28
1 AAE 451 Senior Aircraft Design AAE 451 Senior Aircraft Design Spring 2006 Spring 2006 Systems Definition Review Systems Definition Review Group VI Group VI Team Members: Team Members: John Collins John Collins Chad Davis Chad Davis Chris Fles Chris Fles Danny Sze Ling Lim Danny Sze Ling Lim Justin Rohde Justin Rohde Ryan Schulz Ryan Schulz Ronald Wong Ronald Wong Yusaku Yamashita Yusaku Yamashita

1 AAE 451 Senior Aircraft Design Spring 2006 Systems Definition Review Group VI Team Members: John Collins Chad Davis Chris Fles Danny Sze Ling Lim Justin

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

11

AAE 451 Senior Aircraft Design Spring 2006AAE 451 Senior Aircraft Design Spring 2006Systems Definition ReviewSystems Definition Review

Group VIGroup VI

Team Members:Team Members:

John CollinsJohn CollinsChad DavisChad DavisChris FlesChris Fles

Danny Sze Ling LimDanny Sze Ling LimJustin RohdeJustin RohdeRyan SchulzRyan SchulzRonald WongRonald Wong

Yusaku YamashitaYusaku Yamashita

22

Market ReviewMarket Review Target is business market: Target is business market:

• Corporate Flight DepartmentsCorporate Flight Departments• Air Taxi and Air CharterAir Taxi and Air Charter• Fractional SharesFractional Shares

Profit OpportunitiesProfit Opportunities• Air taxi, fractional ownership expected to more than Air taxi, fractional ownership expected to more than

double in coming decadedouble in coming decade• Increasing incentive for use by small businessIncreasing incentive for use by small business• Strong business aviation growth expected in European Strong business aviation growth expected in European

and Asian markets over next 20 yearsand Asian markets over next 20 years

33

Design RequirementsDesign Requirements Cabin Capacity - 2 Crew + 6 PassengersCabin Capacity - 2 Crew + 6 Passengers Cruise Range - 600 nmCruise Range - 600 nm Cruise Speed - 250 ktsCruise Speed - 250 kts T.O./Landing Distance - 2,100 ftT.O./Landing Distance - 2,100 ft Acquisition Cost - $1.8 MillionAcquisition Cost - $1.8 Million D.O.C./Hour - $550D.O.C./Hour - $550

Taxi

Take-off 2100 ft. Runway

Climb

Economy Cruise

Descend for Landing

600 nm range Reserve

Economy Cruise

Execute Missed Landing Land 2100 ft. Runway

Begin Landing

Pilots (150 lbs. each)Pilots (150 lbs. each) Passengers (200 lbs. each)Passengers (200 lbs. each) 1500 lbs. Total Payload1500 lbs. Total Payload

44

Trade StudyTrade Study

400 450 500 550 600 650 700 750 800400

450

500

550

600

650

700

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Dol

lars

/Hou

r

Jet - Trade Study (Range and SFC)

400 450 500 550 600 650 700 750 800300

310

320

330

340

350

360

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Dol

lars

/Hou

r

Turboprop - Trade Study (Range and SFC)

Jet and single turboprop operating costs beat twin turbopropsJet and single turboprop operating costs beat twin turboprops• D.O.C./Hour: Single - $350, Jet - $550, Twin - $700D.O.C./Hour: Single - $350, Jet - $550, Twin - $700

Operating costs vary with SFC, Range, and SpeedOperating costs vary with SFC, Range, and Speed• SFC’s above 0.7 (1/hr) make D.O.C. higher than competitionSFC’s above 0.7 (1/hr) make D.O.C. higher than competition• Optimal Speeds: Jet – 350 kts, Props – 250 ktsOptimal Speeds: Jet – 350 kts, Props – 250 kts

Acquisition costs:Acquisition costs:• Jet - $1.844 millionJet - $1.844 million• Single - $1.668 millionSingle - $1.668 million

55

Pugh’s MethodPugh’s MethodAIM:

• Brainstorm ideas

• Gather concepts and compare against criteria relating to the acquisition and operating costs

Criteria:

- Lower limit set to meet the design requirements

- Concepts can better this limit if they work at a higher efficiency

- Rate the efficiency of each system in achieving this target (+/s/-)

66

The ProcessThe Process

Examples of Criteria:

- Twins burn more fuel than singles

- Jets are quieter than turboprops

- Canards have higher development costs

77

Pugh’s Method – contd.Pugh’s Method – contd.

