(1) Destination Inner Nuclear Membrane

Embed Size (px)

Citation preview

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    1/9

    Destination: inner nuclear membraneSantharam S. Katta1*, Christine J. Smoyer1*, and Sue L. Jaspersen1,2

    1Stowers

    Institute

    for

    Medical

    Research,

    Kansas

    City,

    MO

    64110,

    USA2Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA

    The inner nuclear membrane (INM) of eukaryotic cells is

    enriched in proteins that are required for nuclear struc-

    ture, chromosome

    organization,

    DNA

    repair,

    and

    tran-

    scriptional control. Mislocalization of INM proteins is

    observed in a wide spectrum of human diseases; how-

    ever, the mechanism by which INM proteins reach their

    final destination is poorly understood. In this review we

    discuss how investigating INM composition, dissecting

    targeting pathways of conserved INM proteins in multi-

    ple systems and analyzing the nuclear transport of vi-

    ruses

    and

    signaling

    complexes

    have

    broadened

    ourknowledge of INM transport to include both nuclear

    pore complex-dependent

    and

    -independent

    pathways.

    Thestudy of these INM targeting pathways is important

    to understanding nuclear organization and in both nor-

    mal and diseased cells.

    INM

    proteins

    and

    nuclear

    organization

    The defining

    feature

    of

    eukaryotes

    is

    the nucleus. Unlike

    other organelles, thenucleus is formed bytwo lipid bilayers:

    an

    outer

    nuclear membrane

    (ONM) and an

    INM

    separated

    by

    a

    lumen. The

    ONMand INM

    merge

    at

    discrete regionsof

    the nuclear envelope (NE) where nuclear pore complexes

    (NPCs)

    reside (Figure

    1).Composedof30 subunits present

    in

    multiple

    copies,

    NPCs

    are considered to

    be

    gatekeepers

    that restrict passage

    of

    macromolecules

    into and out of

    the

    nucleus in all eukaryotes [1,2]. Structural and molecular

    analysishas

    shown

    that theNPC

    containsa

    centralchannel

    lined

    with

    phenylalanine-glycine

    (FG)-rich

    repeat-contain-

    ing nucleoporins (FG-Nups), which are thought to limit

    diffusion

    of

    molecules

    with a

    Stokes

    radius

    greater than

    2.63 nm or a molecular weight of 4060 kDa [3]. The

    NPC also contains a series of peripheral channels thatmay

    play

    a

    role in

    the transport

    of

    INM

    proteins

    (Figure 1; see

    below) [46].

    The ONM is contiguous with the endoplasmic reticulum

    (ER) whereas the INM

    is

    distinct,

    containing several

    hundred to possibly a thousand proteins [7,8]. Studiesof

    a

    handful of

    INM

    proteins, including

    the conserved

    SUN (for Sad1UNC-84 homology) and LEM (for Lap1

    emerinMAN1)

    families,

    have

    revealed crucial roles for

    INM

    proteins in nuclear

    structure,

    organization,

    and po-

    sitioning (reviewed in [912]). Onemajor function of SUN

    proteins is to

    connect the nucleus to

    the cytoplasmic

    cytoskeleton

    throughtheirinteraction

    withONM

    proteins

    that bind to actin, dynein, microtubule-organizing cen-

    ters,

    or

    intermediate

    filaments. Several

    SUN proteins as

    well as LEM domain-containing proteins also

    serve as

    scaffolds to cluster nuclear factors involved in transcrip-

    tional control, DNA

    repair, and meiotic recombination

    [11,13,14]. In metazoans, the function of SUN and LEM

    proteins in nuclear organization is partially dependent onlamins andother lamin-associated proteins, which forma

    NE-associated meshwork that is important for maintain-

    ing the structural

    integrity

    of

    the nucleus and the distri-

    bution of NPCs [1518]. A myriad of human diseases,

    ranging from

    tissue-specific diseases of muscle,

    brain,

    bone, and fat to

    multisystemdisorders

    suchas the prema-

    ture aging syndrome Progeria, are associated with muta-

    tions in

    the genes encoding lamins and INM components

    [16,1921]. The etiology is unclear in many cases, but

    studies using tissue-culture cells, mouse, Caenorhabditis

    elegans, andDrosophilamodelshave revealed interdepen-

    dence

    between many INM proteins and lamins

    for

    their

    localization

    and/or

    function

    (e.g.,

    [2227]).

    Understandinghow INM proteins are properly targeted and how their

    distribution

    is regulated in

    different

    cell types

    or

    under

    conditions such as stress

    or

    development

    is crucial to

    elucidate the mechanism of these disorders.

    Soluble cargo and the NPC

    The

    transport

    of

    soluble cargos across the NE

    has

    been

    extensively

    studied

    in

    many

    eukaryotic

    systems and a

    general set of principles for nucleocytoplasmic exchange

    has been

    established [1,28]. Trafficking of

    cargos into and

    out

    of

    thenucleusrequires

    targeting

    information

    in

    theform

    of

    a

    nuclear localization sequence

    for

    entry

    (NLS;

    typically

    a

    short

    basic

    sequence or

    two basic

    sequences

    separated by

    a linker)or anuclearexport sequence forexit (NES;typically

    a

    short

    stretch

    of

    hydrophobic

    residues)

    [29].

    These

    sequences are recognized by karyopherins (also known as

    importins

    and exportins)

    which

    facilitate movement

    through thecentralNPC

    channel. The

    ability

    of

    karyopher-

    ins to bind to their cargo depends on the smallGTPase Ran

    (Ras-relatednuclearprotein).

    A

    gradient

    of

    RanGTP

    in

    the

    nucleus

    and RanGDP

    in

    the cytoplasm

    facilitates the

    binding and release of karyopherins and cargos, and it

    generates the directionality

    of

    transport

    (Figure

    2). Al-

    though there is some diversity in import andexport signals,

    and

    often

    redundancy

    between

    the karyopherins,

    these

    basic properties can account for transport of individual

    Review

    0962-8924/$ see front matter

    2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tcb.2013.10.006

    Corresponding author: Jaspersen, S.L. ([email protected]).

    Keywords: inner nuclear membrane; nuclear transport; NPC; SUN protein; LEM

    domain.*These authors contributed equally to this work.

    Trends in Cell Biology, April 2014, Vol. 24, No. 4 221

    http://dx.doi.org/10.1016/j.tcb.2013.10.006mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.tcb.2013.10.006&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.tcb.2013.10.006&domain=pdfhttp://dx.doi.org/10.1016/j.tcb.2013.10.006
  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    2/9

    proteins

    andlargeprotein

    complexesas

    well

    as

    RNAs,which

    are typically exported as part of a protein complex contain-

    ing the targeting information

    [2830].

    It has

    been widely assumed that the localization of

    INM

    proteins would follow similar principles to those governing

    the localization

    of

    soluble

    cargo.The

    protein

    might

    diffuseor

    be trafficked to the INM by an INM protein-derived target-

    ing sequence in an NPC-dependent pathway. This is partic-

    ularly true in fungi that undergo a closed mitosis where

    NPC-mediated

    transport

    is

    the sole

    mechanism of

    macro-

    molecular

    exchange between the nucleus and cytoplasm.

    Therefore, it was a surprise when studies of several con-

    served

    INM

    proteins

    failed to

    provide

    a

    simpleparadigm

    for

    INM

    localization.

    Belowwe

    integrate ourknowledge of

    INM

    trafficking and discuss growing evidence for at least four

    types

    of

    transport

    pathways.

