Upload
clementine-palmer
View
227
Download
2
Tags:
Embed Size (px)
1/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
SUMMARY OF SM1
2/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
MwII
SwII
SwI
MwI
P3
Pi
O
n
OP1
Pn
P2
n
{wI}{wII}
{wII} ≡ {ZI}{wI} ≡ {ZII}
SwII ≡ SzI
MwII ≡ MzI
SwI ≡ - SwII
MwI ≡ - MwII
SwI ≡ SzII
MwI ≡ MzII
SzII
MzII
MzI
SzI
Internal forces
{wII} ≡ {ZI}{wI} ≡ {ZII}
3/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Components of internal forces resultants Swx , Swy , Swz and Mwx , Mwy , Mwz are called cross-sectional forces
In 3D vectors of internal forces resultants have three components each
Sw{ Swx , Swy , Swz } Mw{ Mwx , Mwy , Mwz }
x
y
z
Swz
Sny
Swx
SwMwz
MwxMwy
Mw
Cross-sectional forces
4/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
In 2D number of cross-sectional forces is reduced, because loading and bars axes are in the same plane (x, z):
Sw{ Sx , 0, Sz }
Mw{ 0, My , 0 }
x
y
z
P q
.M
M
Sx
Sz
My
We will use following notations and names for these components:
Sx=N - axial forces
Sz=Q - shear force
My = M - bending moment
Cross-sectional forces
5/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Special cases of internal forces reductions are called:
TENSION – when internal forces reduce to the sum vector only, which is parallel to the bar axis
SHEAR – when internal forces reduce to the sum vector only, which is perpendicular to the bar axis
BENDING – when internal forces reduce to the moment vector only, which is perpendicular to the bar axis
TORSION – when internal forces reduce to the moment vector only, which is parallel to the bar axis
M
Ms
Q
N
Cross-sectional forces in 2D bars
6/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
n
AP1
Pn
I
{wI}
{ZI}
Internal forces – state of stress
Neighbourhood of point A
The sum of all internal forces acting on ΔA
ΔA – area of point A neighbourhood
Δw
pAA A
w
0lim Stress vector at A
nA
7/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Ar
Stress vector is a measure of internal forces intensity and depends on the chosen point and cross section nr
A
wAAA
p ,lim0
x2
x1
x3
n1
n3
n2
p2
p3
p1
σ11 σ12
σ13
σ21
σ22
σ23
σ31
σ32
σ33
p1[σ11 , σ12 , σ13 ]
p2[σ21 , σ22 , σ23 ]
p3[σ31 , σ32 , σ33 ]
Point A image
σ11 , σ12 , σ13
σ21 , σ22 , σ23
σ31 , σ32 , σ33σ31 , σ32 , σ33
Tσ
Tσ(σij)
Stress vectors:
Stress matrix
i,j = 1,2,3Components ij of matrix T are called stresses.
Stress measure is [N/m2] i.e. [Pa]
Internal forces – state of stress
8/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
11~
x2
x1
x3
n2
n1
n3
ΔA1
ΔA3
ΔA2
31~
21~
ν(νi )
1~
ΔAν
)~(~ip
X1= 0A
10~~~~
1331221111 AAAA
0~~~~1331221111
11 AAii AA …, …
0lim
A
3312211111
jjii
jiij
jj 11
jiji
If we assume:
then:
Internal forces – state of stress
9/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
x2
x1
x3
n1
n3
n2
p2
p3
p1
σ11 σ12
σ13
σ21
σ22
σ23
σ31
σ32
σ33
With given stress matrix in the chosen point and given loading one can find 3 perpendicular planes such that stress vectors (principal stresses) have only normal components (no shear components).The coordinate system defined by the directions of principal stresses is called system of principal axis.
)3( )2(
)1(
3
2
1
2
1
3
3
2
1
00
00
00
332331
232221
131211
Internal forces – state of stress
10/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
It can be proved that are extreme values of normal stresses (stresses on a main diagonal of stress matrix) . Customary, these values are ordered as follows
321 ,,
321
12
3
Surface of an ellipsoid with semi-axis (equatorial radii) equal to the values of principal stresses represents all possible stress vectors in the chosen point and under given loading.
Internal forces – state of stress
11/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
232
2,2,0 32 p
232
0,2,2 21 p
221
2,0,2 31 p
231
231
max
1
221
Mohr circles – represent 3D state of stress in a given point –
on the plane of normal and shear stresses
2
232
232
221
231
221
231
30
12/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
0
j
iji x
P
On the body surface stress vector has to be balanced by the traction vector
q
p
jijiiq
Stress on the body surface
Coordinates of vector normal to the surface
jijiq
This equation states statics boundary conditions to comply with the solution of the equation:
This equation (Navier equation) reflects internal equilibrium and has to be fulfilled in any point of the body (structure).
