18
1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen Hamoen, Nick van der Meijs Delft University of Technology

1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

Embed Size (px)

Citation preview

Page 1: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

1Digital Cartesian feedback linearization

Digital Cartesian Feedback Linearization of Switched Mode

Power AmplifiersAlejandro Viteri, Amir Zjajo, Thijmen Hamoen, Nick van der Meijs

Delft University of Technology

Page 2: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

2Digital Cartesian feedback linearization

• Motivation

• Linearization by means of feedback

• Cartesian feedback modeling

• Digital design

• Simulation results

• FPGA synthesis & results

• Conclusions

Outline

Page 3: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

3Digital Cartesian feedback linearization

Motivation

• A power efficient switch mode PA in the transmitter

• No power losses due to dissipation• Improves lifetime of batteries• Better use of the solar panels• Non-linear

ISIS Innovative Solutions In

Space

• New version of the transceiver

• Previous version of the transceiver

• A linear mode power amplifier (PA)

Page 4: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

4Digital Cartesian feedback linearization

Feedback system with distortion

)()(1

)(

)(1

)()(

)(1

)(

)(

1)( sD

sL

sL

sL

sDsr

sL

sL

ssy fb

fw

Linearization by means of feedback

)()()( ssGsL Loop gain:

• In a feedback system linearity depends on the loop gain

• Distortion in the feedback is not attenuated

• Better control of the system linearity is achieved

Page 5: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

5Digital Cartesian feedback linearization

General model

61 TpA

Cartesian feedback

• Stability condition (PM ≥ 60o)

• The signal is decomposed in Cartesian components

• Feedback is applied to each component

• A delay (e-Ts ) will model the latency of the digital domain

Page 6: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

6Digital Cartesian feedback linearization

Phase shift problem

Cartesian feedback

Sources of phase shift

• Delays in the loop

• Distortion in the PA and

• Up/Down converters

• To changes and aging

Page 7: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

7Digital Cartesian feedback linearization

Mixed signal model

Cartesian feedback

• The dominant poles of this system determine the stability• Oversampling allows to relax the order of the LPFs

• Allows integration

• Reduces area usage and weight in the satellite

• Low power consumption

Benefits

Page 8: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

8Digital Cartesian feedback linearization

Stability analysis by root locus

Mixed-signal Cartesian feedback

21 TTApPM 1A

System root locus

60PM

Compensated system root locus

ff

f

zp

pz

10

3

Page 9: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

9Digital Cartesian feedback linearization

Mixed-signal Cartesian feedback

seCs

fffs

TsDrPdin

error

0

22)(

Phase regulation

• Source signals modeled as a ramp signal s

fs s

s

2

)(

• Transfer function of phase error

Page 10: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

10Digital Cartesian feedback linearization

Mixed-signal Cartesian feedback

DrPdin fffC 20

Phase regulation

• Final value theorem: )( lim)( lim0

sst errors

errort

00

20

s

TsDrPdin

eCs

fff

seCs

fffs

TsDrPdin

error

0

22)(

Page 11: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

11Digital Cartesian feedback linearization

Mixed-signal Cartesian feedback

DrPdin fffC 20

IQQIkk

Ct

dt

dshift '')(

21

0

Phase regulation

'sin'' 21 kkIQQI

21

''

kk

IQQIerror

Page 12: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

12Digital Cartesian feedback linearization

Digital design

• Delay correction by signal rotation

• Magnitude signal for envelope restoration

Page 13: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

13Digital Cartesian feedback linearization

Architecture

Page 14: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

14Digital Cartesian feedback linearization

Simulation results

• Amplification of 20 dB

• IMD -40 dBc satisfied

Page 15: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

15Digital Cartesian feedback linearization

Logic

Utilization

Used/

Available%

4 input LUTs 428/1536 27%

MULT18x18 2/4 50%

I/O Blocks 87/97 89%

FPGA synthesis

• Spartan3 X3s50-4tq144• 50K System gates• 1536 equivalent logic

cells

Page 16: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

16Digital Cartesian feedback linearization

Item Value Units

Bandwidth 9.6 kHz

Loop Gain 10

System delay 400 ns

Bit length 12 bits

Clk freq. 83.33 MHz

Clk cycles 15

Latency 180 ns

Slack 220 ns

Area 27 %

Power 33.31 † mW† Xilinx Xpower Analyzer

Results

• Power budget 1.7 W

• 33.31 mW in a FPGA

• 1.96% of the total power budget

• Latency of 180 ns

• Slack of 220 ns for A/D and D/A

Page 17: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

17Digital Cartesian feedback linearization

• Mixed-signal Cartesian feedback proves to be an efficient linearization method for a stable system with sufficient phase margin.

• Feedback improves linearity when provided with an adequate amount of loop gain.

• The results show that the use of the CORDIC algorithm proves to be a simple, low-power and robust solution for the low bandwidth input signal.

Conclusions

Page 18: 1 Digital Cartesian feedback linearization Digital Cartesian Feedback Linearization of Switched Mode Power Amplifiers Alejandro Viteri, Amir Zjajo, Thijmen

18Digital Cartesian feedback linearization

THANK YOU