    The

    ongoing study

    of

    these

    pathways

    will

    result

    in

    greater

    understanding

    of

    the nucle-

    us, its evolution, and its function in genome organization

    and human

    diseases

    linked to

    NE

    dysfunction.

    Diffusion-retention

    The journey for a protein to the INM begins at the ER

    where

    the

    integral

    membrane

    protein

    is

    co-translationally

    or post-translationally

    inserted

    into

    the

    ER

    membrane.

    Similarly to other integral membrane proteins found

    throughout

    the

    cell,

    insertion

    of

    INM

    proteins

    into

    the

    ER

    membrane

    likely

    involves

    the

    Sec61

    translocon

    [31,32]. Because the ER is contiguous with the ONM,

    INM

    proteins

    are

    thought

    to

    freely

    diffuse

    through

    the

    ER to the ONM. Consistent with this hypothesis, photo-

    bleaching studies designed to assay the mobility of several

    INM proteins showed rapid diffusion from the ER to the

    NE

    [3337].

    The

    observation

    that

    their

    mobility

    decreased

    significantly

    once

    localized

    to

    the

    INM

    destination

    sug-

    gests that they are associated with relatively immobile

    components

    of

    the

    nucleus

    such

    as

    lamins

    or

    chromatin.

    Careful

    examination

    of

    NPC

    ultrastructure

    reveals

    that

    its peripheral channels might be sufficiently large

    (10 nm) to accommodate the diffusion or transport of

    an

    integral

    membrane

    protein

    assuming

    it

    has

    a

    small

    nucleoplasmic, or extralumenal, domain [6,38,39]. Studies

    of

    lamin

    B

    receptor

    (LBR),

    a

    multispanning

    INM

    compo-

    nent,

    showed

    a

    strong

    size-selection

    during

    INM

    transport:

    a

    version

    of

    LBR

    that

    had

    a 22 kDa extralumenal region

    localized to the INM whereas a 70 kDa version did

    not

    [40,41]. Similar

    studies

    on

    other

    INM

    proteins

    also

    Yeast

    Metazoans

    Ndc1 Ndc1

    GP210

    Pom34

    Pom152

    Pom33

    TMEM33

    Pom121

    Transmembrane Nups

    Yeast

    Metazoans

    Nup60

    Nup1

    Nup153Nup2 Nup50

    Mlp1/Mlp2 Tpr

    Nuclear FG Nups and basket

    Yeast

    Metazoans

    Nup120

    Nup160

    Nup133

    Nup133

    Nup145C Nup96

    Nup84

    Nup107

    Nup85

    Nup85

    Seh1

    Seh1

    Sec13

    Sec13

    Nup37

    Nup43

    Cdc31

    Centrin-2

    Aladin

    Outer ring Nups

    Yeast Metazoans

    Nup82

    Nup88

    Nic96

    Nup93

    Nup188/192 Nup188/205

    Nup157/170 Nup155

    Nup53/59 Nup35

    Inner ring and linker Nups

    Yeast

    Metazoans

    Nup159 Nup214

    Nup358

    Nup42

    hCG1

    Nup82

    Nup88

    Gle1

    Gle1

    Cytoplasmic FG Nups and

    filaments

    Yeast Metazoans

    Nup100/116/

    145N Nup98/96

    Nsp1 Nup62

    Nup57 Nup54

    Nup49 Nup58/45

    Central FG Nups

    Central channel

    50 nm

    Nucleoplasm

    Peripheral

    channels

    10 nm

    TRENDS in Cell Biology

    Cytoplasm

    Figure 1.

    Schematic of the nuclear pore complex (NPC) showing subunits required for inner nuclear membrane (INM) targeting in yeast andmetazoans. Biochemical and

    genetic analysis of theNPC shows that it is a modular structure. Its subunits, the nucleoporins (Nups), can be assigned to distinct functional subcomplexesbased on their

    physicaland genetic interactions with other Nups.Poremembraneproteins (Poms)connect to outer ringNups to anchor theNPC in thenuclearenvelope (NE). Linker Nups

    connect the outer ring to the inner ring Nups, and FG-Nups [phenylalanine-glycine (FG)-rich repeat-containing nucleoporins] form the central channel. Asymmetrically

    localized Nups form thenuclear basket and thecytoplasmicfibrils (basedon [46]). Based on cryo-electron microscopymeasurements of thehuman NPC, thediameters ofthe central andperipheral channelsare approximately 50 and 10 nm, respectively [6].

    Nups that have been testedfor a role in INMtrafficking arecolored, and those that are

    required for transport of one or more INM proteins are in bold [37,43,48,51,52,84,85] .

    Nups in gray have not been assayed for a role in INM trafficking.

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    222

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    3/9

    indicate

    that

    there

    may

    be

    an

    upper

    size-limit

    on

    transport

    and have

    shown

    further

    roles

    for

    lamins

    as

    well

    as

    chro-matin in

    the

    retention

    of

    proteins

    at

    the

    INM

    [35,37,42

    44]. This biphasic state of fast- and slow-moving pools of

    INM

    proteins

    associated

    with

    the

    ER

    and

    INM,

    respective-

    ly,

    combined

    with

    a

    strong

    size

    selection

    in

    the

    cargo,

    suggest that an INM protein is synthesized on the ER,

    diffuses

    freely

    between

    ONM

    and

    INM

    via

    the

    NPC,

    but

    is

    preferentially

    retained

    at

    the

    INM

    due

    to

    interactions

    with

    chromatin and/or lamins (Figure 3). The appealing sim-

    plicity

    of

    this

    model,

    referred

    to

    as

    diffusion-retention,

    may

    explain why it has predominated in the field until recently.

    LEM domain proteins: active transport?

    At

    first

    glance,

    nuclear

    trafficking

    of

    LEM

    domain-contain-

    ing

    proteins

    such

    as

    Man1

    (LEM

    domain-containing

    pro-

    tein 3), Lap2b (lamina-associated polypeptide 2b), and

    emerin

    appears

    to

    follow

    the

    pattern

    of

    the

    diffusion-re-

    tention

    model

    (Table

    1) [33,35,36,42,45]. For

    example,

    the

    localizations of human Man1 and Lap2b are largely de-

    pendent

    on

    the

    size

    and

    nuclear-binding

    function

    of

    their

    extralumenal

    domains

    (Table 1).A careful

    dissection

    of

    the

    N-terminus of Lap2b showed that it contains distinct

    chromatin-

    and

    lamin-binding

    domains;

    however,

    only

    the

    lamin-binding

    region

    is

    required

    for

    INM

    localization

    [42,45].

    Similar

    results

    were

    also

    obtained

    for

    theDrosoph-

    ila LEM proteins Otefin, Bocksbeutal, and Man1 [46,47].

    It

    was

    therefore

    a

    surprise

    when

    analysis

    of

    the

    budding-yeast

    LEM

    domain-containing

    proteins

    Heh1

    (he-

    lix-extension-helix-1)/Src1

    and Heh2

    showed

    that their

    transport

    is

    not based on

    diffusion-retention

    but

    instead

    requires active transport similar to the pathway used by

    soluble

    cargos (Figure

    4, Table 1) [48].

    King

    and colleagues

    demonstrated

    that the accumulation

    of

    Heh1YFP

    and

    Heh2YFP at the INM is dependent on karyopherin-a

    (Kap60) and karyopherin-b (Kap95)

    together

    with

    theRan GTPase cycle. They also identified a putative NLS in

    Heh2

    and showed

    that this region (which includes

    adjacent

    residues) binds

    to

    karyopherins

    and is

    important for INM

    localization. Based on their work, the authors proposed a

    transport factor-based

    model

    for

    INM

    trafficking

    (Figure 3)

    [49]. Analysis of the primary sequence of other INM compo-

    nents revealed that many

    contain putative NLSs

    in

    their

    extralumenal

    domains,

    suggesting

    that this could be

    a

    widely used pathway for INM localization (Table 1) [49,50].

