26
(1) Consider the following reactions and their associated equilibrium constants: For the reaction A + 2B D + E, having equilibrium constant Kc, A. Kc = K 1 + K 2 B. Kc = K 1 /K 2 C. Kc = K 1 - K 2 D. Kc = (K 1 )(K 2 ) E. Kc = K 2 /K 1 (2) Consider the following equilibria: Calculate the equilibrium constant for the reaction SO 2 (g) + NO 3 (g) SO 3 (g) + NO 2 (g).

(1) Consider the following reactions and their associated equilibrium constants: For the reaction A + 2B D + E, having equilibrium constant Kc, A. Kc =

Embed Size (px)

Citation preview

(1) Consider the following reactions and their associated equilibrium constants:

          

For the reaction A + 2B    D + E, having equilibrium constant Kc,  A. Kc = K1 + K2 B. Kc = K1/K2 C. Kc = K1 - K2 D. Kc = (K1)(K2) E. Kc = K2/K1

(2) Consider the following equilibria:

          

Calculate the equilibrium constant for the reaction

SO2(g) + NO3(g)    SO3(g) + NO2(g).  

A. 78 B. 1.3 10-2 C. 1.6 10-4 D. 3.2 10-10 E. 6.1 103

Chemical Kinetics and Chemical Equilibrium

A + 2B AB2

kf

kr

ratef = kf [A][B]2

rater = kr [AB2]

Equilibriumratef = rater

kf [A][B]2 = kr [AB2]

kf

kr

[AB2]

[A][B]2= Kc =

الكيميائي 8.3 واالتزان الحركية الكيمياء بين العالقة

The reaction quotient (Qc) is calculated by substituting the initial concentrations of the reactants and products into the equilibrium constant (Kc) expression. IF

• Qc > Kc system proceeds from right to left to reach equilibrium

• Qc = Kc the system is at equilibrium

• Qc < Kc system proceeds from left to right to reach equilibrium

اإلتزان 8.4 ثابت مدلول هو ماWhat Does the Equilibrium constant tell us

القسمة بالرمز( Quotientقيمة لها حاصل) Qيرمز على النواتج تركيز ضرب حاصل هيباستعمال عكوس تفاعل ألي قيمها حساب ويتم ، معينة لحظة في المتفاعالت تركيز ضرب

: االتزان قانون نفسaA + bB cC + dD

عندما االتزان عند لتراكيزها مساوية لحظة في والنواتج المتفاعالت تراكيز تكون أن يشترط الالقسمة قيمة بإيجاد قيمة Qنقوم تكون عندما النواتج = Qحيث تركيز أن على يدل هذا صفر

، صفرقيمة تكون عندما االتزان Qأما ثابت قيمة من على KCأقل يدلنا فهذا

التفاعل : أناالتزان) 1( لحالة يصل لم)2. نواتج) لتكوين اليمين ناحية يتجه لكي التفاعل في نتحكم أن ويجب

قيمة تكون عندما االتزان Qأما ثابت قيمة من أن KCأكبر فنعرفالتفاعل :

االتزان) 1( لحالة يصل لمأكبر) 2( كمية لتكوين اليسار ناحية يتجه لكي التفاعل في نتحكم أن ويجب

. االتزان لحالة للوصول المتفاعالت منقيمة وجدت إذا المتفاعالت KCقيمة = Qأما تراكيز أن فنعرف ،

للتفاعل الكيميائي االتزان حالة عند للتراكيز مساوية أصبحت والنواتجالعكوس.

القسمة قيمة معرفة مع Qوأهمية التعامل وكيفية العكوس التفاعل مسار عن فكرة تعطينااالتزان لحالة للوصول التفاعل

ba

dC

]B.[]A[

]D[]C[Q

Kc

Q < Kمتفاعالت

فقط

Q > Kمتفاعالت

فقط

الـ قيم تزدادQ

السهم جهة

اليمين جهة التفاعل يتجهنواتج لتكوين

اليسار جهة التفاعل يتجهالمتفاعالت لتكوين

قيمة تكون عندما االتزان Qأما ثابت قيمة من فهذا Kcأقل : التفاعل أن على يدلنا

االتزان) 1( لحالة يصل لم)2. نواتج) لتكوين اليمين ناحية يتجه لكي التفاعل في نتحكم أن ويجب