88

Concept #1Concept #1

• Single tractor-engine• Low wing• Mid tail• Vertical Stabilizer• Tricycle landing gear• Performance

• Cruise Speed – 250 kts

• Gross Weight – 6,790 lbs

• Acquisition Cost - $1.65 Million

• D.O.C./Hour - $330

• W/S – 32 lb/ft2

• T/W – 0.155

99

Concept #13Concept #13

• Twin pusher-engines• Low wing, w/ winglets• High tail• Vertical Stabilizer• Tricycle landing gear• Performance

• Cruise Speed – 350 kts

• Gross Weight – 9,500 lbs

• Acquisition Cost - $1.85 Million

• D.O.C./Hour - $550

• W/S – 40 lb/ft2

• T/W – 0.20

1010

Concept #15Concept #15

• Single pusher-engine• Low wing, w/ winglets• Canards-configuration• Vertical Stabilizer• Tricycle landing gear• Performance

• Cruise Speed – 250 kts

• Gross Weight – 6,800 lbs

• Acquisition Cost - $1.65 Million

• D.O.C./Hour - $330

• W/S – 35 lb/ft2

• T/W – 0.155

1111

Preliminary Fuselage LayoutPreliminary Fuselage Layout

1212

Preliminary Fuselage LayoutPreliminary Fuselage Layout

1313

Cabin ViewCabin View

1414

Competitors Competitors

1515

Powerplant OptionsPowerplant Options

TurbopropTurboprop Biodiesel (Blends), or BioJet Fuel (JP-8 replacement)Biodiesel (Blends), or BioJet Fuel (JP-8 replacement) TSFC = 0.5671 (lbm/hr)/lbfTSFC = 0.5671 (lbm/hr)/lbf

TurbofanTurbofan Biodiesel (Blends), or BioJet Fuel (JP-8 replacement)Biodiesel (Blends), or BioJet Fuel (JP-8 replacement) TSFC = 0.7023 (lbm/hr)/lbfTSFC = 0.7023 (lbm/hr)/lbf

Model – ONX (Parametric Cycle Analysis)Model – ONX (Parametric Cycle Analysis)

1616

Alternative Fuel OptionsAlternative Fuel Options

1717

Constraint DiagramsConstraint Diagrams Performance ConstraintsPerformance Constraints

• Cruise SpeedCruise Speed• Takeoff and Landing DistanceTakeoff and Landing Distance• Minimum Power CruiseMinimum Power Cruise• Maximum Cruise RangeMaximum Cruise Range

Assumptions: Assumptions: • Typical values from Raymer: CTypical values from Raymer: CD0D0, C, CL,maxL,max, e, e• Propeller efficiency Propeller efficiency ηη==0.8 0.8 • Thrust decrease is directly proportional to Thrust decrease is directly proportional to

decrease of density with altitude decrease of density with altitude

1818

Constraint DiagramsConstraint Diagrams

* Maximum Range, Minimum Power not shown - located far outside design space

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Constraint Analysis - Single Turboprop

W/S Wing Loading (lb/f t 2)

T/W

- T

hrus

t to

Wei

ght

Rat

io

Take-Off

Cruise SpeedCruise Altitude

Landing

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Constraint Analysis - Twin Turbofan

W/S Wing Loading (lb/f t 2)

T/W

- T

hrus

t to

Wei

ght

Rat

io

Take-Off

Cruise SpeedCruise Altitude

Landing

1919

Competing AircraftCompeting Aircraft

Acquisition CostAcquisition Cost• Baron G58 - $1.22 MBaron G58 - $1.22 M• Piper Mirage - $0.97 MPiper Mirage - $0.97 M• Adam A700 - $2.25 MAdam A700 - $2.25 M• Adam A500 - $1.25 MAdam A500 - $1.25 M• Eclipse 500 - $1.50 MEclipse 500 - $1.50 M• Cessna Mustang - $2.35 MCessna Mustang - $2.35 M• Pilatus PC-12 - $2.80 MPilatus PC-12 - $2.80 M

D.O.C./HourD.O.C./Hour• Baron G58 - $288Baron G58 - $288• Piper Mirage - $250Piper Mirage - $250• Adam A700 - $725Adam A700 - $725• Adam A500 - $450Adam A500 - $450• Eclipse 500 - $300*Eclipse 500 - $300*• Cessna Mustang - $450Cessna Mustang - $450• Pilatus PC-12 - $400Pilatus PC-12 - $400

*Estimate from Eclipse Aviation

2020

QuestionsQuestions

2121

2222

Reminder SlideReminder Slide singles cost less than twins for given sfc; jets are comparable to singles cost less than twins for given sfc; jets are comparable to

tprops for given sfc. tprops for given sfc. For sfc increase from 0.5 onwards, singles (+$20/hr); then jets (+For sfc increase from 0.5 onwards, singles (+$20/hr); then jets (+