    If

    Heh1

    and

    Heh2

    use

    active

    transport

    and

    require

    the

    same

    transport

    factors

    as

    soluble

    proteins,

    do

    they

    also

    use

    the central channel of the NPC for trafficking or are

    peripheral

    channels

    used?

    In

    yeast,

    as

    in

    higher

    eukar-

    yotes, the size of the peripheral channels is small andwould

    probably

    only

    accommodate

    a

    protein

    complex

    with

    a mass of2540 kDa [4,5,49,51]. It is therefore difficult to

    imagine

    how

    an

    integral

    membrane

    protein

    bound

    to

    a

    karyopherin-a/karyopherin-b complex

    would

    physically

    fit

    in the peripheral channel. However, it is also unclear how

    an INM

    protein

    might

    utilize

    the

    larger

    central

    channel,

    which

    is

    located

    in

    the

    center

    of

    the

    NPC

    approximately

    50 nm away from the membrane region [6]. To test if Heh2

    traverses

    through

    the

    central

    channel,

    Meinema et al.

    developed

    a

    clever

    strategy

    to

    trap

    translocation

    inter-

    mediates [52]. The authors constructed a synthetic INM

    protein

    by

    fusing

    the

    Heh2

    NLS,

    its

    linker

    (L,

    the

    region

    between

    the

    NLS

    and

    transmembrane

    domain)

    and

    trans-membrane

    domain

    to

    human

    FKBP12

    and

    GFP

    (FKBP

    GFPNLSLTM). This was expressed in cells containing

    a

    version

    of

    the

    central

    channel

    NPC

    protein

    Nsp1

    (nucleoskeletal-like

    protein/nucleoporin)

    fused

    to

    the

    FRB (FKBP12/rapamycin-binding) domain of human

    mTOR

    (mechanistic

    target

    of

    rapamycin).

    In

    the

    presence

    of

    rapamycin,

    FRB

    and

    FKBP12

    will

    bind

    if they

    are

    in

    closeproximity [53]. If theHeh2NLSlinker constructuses

    the

    central

    NPC

    channel

    during

    transport,

    it

    should

    be

    possible to trap the synthetic INM protein in the NPC by

    addition of rapamycin. If it uses peripheral channels,

    rapamycin should have no effect because Nsp1FRB and

    FKBPGFPNLSLTM

    will

    not

    come

    into

    physical

    prox-

    imity.

    NE

    aggregation

    of FKBPGFPNLSLTM

    in

    Nsp1FRB cells in a rapamycin-dependent manner was

    observed,

    consistent

    with

    the

    idea

    that

    Heh2

    uses

    the

    NPC

    central

    channel

    [52]. The

    fact

    that

    combinations

    of FG

    Nups when deleted also affected transport further sup-

    ported

    this

    possibility

    [52]. Curiously,

    trapping

    of

    the

    synthetic

    INM

    protein

    did

    not

    affect

    the

    transport

    of solu-

    ble cargos but did affect the NE accumulation of additional

    FKBPGFPNLSLTM,

    suggesting

    that

    trafficking

    of

    INM

    proteins

    is

    specifically

    blocked

    [52,54]. Thus,

    it

    appears

    that

    although

    INM

    and

    soluble

    transport

    path-

    waysmay at leastpartially overlap, there aredifferences in

    the

    actual

    transport

    mechanism.

    Dedicated

    NPCs

    and/or

    Karyopherin Karyopherin

    NLS

    Cargo protein

    RanGTP

    RanGDP

    Ran GEF

    Ran GAP

    NES

    Cargo protein

    TRENDS in Cell Biology

    Figure 2.

    Transport of soluble cargos. Targeting to the nucleus involves a nuclear

    localizat ion sequence (NLS) that is recognized by an import-competent

    karyopherin (also called an importin) that shuttles the cargo through the nuclear

    pore complex (NPC) via its central channel. Binding of Ran (Ras-related nuclear

    protein)GTP inside the nucleus causes the complex to disassemble. The

    karyopherin can be recycled to the cytoplasm while the cargo accumulates in

    the nucleus. During export, a nuclear export sequence (NES) is recognized by an

    export-competent karyopherin (also called an exportin) together with RanGTP.

    This ternary complex is transported through the NPC central channel to the

    cytoplasm, where nucleotide hydrolysis is stimulated, causing RanGTP to be

    converted to RanGDP, which releases the karyopherin and cargo. Abbreviations:

    GEF, guanine nucleotide exchange factor; GAP, GTPase activating protein.

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    223

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    4/9

    Diffusion retenon Transport factor mediated

    Sorng mof mediated Vesicle mediated

    Protein cargoProtein cargo

    Protein

    NLS

    RanGTP

    Ribosome

    Sec 61

    Nup 50/Nup 2

    Imporn 16

    Lamin or chroman binding domain

    Peripheral channel

    Lamins

    Chroman

    Karyopherin

    Central channel

    Protein

    yt lasm

    Nucleoplasm

    yt lpasm

    Nucleoplasm

    t lpasm

    Nucleoplasm

    Cytoplasm

    Nucleoplasm

    R

    INM-SM

    TRENDS in Cell Biology

    Figure 3.

    Four proposed INM targeting pathways. Integral membrane proteins are synthesized and inserted into the endoplasmic reticulum (ER) membrane either co-

    translationally or post-translationally. (A) The diffusion-retentionmodel suggests that theinnernuclearmembrane(INM)protein is able to diffuse freely from theER to theouternuclearmembrane (ONM),and to diffuse from theONM to INMusing peripheral nuclear pore complex (NPC) channels. Accumulationof theproteinat theINMoccurs

    due to tethering by chromatin and/or lamins. Because transport relieson peripheralchannels, theextralumenal domainmust be small (

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    5/9

    the requirement for INM proteins to stretch and dodge

    between

    the

    NPC

    components

    may

    partially

    account

    for

    differences

    in soluble

    and

    membrane-based

    transportthrough

    the

    NPC.

    The

    INM

    sorting

    motif

    Although

    many INM proteins

    contain

    putative

    NLSs,

    it

    is unclear in most cases if these are essential for INM

    transport.

    Often, their mutation

    or

    deletion

    does

    not

    affect localization,

    suggesting

    that

    additional features

    contribute to INM targeting (e.g., [44,55]). The baculo-

    virus

    occlusion-derived virus integrates

    into

    the ER and

    then traverses to the nucleus for viral envelope assem-

    bly. Analysis of this pathway revealed two unique fea-

    tures that are essential for its trafficking to the INM: a

    hydrophobic

    transmembrane sequence and

    an

    adjacent

    region

    containing positively charged amino

    acids

    such

    as

    lysine or arginine, termed the inner nuclear membrane

    sorting motif

    (INM-SM)

    [56,57]. Owing to

    the correlation

    that

    is known

    to

    exist

    between

    the length

    and composi-

    tion of transmembrane domains and the intracellular

    location

    and topology

    of

    the protein, this finding

    may not

    be surprising

    [58].