قيمة تكون عندما االتزان Qأما ثابت قيمة من Kcأكبرالتفاعل : أن فنعرف

االتزان) 1( لحالة يصل لمكمية) 2( لتكوين اليسار ناحية يتجه لكي التفاعل في نتحكم أن ويجب

أكبر . االتزان لحالة للوصول المتفاعالت من

قيمة وجدت إذا : Kcقيمة = Qأماعند للتراكيز مساوية أصبحت والنواتج المتفاعالت تراكيز أن فنعرف

. العكوس للتفاعل الكيميائي االتزان حالة

جهة التفاعل تكون النواتجيتجه Qقيمة عندمامن Kأصغر

جهة التفاعل تكون المتفاعالتيتجه قيمة عندماQ من Kأكبر

عندما االتزان لحالة وصل التفاعل ن Q = Kويكو

(1) At 700 K, the reaction 2SO2(g) + O2(g)    2SO3(g) has the equilibrium constant Kc = 4.3 106, and the following concentrations are present: [SO2] = 0.10 M; [SO3] = 10. M; [O2] = 0.10 M. Is the mixture at equilibrium? If not at equilibrium, in which direction (as the equation is written), left to right or right to left, will the reaction proceed to reach equilibrium? A. Yes, the mixture is at equilibrium. B. No, left to right C. No, right to leftD. There is not enough information to be able to predict the direction.

 (2) At 700 K, the reaction 2SO2(g) + O2(g)  2SO3(g) has the

equilibrium constant Kc = 4.3 106, and the following concentrations are present: [SO2] = 0.010 M; [SO3] = 10.M; [O2] = 0.010 M. Is the mixture at equilibrium? If not at equilibrium, in which direction (as the equation is written), left to right or right to left, will the reaction proceed to reach equilibrium? A. Yes, the mixture is at equilibrium. B. No, left to right C. No, right to leftD. There is not enough information to be able to predict the direction.

(3) For the reaction H2(g) + I2(g)    2HI(g), Kc = 50.2 at 445ºC. If [H2] = [I2] = [HI] = 1.75 10-3 M at 445ºC, which one of these statements is true? A. The system is at equilibrium, thus no concentration changes will occur.B. The concentrations of HI and I2 will increase as the system approaches equilibrium.C. The concentration of HI will increase as the system approaches equilibrium.D. The concentrations of H2 and HI will fall as the system moves toward equilibrium.  (4) For the reaction PCl3(g) + Cl2(g)    PCl5(g) at a particular temperature, Kc = 24.3. Suppose a system at that temperature is prepared with [PCl3] = 0.10 M, [Cl2] = 0.15 M, and [PCl5] = 0.60 M. Which of these statements is true? A. The reaction is at equilibrium.B. The reaction will proceed in the direction of forming more PCl5 until equilibrium is reached.C. The reaction will proceed in the direction of forming more PCl3 and Cl2 until equilibrium is reached.D. None of these statements is true.

Calculating Equilibrium Concentrations

1. Express the equilibrium concentrations of all species in terms of the initial concentrations and a single unknown x, which represents the change in concentration.

2. Write the equilibrium constant expression in terms of the equilibrium concentrations. Knowing the value of the equilibrium constant, solve for x.

3. Having solved for x, calculate the equilibrium concentrations of all species.

At 12800C the equilibrium constant (Kc) for the reaction

Is 1.1 x 10-3. If the initial concentrations are [Br2] = 0.063 M and [Br] = 0.012 M, calculate the concentrations of these species at equilibrium.