Stress distribution
13/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
0
j
iji x
P
We have to deal with the set of 3 linear partial differential equations.
Navier equation
in coordintes reads:
0
0
0
3
33
2
32
1
313
3
23
2
22
1
212
3
13
2
12
1
111
xxxP
xxxP
xxxP
There are 6 unknown functions which have to fulfil static boundary conditions (SBC):
jijiq
We need more equations to determine all 6 functions of stress distribution. To attain it we have to consider deformation of the body.
Stress distribution
14/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
A
A’
'rur
'' BAAB
Displacement vector
AA’
'r
u
r
B
B’
rru
'
0'', BAAB
iuu
Au Bu
321 ,, xxxuu ii
State of deformation - strains
15/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
i
j
j
iij x
u
x
u
2
1 Small strains
Shear strains
when ij
Normal strains
when i=j
322
3
3
223 2
1
x
u
x
u
2
222 x
u
3
333 x
u
1
1
1
1
1
111 2
1
x
u
x
u
x
u
211
2
2
112 2
1
x
u
x
u
311
3
3
113 2
1
x
u
x
u
333231
232221
131211
T
Strain matrix – symmetrical by definition of
angular strains
1
j
i
x
u
State of deformation - strains
16/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
x1
x2
x3
State of deformation - strains
17/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
333231
232221
131211
TEigenvalues of strain matrix are normal strains on the planes where there are no shear strains.
Principal strains can be found by solving the secular equation:
3
2
1
00
00
00
T
0322
13 III
where I1, I2, I3 are invariants of strain matrix
When transfer of strain matrix is made to the new co-ordinate system then matrix transformation rule holds:
kljlikij ,
In the co-ordinates defined by principal directions of strain matrix it takes the diagonal form.
321 - principal strains
State of deformation - strains
18/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Strain versus stressMaterial
deformability propertiesGeneral property of majority of solids is
elasticity (instantaneous shape memory)
P
u
Linear elasticity
Deformation versus internal forces
CEIIINOSSSTTUVUT TENSIO SIC VIS
ukP
which reads: „as much the extension as the force is”
where k is a constant dependent on a material and body shape
This observation was made already in 1676 by Robert Hooke:
Constitutive equation - Hooke law
19/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Physical quantities (measurable)
Mathematical quantities (non-measurable)
Dynamics Kinematics
P
u
ij
ijij f
Hooke, 1678
Navier, 1822ij
f - linear function of all strain matrix components defining all stress component matrix
To make Hooke’s law independent of a body shape one has to use state variables characterizing internal forces and deformations in a material point i.e. stress and strain.
Constitutive equation - Hooke law
20/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
The coefficients of this equation do depend only on the material considered, but not on the body shape.
As Hooke equation is a set of 9 linear algebraic equations then the number of coefficient in this set is 81 and can be represented as a matrix of 34=81 components:
klijklij C
Summation over kl indices reflects linear character of this constitutive equation.
Constitutive equation - Hooke law
21/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
ijkkijij G 2 ,G
Summation obeys ! Kronecker delta
Lamé constants [Pa]
)(2 3322111111 G
)(2 3322112222 G
)(2 3322113333 G
1212 2 G
2323 2 G
3131 2 G
Normal stress and normal strain dependences
Shear stress and shear strain dependences
This equation consists of two groups:
Constitutive equation - Hooke law
22/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
E
Summation obeys ! Kronecker’s delta
Poisson modulus [0]
E1212 1
Young modulus [Pa]
E)( 33112222
E)( 33221111
E)( 22113333
E2323 1 E3131 1
ijkkijij vE
11
3131 2 G
12EG
G23131
Normal stress and normal strain dependences
Shear stress and shear strain dependences
Constitutive equation - Hooke law
23/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
m
m
m
m
m
m
K
00
00
00
3
00
00
00
ijmijm K 3
KAA 3 Volume change law
Distortion law
ijmmij KG 332
ijmijkkijijmij KG 32
ijmmij GG 3322
ijmijijmij GGG 222
GDD 2
323 GK
Constitutive equation - Hooke law
24/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
i
j
j
iij x
u
x
u
2
1...
uSiu ...
uSj
i
x
u
0
j
iji x
P
jijiq
ijkkijij G 2
NE
CE
HE
SBC
KBC
The set of NE+CE+ HE equations consists of 15 linear differential-algebraic equations – and is always the same for any static problem (except of material constants in HE).
Individual problems are different only due to different boundary conditions,
which define body shape i , loading qi and displacements ui on the body
surface (supports). Here is where name Boundary Value Problem of Elasticity comes from.