    However, the observation that the

    INM-SM is present on many NE components, including

    some

    LEM domain- and SUN domain-containing

    pro-

    teins,

    the INM proteins nurim and LBR, and the integral

    membrane

    NPC components, GP210 (nucleoporin

    210 kDa) and Pom121 (nuclear pore membrane protein

    121 kDa),

    suggests

    that

    sorting

    motifs

    may play a

    general role in targeting proteins to the INM

    (Figure 3, Table 1) [56].

    Consistent

    with

    the

    idea

    that

    the

    INM-SM

    plays

    anactive

    role

    in

    INM

    transport

    rather

    than

    an

    indirect

    role

    in

    protein topology, the INM-SM from the baculovirus-de-

    rived

    protein

    and

    from

    LBR

    and

    nurim

    were

    shown

    to

    bind

    to

    a

    truncated,

    membrane-associated

    form

    of karyo-

    pherin-a termed importin-a-16 (or KPNA-4-16) [59,60].

    The

    smaller

    importin-a-16 lacks

    the

    importin-b-binding

    domain

    that

    normally

    facilitates

    karyopherin-a interac-

    tion with karyopherin-b, suggesting that importin-a-16

    functions

    independently,

    rather

    than

    as

    part

    of

    a

    dimeric

    karyopherin complex [61]. The formation of a truncated

    version of karyopherin-a is not due to the virus or the cell

    line: karyopherin-a in insects, humans, and yeast is pres-

    ent

    in

    multiple

    isoforms

    that

    arise

    through

    alternative

    splicing

    and/or

    internal

    initiation

    of

    transcription

    [59,60,62,63]. It was observed that importin-a-16 was

    crosslinked

    with

    Sec61a at

    the

    ER

    membrane,

    leading

    to

    the

    proposal

    that

    the

    INM-SM

    may

    specifically

    recognize

    INM proteins as they emerge from the ribosome during

    translation

    to

    facilitate

    their

    transport

    to

    the

    INM

    (Figure

    3) [59,61,64].

    Interestingly, the trafficking of Heh2 in yeast, which

    was

    originally

    used

    to

    demonstrate

    the

    importance

    of

    transport

    factors

    in

    INM

    localization,

    provides

    an illustra-

    tion

    of

    signal

    sequence-based

    transport.

    The

    observation

    that the N-terminal region of Heh2 mediates binding to

    Kap60

    (the

    yeast

    karyopherin-a) in vitro, and that

    Table

    1.

    Sequence

    features

    in

    well-characterized

    INM

    proteins

    and

    their

    roles

    in

    INM

    transporta

    Domainsb Size of the

    extra-lumenal

    domain (kDa)c

    Nuclear localization

    sequence (NLS)

    Inner nuclear

    membrane sorting

    motif (INM-SM)

    Golgi-retrieval

    sequence

    Other Refs

    LEM domain

    Emerin (Hs) 26 31-RRLYEKKIFEYETQRRR-46 211-RAPGAGLGGD-221 44-RRR-46 ATP-dependent [43]

    Man1

    (Hs) 50(Nt)/31(Ct) 190-RRKP193

    285-RPRR-28

    706-OGDRKKM-712

    457-KREEVSPTGSFSAH-471 None Linker [35]

    Lap2b

    (Rn) 45 257-PRRRVEP-263 403-KTKK-406 251-RGSRR-255

    258-RRR-260

    [37,43]

    Heh1 (Sc) 50(Nt)/13(Ct) 86-PRRSRRA-92

    93-RREKSASPMAKQFKKNR-109

    173-RKKRK-177

    216-KKRK-219

    433-KFKRALKFLSK-453

    726-KNYRKK-734

    None Linker [52]

    Heh2

    (Sc) 36(Nt)/12(Ct) 125-KKKRKKRSSKANK-137 302-KTKRGIDIMK-311 None Linker [48,52,54,63]

    SUN domain

    Sun1 (Hs) 27 None predicted None None SUN-NELS

    209-SRVYSRDRNQK-219

    [44,85,86]

    Sun2 (Hs) 23 38-PLRTLKRKSSNMKR-52 None 102-RRRR-105 Sun domain,

    ATP-dependent

    [43,55,68,87]

    UNC-84 (Ce) 59 35-KVRRK-39

    170-HRRR-173

    503-KKSSK-507 171-RRR-173 SUN-NELS 235-

    SRMTTRSQTLER-246

    [44]

    Mps3 (Sc) 18 None 146-KKLK-150 None Htz1 [69,70]Other

    LBR (Hs) 23(Nt)/25(Ct) 63-RKGGSTSSSPSRRRGSR-79

    95-RRSASASHQADIKEARR-111

    169-RPRR-172

    252-RAKD-256 74-RRR-76

    169-RPRR-172

    Ran-dependent [41,43]

    aFeaturesin bold havebeentestedin thecontextof thefull-lengthprotein andshownto playa rolein INMtranslocation,whereasfeatures in regulartypeappear tohavelittle

    to noeffect on targeting.Other featureshave beenpredictedbased onamino acidcomposition, sequencehomology,or other methods,but their roles in transport havenot

    beenanalyzed in the contextof the full-lengthprotein (see [44,49,56,88]).Note,onlyclassical NLSs havebeen predicted; othertypesof NLSs,suchas thePY-NLS,havenot

    been identified in INM proteins.

    bCe, Caenorhabditis elegans;

    Hs, Homo sapiens;

    Rn, Rattus norvegicus; Sc, Saccharomyces cerevisiae.

    cCt, C-terminal; Nt, N-terminal.

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    225

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    6/9

    transport

    of

    Heh2YFP

    is

    dependent

    on

    the function of

    KAP60 aswell asKAP95 (karyopherin-b), implicated trans-

    port factorsinHeh2 INM localization [48].However,further

    analysis of

    the karyopherin-a isoforms

    required

    for

    Heh2

    import

    revealed that full-length

    Kap60 is

    not required fortransport

    of

    Heh2. Instead,

    Kap60-44

    or

    Kap60-30

    isoforms

    are needed to enrich Heh2 at the nuclear periphery [63]. A

    previously

    unrecognized INM-SMin

    Heh2

    was

    mutated

    and

    this

    reduced

    Heh2

    NE

    localization, indicating thattheINM-

    SM contributes to its INM localization (Table 1). Details of

    the

    signal-sequence mechanism of

    transport

    remain

    to

    be

    elucidated, including whether

    Kap60-44

    simply

    delivers

    Heh2 to the NPC and then a full-length Kap60/Kap95

    complex forms,

    or

    whether

    Kap60-44

    functions

    as

    a

    karyo-

    pherin and shuttles Heh2 into the nucleus. Studies ofviral

    protein transport suggest that the latter is true [64]; it will

    therefore be interesting to determine if Kap60-44 uses the

    peripheral

    or

    centralchannelandalsoto

    dissecthow

    Kap60-

    44

    disassociates

    from

    theHeh2

    cargo once

    inside

    thenucle-

    us. Full-length karyopherin-a releases its cargo in a Ran

    GTP-independent

    mechanism involving nucleoplasmic

    Nups

    (vertebrate

    Nup50/yeast

    Nup2)

    or

    other

    complexes

    required for nuclear export (vertebrate CAS/yeast Cse1)

    [6567]. Nup2

    is

    one of

    the two Nups

    required for

    transport

    of Heh1YFP

    and

    Heh2YFP,

    making

    it

    temptingto

    specu-

    late thatits involvementmaybe related tonuclear release of

    Kap60-44 from

    Heh1

    or

    Heh2

    (Figures 1

    and 3) [48].