Br2 (g) 2Br (g)

Br2 (g) 2Br (g)

Let x be the change in concentration of Br2

Initial (M)

Change (M)

Equilibrium (M)

0.063 0.012

-x +2x

0.063 - x 0.012 + 2x

[Br]2

[Br2]Kc = Kc =

(0.012 + 2x)2

0.063 - x= 1.1 x 10-3 Solve for x

Kc = (0.012 + 2x)2

0.063 - x= 1.1 x 10-3

4x2 + 0.048x + 0.000144 = 0.0000693 – 0.0011x

4x2 + 0.0491x + 0.0000747 = 0

ax2 + bx + c =0-b ± b2 – 4ac

2ax =

Br2 (g) 2Br (g)

Initial (M)

Change (M)

Equilibrium (M)

0.063 0.012

-x +2x

0.063 - x 0.012 + 2x

x = -0.00178x = -0.0105

At equilibrium, [Br] = 0.012 + 2x = -0.009 M or 0.00844 M

At equilibrium, [Br2] = 0.062 – x = 0.0648 M

(1) For the reaction 2NOCl(g)   2NO(g) + Cl2(g), Kc = 8.0 at a certain temperature. What concentration of NOCl must be put into an empty 4.00 L reaction vessel in order that the equilibrium concentration of NOCl be 1.00M? A. 1.26 M B. 2.25 M C. 2.50 M D. 3.52 M

(2) A quantity of liquid methanol, CH3OH, is introduced into a rigid 3.00-L vessel, the vessel is sealed, and the temperature is raised to 500K. At this temperature, the methanol vaporizes and decomposes according to the reaction: CH3OH(g) CO(g) + 2 H2(g), Kc= 6.90 10-2.

If the concentration of H2 in the equilibrium mixture is 0.426 M, what mass of methanol was initially introduced into the vessel?  A. 147 g B. 74.3 g C. 33.9 g D. 49.0 g E. 24.8 g

(3) When the reaction 2H2S(g)   2H2(g) + S2(g) is carried out at 1065C, Kp = 0.012. Starting with pure H2S at 1065C, what must the initial pressure of H2S be if the equilibrated mixture at this temperature is to contain 0.250 atm of H2(g)? 

A. 1.06 atm B. 1.86 atm C. 0.94 atm D. 0.90 atm E. 1.52 atm

(4) If the reaction 2H2S(g)    2H2(g) + S2(g) is carried out at 1065C, Kp = 0.0120. Starting from pure H2S introduced into an evacuated vessel at 1065C, what will the total pressure in the vessel be at equilibrium if the equilibrated mixture contains 0.300 atm of H2(g)?  A. 1.06 atm B. 1.36 atm C.2.39 atm D. 4.20 atm E. 1.51 atm

(5) Sodium carbonate, Na2CO3(s), can be prepared by heating sodium bicarbonate, NaHCO3(s).         2NaHCO3(s)    Na2CO3(s) + CO2(g) + H2O(g) Kp = 0.23 at 100ºC If a sample of NaHCO3 is placed in an evacuated flask and allowed to achieve equilibrium at 100ºC, what will the total gas pressure be?   A. 0.46 atm B. 0.96 atm C. 0.23 atm D. 0.48 atm E. 0.11 atm

(6) Hydrogen iodide decomposes according to the equation: 2HI(g)    H2(g) + I2(g), for which Kc = 0.0156 at 400ºC. 0.550 mol HI was injected into a 2.00 L reaction vessel at 400ºC. Calculate the concentration of H2 at equilibrium.  A. 0.275 M B. 0.138 M C. 0.0275 M D. 0.0550 M E. 0.220 M

(7) 75.0 g of PCl5(g) is introduced into an evacuated 3.00 L vessel and allowed to reach equilibrium at 250ºC. PCl5(g)    PCl3(g) + Cl2(g). If Kp = 1.80 for this reaction, what is the total pressure inside the vessel at equilibrium?  

A. 2.88 atm B. 2.27 atm C. 4.54 atm D. 7.44 atm E. 9.69 atm تمرين ( :7حل كالتالي)

Volume 3L T= 25 + 273 = 523 K Kp = 1.80M.wt. 208.25g/mol 137.35g/mol 70.9 g/molWt.(gm) 75 gm ? gm ? gm at equil.  PCl5(g)   PCl3(g) + Cl2(g)Initial [0.12] Zero ZeroAt equil [0.12– x] [x] [x] ___________________________________________________

Kp=1.80 = Kc (RT)Dn=2-1=1 Kc = Kp / RT = 1.8/0.0821x 523 = 0.0419

Kc = [x][x] / [0.12-x] = 0.0419 x = 0.053Kc = [0.053] [0.053] / [0.12–0.053] = 0.0419___________________________________________

