28
1

1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

Embed Size (px)

Citation preview

Page 1: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

1

Page 2: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

2

No lecture on Wed February 8th

Thursday 9th Feb14:15 - 17:00

Page 3: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

3

The Maximum Principle:

. .s t

y = Q y t , z t ,t

G y t , z t ,t 0

max t

T

0ty ,zF y t ,z t ,t dt

. .

For each : maximizes

the Hamiltonian

s t

t z t

H y t , z t ,π t ,t

G y t , z t

1

,t

.

0

*y2 π = -H y. t ,π t ,t

*π y t = H3. y t , t z t ,

max s.t. *

zH y t ,π t ,t = H y t , z,π t ,t G y t , z,t 0

A Reminde

r

Page 4: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

4

Example

k = F k - δk - c

F 0 = 0, F' 0 = , F'' k < 0, F' = 0

k

F(k)

capital

consumption

production function

depreciation rate

Page 5: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

5

k t ,c t

Example

k = F k - δk - c

max -ρt

0c eU

U' > 0,U'' < 0

The Hamiltonian :

-ρtH = U c e + π F k - δk - c

k t ,c t

Choose to maximize

-ρt

U' c e

c H :

= π

H

π = - = -π F' k δk

Solve for c

Two differential equations in k,π

Page 6: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

6

Example

k = F k - δk - c

-ρtU' c e = π

π = -π F' k δ

Another way:

differentiate

-ρtπ = U'' c c - ρU' c e

-π F' k δπ =

-ρtU'' c c - ρU' c= eπ

-ρtU'' c c - ρU' c e -π F' k δ

-ρt -ρtU'' c c - ρU' c e -U' c e F' k δ

-ρtU'' c c - ρU' c e F' k δπ-

-ρtU' c e = π

Page 7: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

7

Example k = F k - δk - c

-ρtU' c e = π

π = -π F' k δ

Another way:

-ρt -ρtU'' c c - ρU' c e -U' c e F' k δ

U'' c- c F' k δ - ρ

U' c

X X

U'' c c- F' k δ - ρ

c

U c' c

elasticity of the marginal utility

U'' c c -

U' c

U' c

= η c > 0

F' k - δ - ρc

c η c

Page 8: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

8

Example

k = F k - δk - c Another way:

F' k - δ - ρc

c η c

Given , find the direction in which it

moves with time

k,c

k

c

No t !!!!!!

Page 9: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

9

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

> 0 ????

F k - δk > c

F k - δk = c F' k' = δ

k’

c = F k - δk

Page 10: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

10

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

> 0 ????

k’

F' k' = δ

F' k > δ + ρ

F' k* = δ + ρ > δ = F k'k* < k'

k*

Page 11: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

11

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 12: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

12

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 13: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

13

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 14: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

14

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 15: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

15

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Stationary point

= 0

= 0

Page 16: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

16

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 17: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

17

Example k = F k - δk - c Another way:

F' k - δ - ρc

c η c

k

c

k*

Page 18: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

18

Example k = F k - δk - c

F' k - δ - ρc

c η c

k

c

k*

k(0),c(0) ????k(0), is given

k(0)

c(0), is chosen

c → 0

k → 0

Page 19: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

19

Example k = F k - δk - c

F' k - δ - ρc

c η c

k

c

k*

k(0),c(0) ????k(0), is given

k(0)

c(0), is chosen

c → 0

k → 0

Page 20: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

20

Richard E. Bellman

1920-1983

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

Page 21: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

21

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

For a given time τ < Tdefine the problem:

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt

t=ty ,z

F y ,z ,tτ

maxT

t tt t=ty ,z τ

F y ,z ,t

Denote the solution by : τV y ,τ

max t t t t+1tz

V y ,t F y ,z ,t +V y ,t + 1

Page 22: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

22

Another approach to dynamic programming

max t t t t+1tz

V y ,t F y ,z ,t +V y ,t + 1

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

.s t

max

t t

t t

t t ty + Q y ,zF y ,z ,t +V ,t + 1

G y ,z

,

,t

t

0

z t t y t+1 z t t t z t tF y ,z ,t +V y ,t + 1 Q y ,z ,t λ G y ,z ,t = 0

Lagrange: (equating the derivative w.r.t. zt to 0 )

But: t+1= π ????? ?

Page 23: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

23

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

z t t y t+1 z t t t z t tF y ,z ,t +V y ,t + 1 Q y ,z ,t λ G y ,z ,t = 0

But: t+1= π

{

}

T

t tt=0

t+1 t t t t+1 t t t

F y ,z ,t

+ π y + Q y ,z ,t - y - λ G y ,z ,t

L

????? ?

The Lagrangian of the original problem:

is the marginal value of increasing t+1t+1 yπ That is : t+1y ,t + 1yV

Page 24: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

24

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

z t t y t+1 z t t t z t tF y ,z ,t +V y ,t + 1 Q y ,z ,t λ G y ,z ,t = 0

But: t+1= π

{

}

T

t tt=0

t+1 t t t t+1 t t t

F y ,z ,t

+ π y + Q y ,z ,t - y - λ G y ,z ,t

L

????? ?

The Lagrangian of the original problem:

is the marginal value of increasing t+1t+1 yπ That is : t+1y ,t + 1yV

z t t t+1 z t t t z t tF y ,z ,t + π Q y ,z ,t λ G y ,z ,t = 0

Page 25: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

25

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

z t t y t+1 z t t t z t tF y ,z ,t +V y ,t + 1 Q y ,z ,t λ G y ,z ,t = 0

z t t t+1 z t t t z t tF y ,z ,t + π Q y ,z ,t λ G y ,z ,t = 0

but this is the (first order) condition for maximizing the Hamiltonian

Page 26: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

26

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

max t t t t+1tz

V y ,t F y ,z ,t +V y ,t + 1

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0

Calculating the Bellman value functions is equivalent to the maximum principle (Hamiltonian)

Page 27: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

27

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

max

s.t.

T T TT

T +1 T T T T T

zV y ,T F y ,z ,T

y = y + Q y ,z ,T , G y ,z ,T 0

max

s.t.

T -1 T -1 T -1 TT -1

T T -1 T -1 T -1 T -1 T -1

zV y ,T - 1 F y ,z ,T - 1 V y ,T

y = y + Q y ,z ,T - 1 , G y ,z ,T - 1 0

, , ,......, T T -1 T -2 t+1V y ,T V y ,T - 1 V y ,T - 2 V y ,t + 1

Page 28: 1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14:15 - 17:00 Thursday 9 th Feb 14:15 - 17:00

28

Another approach to dynamic programming

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

max t t t t+1tz

V y ,t F y ,z ,t +V y ,t + 1

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0

, , ,......, T T -1 T -2 t+1V y ,T V y ,T - 1 V y ,T - 2 V y ,t + 1

0V y ,0

Backwards Induction