    SUN proteins: Golgi retrieval and redundant pathways

    From extensive analysis of the LEM domain-containing

    proteins,

    LBR

    and

    various

    viral

    proteins,

    it

    is

    clear

    that

    at

    least three

    modes

    of

    INM

    localization

    exist:

    (i)

    diffusion-

    retention,

    (ii)

    transport

    factor-,

    and

    (iii)

    signal

    sequence-

    mediated transport. What is less well understood is the

    relative

    importance

    or

    dominance

    of

    one

    pathway

    over

    another.

    One

    way

    to

    address

    this

    issue

    is

    to

    study

    thetransport

    of

    an

    INM

    protein

    (or

    a

    class

    of

    INM

    proteins)

    that contains features necessary for all three modes of

    targeting

    and

    systematically

    eliminate

    each

    to

    test

    the

    outcome

    on

    INM

    localization.

    Based

    on

    primary

    sequence

    information, the SUN family is an excellent model to test

    the

    requirement

    of

    different

    trafficking

    pathways

    because

    the

    multiple

    sequence

    features

    needed

    for

    INM

    trafficking

    are found in the N-terminal extralumenal domains ofmost

    SUN

    proteins.

    For

    example,

    mammalian

    Sun1

    and

    Sun2,

    and yeast Mps3, all have small extralumenal domains,

    Sun2 and C. elegans UNC-84 contain a NLS, and UNC-84

    andMps3have INM-SMs (Figure4, Table 1) [44,55,6870].

    To

    determine

    if diffusion-retention

    is

    important for

    tar-

    geting, thesize

    of

    the extralumenal

    domain

    can be

    increased

    byaddingone, two,or three copies ofGFP.When onecopy of

    GFP

    was

    fused

    to

    the extralumenal

    domain

    of

    Sun2 it

    was

    efficiently

    transported

    to

    the NE,

    but

    adding two

    or

    three

    copies of GFP virtually abolished transport [55]. A similar

    size-dependence

    was

    also observed for

    Mps3

    [69].

    These

    results

    suggest that diffusion-retention

    is

    important

    for

    INM localization of SUN proteins. However, the idea that

    SUN

    proteins

    reach the INM

    by

    diffusion

    is

    problematic for

    two

    reasons.

    First,

    some

    SUN

    proteins

    such

    as

    UNC-84have

    large (59 kDa) extralumenal domains; it is unlikely that

    they can reach the INM by simple diffusion. Second, and

    more

    compelling,

    theN-termini of

    Sun2, UNC-84, or

    Mps3

    Heh1 Heh2

    Man1

    MSC domain

    INM-SM

    SUN-NELS

    LEM domain/

    LEM-like domain

    NLS

    Key:

    RRM domain

    Coiled-coils and

    SUN domain

    Golgi retrival sequence

    Lamin B tudor domain

    Lap2

    Emerin Sun2 Sun1

    UNC-84

    LEM domain SUN domain Other

    Mps3LBR

    Cytoplasm

    Nucleoplasm

    TRENDS in Cell Biology

    Figure4 .

    Schematic showing theLEM (Lap1emerinMAN1) and SUN(Sad1UNC-84 homology) proteinsfrom different species as well as thelamin B receptor (LBR). The

    approximate location of sequence features involved in inner nuclearmembrane (INM) localization and in other functions is indicated. For sequence coordinates,

    see Table 1.

    Other abbreviations: INM-SM, INM sorting motif; MSC,Man1Src1pC-terminal domain; NELS, nuclear envelope localization sequence; NLS,

    nuclear localization sequence;

    RRM,RNA

    recognitionmotif..

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    226

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    7/9

    are each

    sufficient

    to

    target a

    heterologous protein

    to

    the

    INM

    and to

    prevent

    its

    diffusion back out of

    the nucleus

    [44,55,71]. Althoughan

    argument

    could

    be

    madethat this is

    NLS-dependent, it is important to note thatMps3 does not

    contain any recognizable NLS,

    and removal

    of

    theNLSs

    in

    UNC-84 and Sun2 only

    resulted in

    minor

    mislocalization

    of

    the corresponding full-length protein (Figure 4) [44,55,68].

    Taken

    together,

    these data

    suggest

    that the N-termini

    ofSUN proteins contain INM targeting information for path-

    ways

    other

    than diffusion-retention

    and transport factor-

    mediated

    trafficking.

    Themost obvious candidate, the INM-SM, was tested in

    both

    yeast

    and

    worms.

    In

    the

    case

    of

    Mps3,

    the

    INM-SM

    had no apparent effect on localization or topology but its

    mutation

    did

    result

    in

    defects

    in

    chromosome

    organization

    [70]. By

    contrast,

    mutation

    of

    the

    INM-SM

    in

    UNC-84

    resulted in a significant decrease in the level of the protein

    at the

    NE,

    but

    a

    more

    sensitive

    assay

    for

    protein

    function

    at

    the

    INM

    [rescue

    of

    the

    nuclear

    migration

    defect

    in hyp7

    cells of unc-84(n369) animals] showed that at least some

    mutant

    protein

    must

    localize

    because

    migration

    appeared

    to be largely unaffected [44]. An additional motif identifiedby

    virtue

    of

    its

    homology

    to

    human

    Sun1

    (the

    SUN-NELS

    for SUN nuclear envelope localization sequence) was also

    tested for

    its

    effect

    on

    UNC-84

    localization

    and,

    like

    the

    INM-SM,

    was

    also

    not

    essential

    (Figure 4, Table

    1). Be-

    cause this motif is not present in all SUN proteins, it likely

    functions

    in

    conjunction

    with

    other

    pathways,

    possibly

    as

    a

    non-canonical

    NLS

    or

    in

    a

    piggy-backing

    mechanism

    simi-

    lar to that required for Mps3 localization (Table 1) [44,69].

    Consistent

    with

    this

    idea,

    only

    when

    the

    INM-SM,

    SUN-

    NELS,

    and

    NLSs

    were

    mutated

    did

    UNC-84

    mislocalize,

    demonstrating that at least three, possibly four, INM

    trafficking

    pathways

    must

    be

    blocked

    to

    abolish

    INM

    transport

    in the

    C.

    elegans

    system

    [44]

    (see

    below).Because

    Sun2

    lacks

    both

    the

    SUN-NELS

    and

    a

    recog-

    nizable INM-SM, a deletion analysis was conducted to

    determine

    regions

    of its

    N-terminus

    required

    for

    INM

    targeting.

    This

    unbiased

    approach

    uncovered

    an

    unlikely

    motif: a cluster of arginine residues that functions as a

    Golgi

    retrieval

    sequence

    [55,72]. Only

    when

    this

    region

    was

    mutated

    in

    combination

    with

    the

    NLS

    did

    Sun2

    disappear

    from the INM. Interestingly, it was redistributed to the

    Golgi

    membrane,

    leading

    the

    authors

    to

    search

    for

    sequences that might be involved in retrograde trafficking

    from the Golgi to the ER. They found a Golgi retrieval

    sequence and demonstrated that this domain was required

    for binding

    of

    Sun2

    to

    components

    of

    the

    coat

    protein

    complex

    (COPI)

    [73]. This

    finding

    suggests

    that

    accumula-

    tion of proteins in the ONM/ER, perhaps by preventing or

    recovering

    the

    protein

    from

    later

    secretory

    compartments,

    may

    be

    a

    requisite

    step

    in

    INM

    localization.