At equil PCl5(g)    PCl3(g) + Cl2(g)

At equil [0.12–0.053] [0.053] [0.053] Molarity [0.067] M [0.053] M [0.053] MMole [0.067]x3= 0.201mol [0.053]x3= 0.159mol [0.053]x3= 0.159 Grams 41.86 gm + 21.84 gm + 11.27 gm = 75 gm لتأكيد

الحل

PPCl5 x 3L = 0.201 x 0.0821 x 523 PPCl5 = 2.88

PPCl3 x 3L = 0.159 x 0.0821 x 523 PPCl3 = 2.28

PCl2 x 3L = 0.159 x 0.0821 x 523 PCl2 = 2.28

PTotal = PPCl5 + PPCl3 + PCl2 = 2.88 + 2.28 + 2.28 = 7.44 atm

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.

Le Châtelier’s Principle

• Changes in Concentration

N2 (g) + 3H2 (g) 2NH3 (g)

AddNH3

Equilibrium shifts left to offset stress

الكيميائي 8.5 اإلتزان على المؤثرة العواملFactors that Affect chemical Equilibrium

Le Châtelier’s Principle

(1) Changes in Concentration continuedباستمرار التركيز في التغيير

Changeاالتزان في الحادث التغيير

Shifts the Equilibriumجهة االتزان إزاحة

a) Increase concentration of product(s) right

b) Decrease concentration of product(s) left

d) Decrease concentration of reactant(s)

c) Increase concentration of reactant(s) left

right

aA + bB cC + dD

AddAddRemove Remove

Le Châtelier’s Principle

(2) Changes in Volume (3) Changes in Pressure

A (g) + B (g) C (g)

Change Shifts the Equilibrium

Increase pressure Side with fewest moles of gas

Decrease pressure Side with most moles of gas

Decrease volume

Increase volume Side with most moles of gas

Side with fewest moles of gas

تدريب : : زيادة ضغط التفاعل المتزن التالي(1)

2P(s) + 3H29g) 2PH3(g)

تؤدي إلي :

ب _ ال تؤثر على تركيز النواتج PH3أ ـ زيادة تركيز د ـ زيادة تركيز المتفاعالت Kcج ـ زيادة قيمة

)2: إلى) تؤدى الغاز جزيئات بين التجاذب قوى وجودالضغط ـ أ الضغط -ب نقص زيادة

ـ الحجم ج الجزيئية د زيادة السرعة زيادة ـ

التفاعل : )3( على الضغط 3H2(g) + N2(g)زيادة2NH3(g)

: عليه يترتب مما الحجم تقليل إلى يؤدي االتزان عند العدديةKcب - نقص قيمة أ ـ نقص في كميات النواتج العدديةKcد ـ زيادة قيمة ج ـ زيادة كمية النواتج

الثالث بالباب وحلول مسائل كتاب في اإلجابة توجد للتأكد.6الفصل

Le Châtelier’s Principle

(4) Changes in Temperature

Change Exothermic Rx

Increase temperature K decreases

Decrease temperature K increases

Endothermic Rx

K increases

K decreases

colder hotter

)1: االتزان) على التركيز قيمة ( تأثير النواتج جهة االتزان ) Kإزاحة تزداد يتم عندما

. صحيح والعكس المتفاعالت من كمية سحب

)2: االتزان) على الضغط عند تأثير األقل الموالت عدد جهة االتزان إزاحةضغط زيادة

. صحيح والعكس المغلق التفاعل إناء

)3 : االتزان) على الحجــم عند تأثير األكبر الموالت عدد جهة االتزان إزاحةحجم زيادة

. صحيح والعكس المغلق التفاعل إناء

)4 : االتزان) على الحرارة قيمة ( تأثير أي المتفاعالت جهة االتزان Kإزاحةحالة) في تزداد

للحرارة الطارد التفاعل نظام حرارة درجة زيادة

H0 = - Ve kJ/mol بالنسبة صحيح والعكسللتفاعل

للحرارة زيادة H0 = + Ve kJ/molالماص عندالحرارة.

األتزان) :5( على الحفز إضافة تأثير من االتزان على تأثير أي يوجد الولكن حافز

وجود في تداد االتزان لحالة الوصول سرعة معدلحافز.

uncatalyzed catalyzed

Catalyst lowers Ea for both forward and reverse reactions.