,
BVP–Boundary Value Problem of Linear Elasticity
25/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
TENSION – when internal forces reduce to the sum vector only, which is parallel to the bar axis
SHEAR – when internal forces reduce to the sum vector only, which is perpendicular to the bar axis
BENDING – when internal forces reduce to the moment vector only, which is perpendicular to the bar axis
TORSION – when internal forces reduce to the moment vector only, which is parallel to the bar axis
M
Ms
Q
N
Remarks on the solutions of special cases
De SAINT-VENANT HYPOTHESIS
When solving BVP any change in boundary conditions - especially these of static - require that the separate solution of a complex set of BVP differential equations has to be searched for.
An important observation which simplifies this problem was made by de Saint-Venant . He noticed that for points of a body far away from the points where loading is applied the solution does not depend on the details of different loadings – provided that the resultants of loading are the same.
It is worthy to mention that the solution of BVP is very general one – though in many cases analytically not possible to be found.
26/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
TENSION – when internal forces reduce to the sum vector only, which is parallel to the bar axis
SHEAR – when internal forces reduce to the sum vector only, which is perpendicular to the bar axis
BENDING – when internal forces reduce to the moment vector only, which is perpendicular to the bar axis
TORSION – when internal forces reduce to the moment vector only, which is parallel to the bar axis
M
Ms
Q
N
Special cases of cross-sectional forces reduction
BERNOULLI HYPOTHESIS
If we will pay attention to the chosen bar cross-section we may judge the solution fulfilling BVP only on the basis of another experimental observation.
Such an observation was made be Bernoulli who noticed that in many cases the plane cross-sections before loading remain plane after loading is applied.
However, this solution is limited only to the stresses and strains; the Kinematic Boundary Conditions have to be considered for the displacement evaluation.
The Bernoulli hypothesis allows for much simpler – though more limited solutions - when compared to BVP ones.
27/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
stop
28/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
Force = mass * acceleration 1N = 1 kg (1 m/s2) If acceleration = 9,81 m/s2
1N = 0,102 kg* (9,81 m/s2); 1 kg yields 10 N, 1 ton yields 10 kN
Stress = force/area 1 Pa = 1N/(1 m2) If mass = 102 g = 0,102 kg (=mass of 1 square meter of standard writing paper) Pressure = 1 Pa If mass = 1kg (= mass of 1 liter of water = 0,001 m3 of water) Pressure = 10 P If mass = 1 t = 1000kg (= mass of a car) Pressure = 10 000 P = 10 kP
29/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
1. Hipoteza dSV:
W punktach ciała dostatecznie odległych od miejsca przyłożenia obciazenia rozkład naprężeń i odkształceń nie zależy od sposobu przyłożenia tego obciążenia – pod warunkiem, że są one statycznie równoważne
Pozwala ona na uogólnienie rozwiązania ZB TS na różne przypadki obciążenia (różne Statyczne Warunki Brzegowe), w wyniku czego otrzymujemy komplet rozwiązania w postaci naprężeń, odkształceń i przemieszczeń.
Rozwiązanie zadania brzegowego TS z uwzględnieniem hipotezy dSV uwalnia nas od posługiwania się pojęciem przypadków wytrzymałościowych
Przykładem zastosowania zasady dSV jest przypadek swobodnego skręcania pręta pryzmatycznego, który pokazuje, że przekroje płaskie po przyłożenia obciążenia nie zawsze takimi pozostają.
De Saint-Venant and Bernoulli hypotheses
30/26M.Chrzanowski: Strength of Materials
SM2-01: Summary of SM1
2. Hipoteza B:
Przekroje poprzeczne pręta płaskie przed przyłożeniem obciążenia pozostają płaskie także po jego przyłożeniu
Pozwala ona (szczególnych przypadków redukcji sił przekrojowych) na założenie - dla poszczególnych przypadków wytrzymałościowych - przemieszczeń przekroju poprzecznego pręta i na tej podstawie wyznaczenie odkształceń a następnie naprężeń. Wyznaczenie przemieszczeń wymaga uwzględnienia kinematycznych warunków brzegowych.
Hipoteza B pozwala na określenie naprężeń i odkształceń w dowolnym przekroju pręta bez potrzeby uciekania się każdorazowo do rozwiązywania skomplikowanego zadania brzegowego TS.
Hipotezę B stosuje się do podstawowych przypadków wytrzymałościowych: rozciąganie skręcanie a także ścinanie – przy odpowiednich ograniczeniach co do geometrii pręta (pręt pryzmatyczny, o długości znacznie większej niż wymiary poprzeczne)
De Saint-Venant and Bernoulli hypotheses