    One

    of

    the

    NLS

    sequences that contributes to UNC-84 localization may in

    fact

    be

    a

    Golgi

    retrieval

    sequence,

    indicating

    that

    Golgi

    retrieval

    could

    be

    a

    conserved

    aspect

    of

    sorting

    SUN

    proteins to the INM (Table 1) [44]. Because of the small

    size

    of

    the

    motif,

    it

    is

    difficult

    to

    use

    in

    a

    genome-wide

    search,

    but

    it

    is

    feasible

    to

    test

    individual

    INM

    proteins

    for

    groups

    of

    35

    arginines.

    Inspection

    of

    mammalian

    emerin,

    Lap2b, and LBR shows that all contain arginine-rich

    regions

    that

    may

    serve

    as

    Golgi

    retrieval

    sequences

    (Figure

    4, Table

    1). The

    role

    of

    these

    residues

    is

    currently

    unknown,

    and

    an

    important

    future

    direction

    is

    to

    deter-

    mine their

    role

    in

    INM

    transport:

    do

    they

    function

    as

    NLSs

    and mediate karyopherin binding, or do they serve as Golgi

    retrieval

    sequences

    and

    play

    a

    role

    in

    binding

    to

    the

    COPI

    complex.

    Non-canonical

    pathways

    for

    INM

    transportThe emerging picture of INM transport based on analysis

    of

    SUN

    and

    LEM

    proteins

    is

    that

    INM

    localization

    is

    determined

    by multiple cis- and trans-acting factors. A

    systematic study of INM localization of 15 different INM

    proteins

    fused

    to

    GFP

    and

    expressed

    in

    transiently

    trans-

    fected HeLa cells reconfirms results obtained by previous

    studies

    of

    individual

    proteins

    showing

    that

    diffusion-re-

    tention,

    transport

    factors,

    and

    the

    NPC

    and

    ATP

    play

    roles

    in INM targeting of a subset of components (Table 1).

    However,

    this

    study

    clearly

    illustrates

    the

    notion

    that

    INM

    proteins

    use

    multiple

    overlapping

    pathways

    to

    reach

    the INM, and suggests that additional unknown pathways

    contribute

    to

    protein

    localization

    at

    the

    NE.

    For

    example,

    the authors note that many INM proteins are enriched inFG-repeats,

    and

    propose

    a

    role

    for

    these

    regions

    as

    trans-

    port receptors for the protein that would aid in NPC

    navigation

    [43].

    A

    recent

    study

    of

    Wnt

    signaling

    at

    the

    neuromuscular

    junction in Drosophila larvae has also reinvigorated the

    idea

    of

    non-canonical

    NPC-independent

    transport

    mecha-

    nisms

    [74]. In

    this

    study,

    nuclear

    export

    of

    messenger

    ribonucleoprotein (mRNP) granules harboring synaptic

    transcripts

    was

    found

    to

    occur

    through

    a

    vesicle-mediated

    pathway

    similar

    to

    viral

    egress

    used

    by

    herpes

    virus

    [75,76]. Although it is currently unclear if this type of

    transport

    is

    widely

    used

    or

    if

    it

    is

    able

    to

    move

    cargoes

    from

    the

    ONM

    to

    INM,

    it

    suggests

    that

    novel

    transportmechanisms

    may

    exist

    (Figure 4). A

    vesicle-mediated

    INM

    transport mechanism may help to explain curious genetic

    interactions

    observed

    in

    yeast

    between

    mutants

    in

    compo-

    nents

    of

    the

    vacuolar

    sorting

    complex

    and

    transcription

    factors [7779].

    A

    comparison

    between

    the ONM and INM

    of

    the NE

    and

    the

    membranes

    of

    mitochondria has

    also led

    to

    theproposal

    ofa threadingmodel for INM transport: theproteinwouldbe

    spun througha

    channel in

    theONM into the lumenal space,

    then threaded through another channel and released into

    the INM (see [80,81]). Although there is little evidence to

    support this model, it is worthwhile to consider that some

    components

    of

    the Sec61

    translocon

    may

    transiently

    reside

    at

    the INM

    as

    well

    as

    the ONM/ER

    because they are

    required for the INM localization of growth factor receptors

    such

    as

    the epidermal

    growth factor

    receptor [82,83]. Local-

    ization of

    components of

    the ER-associated protein

    degra-

    dation machinery such as Doa10 to both the ONM/ER and

    INM

    also supports

    the idea

    that proteins

    might

    be

    able exit

    the

    lumenal space into the nucleoplasm through a

    mem-

    brane translocation channel [51].

    Concluding

    remarks

    Although

    trafficking

    of

    proteins

    and

    macromolecules

    in

    and out of thenucleus is essential fornuclear maintenance,

    growth,

    and

    proliferation,

    the

    mechanisms

    for

    travel,

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    227

  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    8/9

    especially

    the

    route

    taken

    by

    INM

    proteins

    to

    reach

    their

    final

    destination,

    appear

    to

    be

    more

    varied

    and

    complex

    than previously

    postulated.

    Careful

    dissection

    and

    analy-

    sis of the targeting of each INM component is essential

    because

    multiple

    pathways

    converge

    to

    ensure

    its

    distri-

    bution

    to

    the

    INM.

    It

    is

    currently

    unclear

    why

    redundant

    targeting mechanisms exist, although it is possible that

    this

    allows

    tight

    regulation

    of

    INM

    content

    in

    developmen-tal-, tissue-, and cell cycle-specific ways. Because INM

    proteins

    affect

    chromosome

    organization,

    transcriptional

    regulation,

    nuclear

    morphology,

    and

    genomic

    integrity,

    dynamic control of INM materials may be necessary to

    respond

    to

    signaling

    pathways,

    growth

    and

    environmental

    cues, and to manage DNA damage. An exciting challenge

    for

    the

    future

    will

    be

    to

    integrate

    our

    knowledge

    of

    these

    different

    areas

    and

    watch

    the

    INM

    respond

    in

    real-time

    to

    various changes encountered by cells.

    Acknowledgments

    We thank Brian Slaughter and members of the Jaspersen lab for

    discussion and comments, and Mark Miller for assistance will illustra-

    tions. Support was

    provided

    by the Stowers

    Institute for

    MedicalResearch and the American Cancer Society (RSG-11-030-01-CSM).

    References1 Aitchison, J.D. and Rout, M.P. (2012) The yeast nuclear pore complex

    and transport through it. Genetics 190, 855883

    2 Grossman, E.et al. (2012) Functional architecture of the nuclear pore

    complex. Annu. Rev. Biophys. 41, 557584

    3 Terry, L.J. and Wente, S.R. (2009) Flexible gates: dynamic topologies

    and functions for FG nucleoporins in nucleocytoplasmic transport.