Catalyst does not change equilibrium constant or shift equilibrium.

• Adding a Catalyst• does not change K• does not shift the position of an equilibrium system• system will reach equilibrium sooner

Le Châtelier’s Principle

Chemistry In Action: The Haber Process

N2 (g) + 3H2 (g) 2NH3 (g) H0 = -92.6 kJ/mol

Le Châtelier’s Principle

Change Shift EquilibriumChange Equilibrium

Constant

Concentration yes no

Pressure yes no

Volume yes no

Temperature yes yes

Catalyst no no

تدريب : تتوقف قيمة ثابت االتزان على :

أ ـ الضغط داخل الوعاء وحجم الوعاءب _ ثبات درجة حرارة الوعاء

ج ـ التركيز االبتدائي للمواد المتفاعلة والناتجة من د ـ جميع اإلجابات صحيحة التفاعل

الثالث بالباب وحلول مسائل كتاب في اإلجابة توجد للتأكد .6الفصل

(1) For the common allotropes of carbon (graphite and diamond), C(gr)    C(dia) with equilibrium constant K = 0.32. The molar volumes of graphite and diamond are, respectively, 5.30 cm3/mol and 3.42 cm3/mol; Hf of diamond is 1.90 kJ/mol. These data suggest that the formation of diamond is favored at A. low temperatures and low pressures. B. high temperatures and low pressures.C. low temperatures and high pressures. D. high temperatures and high pressures.

(2) Which of these situations will result if some CH4(g) is removed from the reaction CO(g) + 3H2(g)    CH4(g) + H2O(g) at equilibrium?  A. H2O will be consumed. B. More CH4 and H2O will be produced. C. Kp will decrease. D. More CO will be produced. E.No change will occur.

(3) In which of these gas-phase equilibria is the yield of products increased by increasing the total pressure on the reaction mixture? 

A. CO(g) + H2O(g) CO2(g) + H2(g)

B. 2NO(g) + Cl2(g) 2NOCl(g)

C. 2SO3(g) 2SO2(g) + O2(g)

D. PCl5(g) PCl3(g) + Cl2(g)

(4) The reaction 2NO(g)    N2(g) + O2(g) is exothermic, Hº rxn = -180 kJ/mol. Which one of these statements is true?  

A. Kp at 1,000 K is less than Kp at 2,000 K. B. Kp at 1,000 K is larger than Kp at 2,000 K. C. The Kp's at 1000 K and 2000 K are the same. D. Kp depends on total pressure as well as temperature.

(5) When the substances in the equation below are at equilibrium, at P an T, the equilibrium can be shifted to favor the products by         CuO(s) + H2(g)   H2O(g) + Cu(s) Hº rxn = -2.0 kJ/mol  

A. increasing the pressure by means of a moving piston at constant T. B. increasing the pressure by adding an inert gas such as nitrogen. C. decreasing the temperature. D. allowing some gases to escape at constant P and T. E. adding a catalyst.

(5) The equilibrium constants (expressed in atm) for the chemical reaction N2(g) + O2(g)   2NO(g) are Kp = 1.1 10-3 and 3.6 10-3 at 2,200 K and 2,500 K, respectively. Which one of these statements is true? 

A. The reaction is exothermic, Hº < 0.B. The partial pressure of NO(g) is less at 2,200 K than at 2,500 K.C. Kp is less than Kc by a factor of (RT).D. The total pressure at 2,200 K is the same as at 2,500 K.E. Higher total pressure shifts the equilibrium to the left.

(6) Consider this reaction at equilibrium:        2SO2(g) + O2(g)   2SO3(g), Hº rxn = -198 kJ/mol If the volume of the system is compressed at constant temperature, what change will occur in the position of the equilibrium?   A. a shift to produce more SO2 B. a shift to produce more O2 C. no change D. a shift to produce more SO3

(7) The reaction 2SO3(g)    2SO2(g) + O2(g) is endothermic. If the temperature is increased, 

A. more SO3 will be produced. B. Kc will decrease. C. Kc will increase.D. no change will occur in Kc . E. the pressure will decrease.