1+-, … Complementary to CLEO-C focus on heavy states with JPC=0++, 2++, …Physics in 2009?

being proposed

BES III complimentary to CLEO-c if new detector isComparable

Page 40: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 40

Additional topics

• ’ spectroscopy (10 8 decays) ’chc….

• at threshold (0.25 fb-1)

• measure mto ± 0.1 MeV• heavy lepton, exotics searches

• cc at threshold (1 fb-1)• calibrate absolute BR(cpK)

• R=(e+e- hadrons)/(e+e- +-)• spot checks

If timepermits

Likely tobe addedto runplan

Page 41: 1 DPF May 2002 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, Purdue University  D o D o, D o  K -  + K-K-

DPF May 2002 Ian Shipsey 41

HEPAP Sub-panel on Long Range

Planning for U.S.High-Energy Physics •Appendix A: Roadmap for Particle Physics A.4.4 (pp 75-76.)"The CLEO collaboration has proposed a program using electron-positron annihilation in the 3 to 5 GEV energy region, optimized for physics studies of charmed particles. These studies would use the CESR storage ring, modified for running at lower energies, and the upgraded CLEO detector. The storage ring would offer significantly higher luminosity and the CLEO detector would provide much better performance than has been available to previous experiments in this energy region.”“The improved measurements of charmed particle properties and decays are matched to theoretical progress in calculating charm decay parameters using lattice QCD. The conversion of the storage ring for low energy runningwould cost about $5M, and could be completed in a year, so that physics studies could begin sometime in 2003. The physics program would then require three years of running the modified CESR facility

“The sub-panel endorses CESR-c and recommends that it be funded.”

•http://doe-hep.hep.net/home.html