    Eukaryot. Cell 8, 18141827

    4 Alber, F.et al. (2007) Determining the architectures ofmacromolecular

    assemblies. Nature 450, 683694

    5 Alber, F. et al. (2007) The molecular architecture of the nuclear pore

    complex. Nature 450, 695701

    6 Maimon, T.et al. (2012) The human nuclear pore complex as revealed

    by cryo-electron tomography.Structure 20, 99810067 Schirmer,E.C. andGerace, L. (2005)The nuclear membrane proteome:

    extending the envelope. Trends Biochem. Sci. 30, 551558

    8 Korfali, N.et al. (2012) The nuclear envelope proteome differs notably

    between tissues. Nucleus 3, 552564

    9 Starr, D.A. and Fridolfsson, H.N. (2010) Interactions between nuclei

    and the cytoskeleton are mediated by SUN-KASH nuclear-envelope

    bridges. Annu. Rev. Cell Dev. Biol. 26, 421444

    10 Rothballer, A. and Kutay, U. (2013) The diverse functional LINCs of

    the nuclear envelope to the cytoskeleton and chromatin.Chromosoma

    122, 415429

    11 Mekhail, K. and Moazed, D. (2010) The nuclear envelope in genome

    organization, expression and stability. Nat. Rev. Mol. Cell Biol. 11,

    317328

    12 Meister, P. and Taddei, A. (2013)Building silent compartments at the

    nuclear periphery: a recurrent theme. Curr. Opin. Genet. Dev. 23, 96

    10313 Taddei, A. and Gasser, S.M. (2012) Structure and function in the

    budding yeast nucleus. Genetics 192, 107129

    14 Steglich, B.et al. (2013) Transcriptional regulationat the yeastnuclear

    envelope. Nucleus 4, 379389

    15 Dittmer, T.A. andMisteli, T. (2011) The lamin protein family.Genome

    Biol. 12, 222

    16 Stewart, C.L.et al. (2007) Blurring theboundary: thenuclearenvelope

    extends its reach. Science 318, 14081412

    17 Simon, D.N. andWilson, K.L. (2011) The nucleoskeleton as a genome-

    associated dynamic network of networks.Nat. Rev. Mol. Cell Biol. 12,

    695708

    18 Simon, D.N. and Wilson, K.L. (2013) Partners and post-translational

    modifications of nuclear lamins. Chromosoma 122, 1331

    19 Schreiber, K.H. andKennedy,B.K. (2013)When laminsgobad: nuclear

    structure and disease. Cell 152, 13651375

    20 Dauer, W.T. and Worman, H.J. (2009) The nuclear envelope as a

    signaling node in development and disease. Dev. Cell 17, 626638

    21 Mendez-Lopez, I. and Worman, H.J. (2012) Inner nuclear membrane

    proteins: impact on human disease. Chromosoma 121, 153167

    22 Ellis, J.A. et al. (1998) Aberrant intracellular targeting and cell cycle-

    dependent phosphorylation of emerin contribute to the Emery

    Dreifuss muscular dystrophy phenotype. J. Cell Sci. 111, 781792

    23 Lee, K.K. et al. (2002) Lamin-dependent localization of UNC-84, a

    protein required for nuclear migration inCaenorhabditis elegans.Mol.

    Biol. Cell 13, 89290124 Folker, E.S. et al. (2011) Lamin A variants that cause striated muscle

    disease are defective in anchoring transmembrane actin-associated

    nuclear lines for nuclear movement.Proc. Natl. Acad. Sci. U.S.A. 108,

    131136

    25 Sullivan, T.et al. (1999) Loss of A-type lamin expression compromises

    nuclear envelope integrity leading to muscular dystrophy.J. Cell Biol.

    147, 913920

    26 Fairley, E.A. et al. (2002) The cell cycle dependent mislocalisation of

    emerin may contribute to the EmeryDreifuss muscular dystrophy

    phenotype. J. Cell Sci. 115, 341354

    27 Haque, F.et al. (2010)Mammalian SUNprotein interaction networks

    at the inner nuclear membrane and their role in laminopathy disease

    processes. J. Biol. Chem. 285, 34873498

    28 Guttler, T. and Gorlich, D. (2011) Ran-dependent nuclear export

    mediators: a structural perspective. EMBO J. 30, 34573474

    29 Xu, D. et al. (2010) Recognition of nuclear targeting signals byKaryopherin-beta proteins. Curr. Opin. Struct. Biol. 20, 782790

    30 Natalizio, B.J. and Wente, S.R. (2013) Postage for the messenger:

    designating routes for nuclear mRNA export. Trends Cell Biol. 23,

    365373

    31 Park, E. and Rapoport, T.A. (2012) Mechanisms of Sec61/SecY-

    mediated protein translocation across membranes. Annu. Rev.

    Biophys. 41, 2140

    32 Rapoport, T.A.et al. (2004)Membrane-protein integrationand the role

    of the translocation channel. Trends Cell Biol. 14, 568575

    33 Ostlund, C.et al. (1999) Intracellulartrafficking of emerin, the Emery

    Dreifuss muscular dystrophy protein. J. Cell Sci. 112, 17091719

    34 Ellenberg,J.et al. (1997)Nuclearmembranedynamics and reassembly

    in living cells: targeting of an inner nuclear membrane protein in

    interphase and mitosis. J. Cell Biol. 138, 11931206

    35 Wu, W. et al. (2002) Intracellular trafficking of MAN1, an integral

    protein of thenuclear envelope inner membrane.J. Cell Sci. 115,1361

    1371

    36 Shimi, T. et al. (2004) Dynamic interaction between BAF and emerin

    revealed by FRAP, FLIP, and FRET analyese in living HeLa cells. J.

    Struct. Biol. 147, 3141

    37 Ohba, T.et al. (2004) Energy- and temperature-dependent transport of

    integral proteins to the inner nuclear membrane via the nuclear pore.

    J. Cell Biol. 167, 10511062

    38 Reichelt, R. et al. (1990) Correlation between structure and mass

    distribution of the nuclear pore complex and of distinct pore

    complex components.J. Cell Biol. 110, 883894

    39 Hindshaw, J.E.et al. (1992)Architectureanddesignof thenuclear pore

    complex. Cell 69, 11331141

    40 Soullam, B. and Worman, H.J. (1993) The amino-terminal domain of

    the laminB receptor is a nuclear envelope targetingsignal.J. Cell Biol.

    120, 10931100

    41 Soullam, B. andWorman, H.J. (1995) Signals and structural features

    involved in integral membrane protein targeting to the inner nuclear

    membrane. J. Cell Biol. 130, 1527

    42 Furukawa, K. et al. (1998) The major nuclear envelope targeting

    domain of LAP2 coincides with its lamin binding region but is

    distinct from its chromatin interaction domain. J. Biol. Chem. 273,

    42134219

    43 Zuleger, N. et al. (2011) System analysis shows distinct mechanisms

    and common principles of nuclear envelope protein dynamics. J. Cell

    Biol. 193, 109123

    44 Tapley, E.C.et al. (2011)Multiple mechanismsactively target theSUN

    protein UNC-84 to the inner nuclear membrane. Mol. Biol. Cell 22,

    17391752

    45 Furukawa, K. et al. (1995) Cloning of a cDNA for lamina-associated

    polypeptide 2 (LAP2) and identification of regions that specify

    targeting to the nuclear envelope. EMBO J. 14, 16261636

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    228

    http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0225http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0220http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0215http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0210http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0205http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0200http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0195http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0190http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0185http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0180http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0175http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0170http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0165http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0160http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0155http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0150http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0145http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0140http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0135http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0130http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0125http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0120http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0115http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0110http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0105http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0100http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0095http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0090http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0085http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0080http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0075http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0070http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0065http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0060http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0055http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0050http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0045http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0040http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0035http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0030http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0025http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0020http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0015http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0010http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0005
  • 8/10/2019 (1) Destination Inner Nuclear Membrane