$50/hr); then twins (+$100/hr)$50/hr); then twins (+$100/hr)

for the same range: singles burn less fuel than twins for same for the same range: singles burn less fuel than twins for same speed (240kts) speed (240kts)

jets are slightly better than twin tprops, same as single tprops, jets are slightly better than twin tprops, same as single tprops, canards give less dragcanards give less drag

jets have smaller cabin sizes according to tom: Avbuyer jets have smaller cabin sizes according to tom: Avbuyer 4.8x4.8 (eclipse = 4.2x4.3); turboprops: adam a500 4.8x4.8 (eclipse = 4.2x4.3); turboprops: adam a500 (4.5x4.3)(4.5x4.3)

2323

Iteration 2Iteration 2

2424

GTOW vs. Range and SpeedGTOW vs. Range and Speed

400 450 500 550 600 650 700 750 8008500

9000

9500

10000

10500

11000

11500

12000

12500

13000

13500

200 kts

225 kts

250 kts

275 kts

300 kts

325 kts

350 kts

Range (nm)

Gro

ss W

eigh

t (lb

s)Jet - Trade Study (Range and Speed)

400 450 500 550 600 650 700 750 8005200

5700

6200

6700

5200

5700

6200

6700

5200

5700

200 kts

225 kts

250 kts

275 kts

300 kts

325 kts

350 kts

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and Speed)

400 450 500 550 600 650 700 750 8008000

8500

9000

9500

10000

10500

11000

11500

200 kts

225 kts

250 kts

275 kts

300 kts

325 kts

350 kts

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and Speed)

Single

Twin

2525

GTOW vs. Range and L/DGTOW vs. Range and L/D

400 450 500 550 600 650 700 750 8008000

8500

9000

9500

10000

10500

11000

11500

12000

12500 10.0 L/D

max

12.5 L/Dmax

15.0 L/Dmax

17.5 L/Dmax

Range (nm)

Gro

ss W

eigh

t (lb

s)

Jet - Trade Study (Range and L/Dmax

)

400 450 500 550 600 650 700 750 8005000

5500

6000

6500

7000

7500

8000

8500

9000 10.0 L/Dmax

12.5 L/Dmax

15.0 L/Dmax

17.5 L/Dmax

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and L/Dmax

)

400 450 500 550 600 650 700 750 8008000

8500

9000

9500

10000

10500

11000

11500

12000

10.0 L/Dmax

12.5 L/Dmax

15.0 L/Dmax

17.5 L/Dmax

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and L/Dmax

)

Single

Twin

2626

GTOW vs. Range and SFCGTOW vs. Range and SFC

400 450 500 550 600 650 700 750 8008000

8500

9000

9500

10000

10500

11000

11500

12000

12500

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Gro

ss W

eigh

t (lb

s)Jet - Trade Study (Range and SFC)

400 450 500 550 600 650 700 750 8004500

5000

5500

6000

6500

7000

7500

8000

8500

9000

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and SFC)

400 450 500 550 600 650 700 750 8007000

7500

8000

8500

9000

9500

10000

10500

11000

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Gro

ss W

eigh

t (lb

s)

Turboprop - Trade Study (Range and SFC)

Single

Twin

2727

Operating Costs vs. Range and SpeedOperating Costs vs. Range and Speed

400 450 500 550 600 650 700 750 800450

500

550

600

650

700

750

800

850

900

200 kts

225 kts

250 kts

275 kts

300 kts

325 kts

350 kts

Range (nm)

Dol

lars

/Hou

rJet - Trade Study (Range and Speed)

400 450 500 550 600 650 700 750 800250

300

350

400

450

500

550

200 kts

225 kts

250 kts

275 kts

300 kts

325 kts

350 kts

Range (nm)

Dol

lars

/Hou

r

Turboprop - Trade Study (Range and Speed)

400 450 500 550 600 650 700 750 800520

540

560

580

600

620

640 200 kts

225 kts

250 kts

275 kts

300 kts

325 kts 350 kts

Range (nm)

Dol

lars

/Hou

r

Turboprop - Trade Study (Range and Speed)

Single

Twin

2828

Operating Costs vs. Range and SFCOperating Costs vs. Range and SFC

400 450 500 550 600 650 700 750 800400

450

500

550

600

650

700

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Dol

lars

/Hou

rJet - Trade Study (Range and SFC)

400 450 500 550 600 650 700 750 800300

310

320

330

340

350

360

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Dol

lars

/Hou

r

Turboprop - Trade Study (Range and SFC)

400 450 500 550 600 650 700 750 800400

500

600

700

800

900

1000

0.3 SFC

0.4 SFC

0.5 SFC

0.6 SFC

0.7 SFC

0.8 SFC

Range (nm)

Dol

lars

/Hou

r

Turboprop - Trade Study (Range and SFC)

Single

Twin