    9/9

    46 Wagner, N. et al. (2006) The Drosophila melanogasterLEM-domain

    protein MAN1. Eur. J. Cell Biol. 85, 91105

    47 Pinto,B.S.et al. (2008) Tissue-specific defects are caused by loss of the

    DrosophilaMAN1 LEM domain protein. Genetics 180, 133145

    48 King,M.C.et al. (2006) Karyopherin-mediated import of integral inner

    nuclear membrane proteins. Nature 442, 10031007

    49 Lusk, C.P.et al. (2007)Highway to the inner nuclearmembrane: rules

    for the road. Nat. Rev. Mol. Cell Biol. 8, 414420

    50 Malik, P.et al. (2009) Transport of inner nuclearmembrane proteins.

    In Nuclear Transport (Kehlenbach, R.H., ed.), pp. 133145, LandesBioscience

    51 Deng, M. and Hochstrasser, M. (2006) Spatially regulated ubiquitin

    ligation by an ER/nuclear membrane ligase. Nature 443, 827831

    52 Meinema, A.C.et al. (2011) Long unfolded linkers facilitatemembrane

    protein import through the nuclear pore complex. Science 333, 9093

    53 Haruki, H.et al. (2008) The anchor-away technique: rapid, conditional

    establishment of yeast mutant phenotypes. Mol. Cell 31, 925932

    54 Meinema,A.C.et al. (2013) Quantitativeanalysis ofmembraneprotein

    transport across the nuclear pore complex. Traffic 14, 487501

    55 Turgay, Y.et al. (2010)A classicalNLSand theSUNdomaincontribute

    to the targeting of SUN2 to the inner nuclear membrane.EMBOJ. 29,

    22622275

    56 Braunagel, S.C.et al. (2004) Trafficking of ODV-E66 is mediated via a

    sorting motif and other viral proteins: facilitated trafficking to the

    innernuclear membrane.Proc. Natl. Acad. Sci. U.S.A. 101, 83728377

    57 Saksena, S.et al. (2004) Cotranslational integrationand initial sortingat the endoplasmic reticulum translocon of proteins destined for the

    inner nuclear membrane. Proc. Natl. Acad. Sci. U.S.A. 101, 12537

    12542

    58 Cosson, P. et al. (2013) Anchors aweigh: protein localization and

    transport mediated by transmembrane domains. Trends Cell Biol.

    23, 511517

    59 Saksena, S.et al. (2006) Importin-alpha-16 is a translocon-associated

    protein involved in sortingmembraneproteins to thenuclear envelope.

    Nat. Struct. Mol. Biol. 13, 500508

    60 Braunagel, S.C.et al. (2007) Early sorting of inner nuclearmembrane

    proteins is conserved. Proc. Natl. Acad. Sci. U.S.A. 104, 93079312

    61 Rexach,M.F. (2006)A sorting importin onSec61.Nat. Struct.Mol.Biol.

    13, 476478

    62 Kim, I.S. et al. (2000) Truncated form of importin alpha identified in

    breast cancer cell inhibits nuclear import of p53. J. Biol. Chem. 275,

    2313923145

    63 Liu, D.et al. (2010) Truncated isoformsofKap60 facilitate trafficking of

    Heh2 to the nuclear envelope. Traffic 11, 15061518

    64 Braunagel, S.C.et al. (2009) Baculovirus data suggest a common but

    multifaceted pathway for sorting proteins to the inner nuclear

    membrane. J. Virol. 83, 12801288

    65 Matsuura, Y.

    and Stewart, M. (2005) Nup50/Npap60 function in

    nuclear protein import complex disassembly and importin recycling.

    EMBO J. 24, 36813689

    66 Goldfarb, D.S. et al. (2004) Importin alpha: a multipurpose nuclear-

    transport receptor. Trends Cell Biol. 14, 505514

    67 Gilchrist, D. and Rexach, M. (2003) Molecular basis for the rapid

    dissociation of nuclear localization signals from karyopherin alpha

    in the nucleoplasm. J. Biol. Chem. 278, 5193751949

    68 Hodzic, D.M. et al. (2004) Sun2 is a novel mammalian inner nuclear

    membrane protein. J. Biol. Chem. 279, 2580525812

    69 Gardner, J.M.et al. (2011) Targeting of the SUN protein Mps3 to the

    inner nuclear membrane by the histone variant H2A.Z. J. Cell Biol.

    193, 489507

    70 Ghosh, S. et al. (2012) Acetylation of the SUN protein Mps3 by Eco1

    regulates its function in nuclear organization.Mol. Biol. Cell 23, 2546

    2559

    71 Bupp, J.M. et al. (2007) Telomere anchoring at the nuclear periphery

    requires the budding yeastSad1-UNC-84 domain proteinMps3.J. CellBiol. 179, 845854

    72 Michelsen, K.et al. (2005)Hide and run. Arginine-based endoplasmic-

    reticulum-sorting motifs in the assembly of heteromultimeric

    membrane proteins. EMBO Rep. 6, 717722

    73 Brandizzi, F. and Barlowe, C. (2013) Organization of the ERGolgi

    interface formembrane traffic control.Nat.Rev.Mol. CellBiol.14,382

    392

    74 Speese, S.D. et al. (2012) Nuclear envelope budding enables large

    ribonucleoprotein particle export during synaptic Wnt signaling.

    Cell 149, 832846

    75 Mettenleiter, T.C.et al. (2013) The way out: what weknow and donot

    know about herpesvirus nuclear egress. Cell. Microbiol. 15, 170178

    76 Johnson, D.C. and Baines, J.D. (2011) Herpesviruses remodel host

    membranes for virus egress. Nat. Rev. Microbiol. 9, 382394

    77 Puria, R. et al. (2008) Nuclear translocation of Gln3 in response to

    nutrient signals requires Golgi-to-endosome trafficking inSaccharomyces cerevisiae.Proc. Natl. Acad.Sci. U.S.A.105, 71947199

    78 Gaur, N.A. et al. (2013) Vps factors are required for efficient

    transcription elongation in budding yeast. Genetics 193, 829851

    79 Han, B.K. and Emr, S.D. (2011) Phosphoinositide [PI(3,5)P2] lipid-

    dependent regulation of the general transcriptional regulator Tup1.

    Genes Dev. 25, 984995

    80 Zuleger, N. et al. (2012) Many mechanisms, one entrance: membrane

    protein translocation into the nucleus. Cell. Mol. Life Sci. 69, 2205

    2216

    81 Chacinska, A. et al. (2009) Importing mitochondrial proteins:

    machineries and mechanisms. Cell 138, 628644

    82 Wang, Y.N. et al. (2010) Nuclear trafficking of the epidermal

    growth factor receptor family membrane proteins. Oncogene 29,

    39974006

    83 Wang,Y.N.et al. (2010) The transloconSec61betalocalizedin the inner

    nuclear membrane transports membrane-embedded EGF receptor to

    the nucleus. J. Biol. Chem. 285, 3872038729

    84 Antonin, W. et al. (2011) Traversing the NPC along the pore

    membrane: targeting of membrane proteins to the INM. Nucleus 2,

    8791

    85 Mitchell, J.M.et al. (2010)Pom121 links twoessential subcomplexes of

    the nuclear pore complex core to themembrane.J. Cell Biol. 191, 505

    521

    86 Hasan, S. et al. (2006) Nuclear envelope localization of human

    UNC84Adoes not require nuclear lamins.FEBS Lett. 580, 12631268

    87 Liu, Q.et al. (2007) Functional association of Sun1 with nuclear pore

    complexes. J. Cell Biol. 178, 785798

    88 Meinema, A.C. et al. (2012) The transport of integral membrane

    proteins across the nuclear pore complex. Nucleus 3, 322329

    Review Trends in Cell Biology April 2014, Vol. 24, No. 4

    229

    http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0230http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0235http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0240http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0245http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0250http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0255http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0255http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0255http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0255http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0260http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0265http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0270http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0275http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0280http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0285http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0290http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0290http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0290http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0290http://refhub.elsevier.com/S0962-8924(13)00187-6/sbref0290http://refhub.elsevier.